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1. Introduction

1.1. Throughout this paper, Sp(N) will denote the compact Lie group of type CN
and Sp(N,R) will denote its split form. In this paper we consider the dual pair

(S̃p(p,R), Õ(n,m)) in S̃p(p(n + m),R). Here the tilde above each group denotes a
two-fold central extension which may be trivial. See §2.2 for the definitions of the
extensions. We will determine the composition series and the unitarizability of the
(maximal) Howe quotients which are lifts to Õ(n,m) from following genuine unitary

representations of S̃p(p,R):

(i) One dimensional genuine unitary representations and,
(ii) all genuine unitary lowest weight modules.

The Howe quotient lifts from one dimensional unitary characters are K-multiplicity
free but the lifts from the unitary lowest weight modules are not K-multiplicity free.
See §2.3 for the definitions of genuine representations and Howe quotients. By [Ho2]
it has a unique quotient called the local theta lift. Appendix A describes the Howe
quotients which are lifts from the one dimensional genuine representation for the dual

pairs (S̃p(p,R), Õ(n, n)) and it is written by Soo Teck Lee.

We remark that our method also works for the dual pairs (Ũ(p, q), Ũ(n,m)) and

(Õ∗(2p), S̃p(n,m)).

1.2. Let ξs denote the (unique) genuine unitary one dimensional representation of

S̃p(p,R) and let Ω(1) or Ωn,m
p (1) denote its Howe quotient lift to Õ(n,m). We will

see in §2.4 that ξs exists if and only if n + m is even. The Howe quotient Ω(1) is a
Harish-Chandra module of Õ(n,m). Let Kn,m = Õ(n)×2 Õ(m) denote the maximal

compact subgroup of Õ(n,m). Here Õ(n)×2 Õ(m) denotes (Õ(n)× Õ(m))/(Z/2Z).
We will compute the Kn,m-types of Ω(1) in §3.5 and we will see that the Kn,m-types
have two distinctive properties: First it is Kn,m-multiplicity free and second it is

Õ(n)× 1-admissible. These two properties are vital to our investigations.
Our first main result gives the composition series of Ω(1) and the unitarizability of

its irreducible subquotients. By symmetry we will assume that n ≤ m.

Theorem 1.2.1. Suppose the dual pair is (S̃p(p,R), Õ(n,m)) where n ≤ m, then
Ωn,m
p (1) 6= 0 iff one of the following situations holds:

(I) 2p ≤ n ≤ m and m ≡ n (mod 2). We exclude the case 2p = n = m.
(II) n = m ≤ 2p.

(III) p ≤ n ≤ 2p− 1 and m = n+ 2.

The Howe quotient Ωn,m
p (1) is irreducible if and only if we are in Cases (I) and (III).

In these two cases Ωn,m
p (1) is unitarizable.

In Case (II) Ωn,n
p (1) is reducible and its composition series is given in Appendix A

and we thank Soo Teck Lee for allowing us to include it in this paper. Case (I) is a
special case of a result of Zhu-Huang [ZH] and Li [Li1] (see §2.5). Nevertheless we
will sketch a proof of it using the method in this paper.
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1.3. Next we discuss the Howe quotients which are lifts of unitary lowest weight
modules. The Lie group Õ(n,m) contains the Lie subgroup Õ(n, r) · Õ(m− r) where

r < m. Under the compact correspondences of the dual pair (S̃p(p,R), Õ(m − r))
[KV], every genuine unitary irreducible representation τµm−r of Õ(m− r) corresponds

to a genuine lowest weight module Θ(µ) of S̃p(p,R). See §3.4 for the definition of
Θ(µ).

Since Ωn,m
p (1) is Õ(n)×1-admissible, it makes sense to consider Ωn,m

p (1) as a Harish-

Chandra module of Õ(n, r) · Õ(m− r). This is an example of discretely decomposable
restriction in [Ko2]. Let Ωn,r

p (1, µ) or Ω(1, µ) denote the Howe quotient lifted from the

unitary lowest weight module Θ(µ) of S̃p(p,R) to Õ(n, r). By Kulda’s see-saw pair
argument (see Lemma 4.2.1), Ωn,m

p (1) decomposes as a direct sum of Harish-Chandra

modules of Õ(n, r)× Õ(m− r)

(1) Ωn,m
p (1) =

∑
µ

Ωn,r
p (1, µ) � τµm−r

where the sum is taken over all genuine finite dimensional representations of Õ(m−r).

1.4. By (1), it is not surprising that the representations Ωn,m
p (1) and Ωn,r

p (1, µ) are
closely related. Let vµ denote a highest weight vector of τµm−r. Let Ω(1)vµ denote the
subspace of Ω(1) which is span of h(vµ) for all h ∈ HomÕ(m−r)(τ

µ
m−r,Ω

n,r
p (1)). By (1),

we may regard Ω(1, µ) ' Ω(1, µ) � vµ ' Ω(1)vµ as a submodule of Ω(1).

Let Kn,r := Õ(n) ×2 Õ(r) denote the maximal compact subgroup of Õ(n, r). One
can compute the Kn,r-types of Ω(1, µ) from the Kn,m-types of Ω(1) by applying the

branching rule Kn,m ↓ Kn,r · Õ(m − r) to (1). In particular we can check whether
Ω(1, µ) is nonzero.

We remark that the process is reversible in the following sense. Let π denote
a Harish-Chandra module of a genuine irreducible unitary lowest weight module of

S̃p(p,R). By [DER] and [EHW], there exists a compact Õ(r′) and an irreducible

genuine representation τµ
′

r′ of Õ(r′) with highest weight µ′ such that π = Θ(µ′) is the

theta lift from τµ
′

r′ . Then (1) remains valid, namely, the Howe quotient lift Ωn,r
p (1, µ′)

of π to Õ(n, r) is a submodule of the Howe quotient lift Ωn,r+r′
p (1) of the genuine one

dimensional character ξs from S̃p(p,R) to Õ(n, r+ r′). In particular if Ωn,r+r′
p (1) = 0,

then Ωn,r
p (1, µ′) = 0.

1.5. Next we investigate the subquotients of Ωn,m
p (1) and Ωn,r

p (1, µ) in (1). Suppose
W1 ⊂ W2 are (so(n,m), Kn,m)-submodules of Ωn,m

p (1), then W ′
i := Wi ∩ Ωn,m

p (1, µ)
(i = 1, 2) are admissible (so(n, r), Kn,r)-submodules of Ωn,r

p (1, µ) and W ′
2/W

′
1 is a

subquotient. In this way, subquotients Ω̃ := W2/W1 of Ω(1) give rise to (possibly
zero) subquotients W ′

2/W
′
1 of Ω(1, µ). Before we state our first main result, we need

two more notations. Let Ω̃vµ denote the subspace of Ω̃ where the compact Õ(m− r)
acts by the highest weight µ. Hence Ω̃vµ is isomorphic to W ′

2/W
′
1. We refer to [Al]
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and [LL1] for the definition of the module diagram of a Harish-Chandra module of
finite length.

Theorem 1.5.1. (i) Suppose Ω̃ is a nonzero (so(n,m), Kn,m)-subquotient of Ω(1).

Then Ω̃ is irreducible if and only if for every highest weight µ of Õ(m − r),
Ω̃vµ is either zero or an admissible irreducible (so(n, r), Kn,r)-subquotient of
the Howe quotient Ω(1, µ).

(ii) All irreducible subquotients of Ω(1, µ) are of the form Ω̃vµ given in (i).
(iii) The module diagram of Ω(1, µ) is a spanning subgraph of Ω(1).

Similar statements about unitarizability hold.

Theorem 1.5.2. Suppose Ω̃ is an irreducible (so(n,m), Kn,m)-subquotient of Ω(1) as

in Theorem 1.5.1(i). Then Ω̃ is unitarizable if and only if for every highest weight µ
of Õ(m−r), Ω̃vµ is either zero or a unitarizable irreducible (so(n, r), Kn,r)-subquotient
of the Howe quotient Ω(1, µ).

Suppose Ω(1) belongs to Case (I) or (III) in Theorem 1.2.1, the above two theorems
imply that all the Ω(1, µ)’s appearing on the right hand side of (1) are irreducible
and unitarizable. See Corollary 4.2.2.

Using the above two theorems, we will describe the composition series of Ωn,r
p (1, µ)

and the unitarizability of all its irreducible subquotients in §8.8. We identify some of
the unitarizable theta lifts in §9 with Vogan-Zuckerman’s Aq(λ).

If we set p = 1, then Ωn,m
1 (1) is a ladder representation of Õ(n,m) and our results

overlap with Theorem C in [KoO].

1.6. We will briefly describe our method of proof. The Kn,m-types of Ω(1) is multi-
plicity free and this makes it possible to describe the Lie algebra action of so(n,m)
on Ω(1) via a family of Kn,m-module homomorphisms between finite dimensional rep-
resentations of Kn,m. These homomorphisms are called transition coefficients and we
denote them by Tλ,λ′ (see §5.2). Likewise by (1) it is also possible to describe the Lie
algebra action of so(n, r) on Ω(1, µ) by its transition coefficients tλ,λ′ . The transition
coefficients Tλ,λ′ and tλ,λ′ uniquely determine each other.

From here onwards, we need two approaches. For Case (II) we embed Ω(1) into
a degenerate principal series representation of Õ(n, n) and we prove Theorems 1.5.1
and 1.5.2 using an idea in [LL1].

For Cases (I) and (III), we have to go back and forth between Theorems 1.2.1,
1.5.1 and 1.5.2. The main step is to determine Ωn,1

p (1, µ) in the special case when

Õ(n, r) = Õ(n, 1) in (1). By checking its Kn,1-types and infinitesimal character
against the list of irreducible representations of SO0(n, 1) in [Hi] [KG], we can deduce
the Langlands parameters of Ωn,1

p (1, µ). We will show that for every µ, Ω(1, µ) is an

irreducible and unitarizable Harish-Chandra module of Õ(n, 1). This will imply that
tλ,λ′ and Tλ,λ′ are never zero. This will in turn prove that Ω(1) is irreducible. These
will be done in §5. Unfortunately, it involves a case-by-case consideration.

We remark that hidden in the background of these proofs is the use of Gelfand-
Zetlin bases of irreducible representations of SO(n) [GZ]. Indeed using these bases,
we can construct bases of Ω(1) and Ω(1, µ) with explicit Lie algebra actions.
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1.7. This paper is partly motivated by [LZ1]. In [Zhu] and [LZ1], they investigate

the Howe quotient lifts of one dimensional unitary characters of Ũ(p, q) to Ũ(n, n)
and they show that the Howe quotients can be embedded into a degenerate principal

series representations of Ũ(n, n). Several authors have used transition coefficients to
investigate K-multiplicity free principal series representations. See [Hi], [HT], [KG],
[J], [Le], [Sa], [Zha].

1.8. There were many investigations on the theta lifts and the Howe quotients which
are lifts from one dimensional unitary representations and discrete series representa-
tions, especially when the dual pair is in the stable range. See §2.5 for the definition
of the stable range. Some results in this area are [Ho2], [KoO], [KR], [Li1], [Li2],
[LZ1], [LZ2], [NZ1], [TZ], [Tan], [Zhu], [ZH] and many more. We will need some these
results and we will give a fuller account of them as we go along.

1.9. The organization of this paper is as follows. Section 2 introduces some notations
about Howe correspondences. Section 3 calculates the Kn,m-types of Ωn,m

p (1). Section
4 proves (1). In §5 we introduce the transition coefficients. The proofs of Theorems
1.2.1, 1.5.1 and 1.5.2 will occupy §6, §7 and §8. In §9 we identify some of the unita-
rizable theta lifts with Vogan-Zuckerman’s Aq(λ). Finally in Appendix A, Soo Teck
Lee computes the composition series of the Howe quotients lifted from the unitary

one dimensional genuine representations for the dual pairs (S̃p(p,R), Õ(n, n)).

1.10. Dual pairs (Ũ(p, q), Ũ(n,m)) and (Õ∗(2p), S̃p(n,m)). We have mentioned
in the beginning that the method employed in this paper also works for the Howe
quotients of one dimensional genuine unitary characters and genuine unitary lowest

weight modules appearing for the dual pair (Ũ(p, q), Ũ(n,m)). The same works for the

dual pair (Õ∗(2p), S̃p(n,m)) except for one family of unitary lowest weight modules
of Õ∗(2p) which does not occur in the compact dual pair correspondences [DER].

Results on the three dual pairs were presented in a first draft of this paper. Indeed

all the results and proofs for the dual pair (S̃p(p,R), Õ(n,m)) in this paper for (1),
Theorems 1.5.1 and Theorem 1.5.2 also hold for the other two dual pairs. Unfortu-
nately there are enough differences so that separate notations and proofs are rendered
for most parts. We prefer to leave these to the reader.

For the dual pair (Õ∗(2p), S̃p(n,m)), the computation of the submodules of the

Howe quotients follow a similar idea as that of the dual pair (S̃p(p,R), Õ(n,m)).
There are less cases to consider and the results are less complicated.

For the dual pair (Ũ(p, q), Ũ(n,m)) the Howe quotient is reducible outside the stable
range. Because of this, there is an extra twist in the determination of the composition
series of Howe quotient the proofs. In particular we need a detailed analysis of
the transition coefficients. Results from Theorem 1.5.2 onwards quickly degenerate
into many cases and the proofs involve long and tedious case by case computations.

Therefore we will provide more details to the dual pair S̃p(p,R) × Õ(n,m) in this

paper and we postpone the dual pair (Ũ(p, q), Ũ(n,m)) to a future paper.
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While we were writing this paper, we received the preprint [PT] which computes

the theta lifts of unitary characters with respect to the dual pair (Ũ(p, q), Ũ(n,m)).

Acknowledgments. The author would like to thank Soo Teck Lee whose valuable
discussions and generous comments have made this paper possible, and for allowing
the inclusion of his results on Õ(n, n) in the appendix. We would like to thank the
first referee, K. Nishiyama, D. Prasad, T. Przebinda, C-B. Zhu for their valuable
comments on the first draft.

2. Howe quotients lifted from one dimensional unitary
representations

2.1. The Fock Model. Let S̃p(N,R) denote the double cover of Sp(N,R). Let ωN
denote the Fock model of the Weil representation of S̃p(N,R). It is a well known fact
that

ωN+M = ωN � ωM

as an infinitesimal representation of S̃p(N,R)× S̃p(M,R).
Suppose Gi (i = 1, 2) is a two fold cover of an algebraic group Gi. Let Ci ' Z/2Z

denote the kernel of the covering map. Then we define

G1 ×2 G2 := (G1 ×G2)/{(x, x) ∈ C1 × C2 : x ∈ Z/2Z}.

2.2. A see-saw pair. We consider the following dual pairs

S̃p(p,R)′×2Õ(n, r) ⊂ S̃p(p(n+ r),R)(2)

S̃p(p,R)′′×2Õ(m− r) ⊂ S̃p(p(m− r),R)(3)

S̃p(p,R)×2Õ(n,m) ⊂ S̃p(p(n+m),R).(4)

Note that S̃p(p,R) splits over Sp(p,R) if and only if m + n is even. Likewise for

S̃p(p,R)′ and S̃p(p,R)′′. The Lie group Õ(n,m) is the double cover of O(n,m) defined
by

Õ(n,m) := {(g, z) ∈ O(n,m)× C∗ : det p(g) = z2}.

Let ξn,m denote the character of Õ(n,m) given by ξn,m((g, z)) = z. Similarly we define

Õ(r) and its character ξr by setting m = 0 and n = r in the above formulas.
The dual pairs form a see-saw pair

S̃p(p,R)′ ×2 S̃p(p,R)′′ Õ(n,m)

×(5)

S̃p(p,R) Õ(n, r)×2 Õ(m− r).
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2.3. Howe quotients. We will recall some definitions and facts from [Ho2]. Let

G1 ×2 G2 ⊂ S̃p(N,R) denote one of the three dual pairs in (2) to (4). Let g(i)

and K(i) denote the Lie algebra and maximal compact subgroup of Gi (i = 1, 2)

respectively. Note that G(i) is a double cover of a real algebraic group G(i). Let π1

denote an irreducible (g(1), K(1))-module. We call π1 a genuine (g(1), K(1))-module if

the kernel of the covering map G(1) → G(1) acts non-trivially.
We define

N =
⋂
{kerf : f ∈ Hom(g(1),K(1))(ωN , π1)}.

Then
ωN/N = Ω(π1) � π1

for some admissible (g(2), K(2))-module Ω(π1) of finite length. We will call Ω(π1) the
(maximal) Howe quotient lifted from π1 with respect to the dual pair G1 ×G2. It is
non-zero only if π1 is a genuine (g(1), K(1))-module. By Lemma 2.2 of [Ho2], Ω(π1) is
the genuine (g(2), K(2))-module of the Howe quotient defined using the smooth model
of the Weil representation. By a theorem of Howe, Ω(π1) has a unique irreducible
quotient θ(π1) called the (local) theta lift and θ(π1) is uniquely determined by π1.

We claim that

(6) Ω(π1)∗ = Hom(g(1),K(1))(ωN , π1)K(2)
.

Indeed Hom(g(1),K(1))((ωN), π1)K(2)
= Hom(g(1),K(1))((ωN)/N , π1)K(2)

= Hom(g(1),K(1))(Ω(π1) � π1, π1)K(2)
= HomC(Ω(π1),C)K(2)

= Ω(π1)∗.

2.4. We note that S̃p(p,R) will exhibit a genuine one dimensional character ξs if and
only if it is a split cover over Sp(p,R), that is,

S̃p(p,R) = Sp(p,R)× (Z/2Z).

This happens precisely when n+m is even and ξs is the character of S̃p(p,R) which
is non-trivial on Z/2Z and trivial on Sp(p,R).

We will abuse notation and we denote the Howe quotient Ω(ξs) lifted from S̃p(p,R)
to Õ(n,m) by Ω(1) or Ωn,m

p (1).

We remark that since m + n is even, S̃p(p,R)′ and S̃p(p,R)′′ in (2) and (3) are

either both split or both non-split. Hence S̃p(p,R)′ and S̃p(p,R)′′ are isomorphic Lie
groups.

2.5. We recall that the dual pair (S̃p(p,R), Õ(n,m)) is said to be in the stable range
if 2p ≤ min(n,m). We recall Theorem 2.2 in [ZH] in which Case (I) in Theorem 1.2.1
is a special case.

Theorem 2.5.1. Suppose (G1, G2) is a reductive dual pair in the stable range with

G1 being the smaller group and suppose it is not the dual pair (S̃p(p,R), Õ(2p, 2p)).
Then the Howe quotient Ω(1) lifted from the order 2 genuine character of G1 is a
nonzero irreducible and unitarizable Harish-Chandra module of Õ(n,m).

We remark that Zhu and Huang prove that Ω(1) is irreducible for all dual pairs in
the stable range. It is nonzero and unitarizable, as follows from a theorem of Li [Li1].
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3. K-types of Ω(1)

In this section, we recall the construction of unitary lowest weight modules via
dual pair correspondences due to Kashiwara-Vergne [KV]. Next we will use this to
calculate the Kn,m-types of Ω(1). First we need to set up some notations.

3.1. Notations. Define

Λ(n) := {λ = (λ1, . . . , λn) ∈ Zn : λi ≥ λi+1}.

Let Λ+(n) be the subset consisting of those λ’s such that λi ≥ 0. Sometimes we
will write (λ1, . . . , λn)n with a subscript n outside the parenthesis to indicate that
it belongs to Zn. We define εi := (0, . . . , 0, 1, 0, . . . , 0) where 1 appears in the i-th
position, 1n := (1, 1, . . . , 1)n, 0n := (0, 0, . . . , 0)n and 1

2
Λ(n) := {1

2
λ : λ ∈ Λ(n)}. If

λ = (λ1, . . . , λn) ∈ Zn and λ′ = (λ′1, . . . , λ
′
m) ∈ Zn, we abuse notations and denote

(λ1, . . . , λn, λ
′
1, . . . , λ

′
m) ∈ Zn+m by (λ, λ′).

3.2. Highest weights. Irreducible representations of O(n) are parameterized by
elements λ in Λ+(n) of the form

λ = (a1, . . . , ak, 0, . . . , 0)n or(7)

λ = (a1, . . . , ak, 1, . . . , 1, 0, . . . , 0)n(8)

where ai are positive integers, and k ≤ [n
2
] (see [Ad], [GoW]). In (8) there are n− 2k

copies of ‘1’. Let τλn denote the finite dimensional representation corresponding to λ.
Then ξnτ

λ
n is a genuine representation of Õ(n) and we denote it by τλn . We call (7)

and (8) genuine highest weights of Õ(n). Sometimes we will abuse notation and write

λ in place of τλn . We also let (̂Õ(n))gen denote both the set of irreducible genuine

representations of Õ(n) and the corresponding set of genuine highest weights. Note
that

τ (a1,...,ak,1,...,1,0,...,0)
n

∼= det n ⊗ τ (a1,...,ak,0,...,0)
n .

The group Õ(n) contains SO(n) and ξn is trivial on SO(n). The restriction of τλn
(and also τλn) to SO(n) is reducible iff n = 2k is even. In this case the restriction
decomposes into two irreducible representations of SO(n) of weights

(9) (a1, . . . , ak)k and (a1, . . . , ak−1,−ak)k.

Otherwise τλn is the irreducible representation of SO(n) with highest weight

(a1, . . . , ak, 0, . . . , 0)[n/2].

3.3. Let Ũ(p)′′ denote the maximal compact subgroup of S̃p(p,R)′′ in (3). Then Ũ(p)′′

exhibits a nontrivial genuine one dimensional character ξ′′p such that (ξ′′p )2 = detm−rp .
Suppose W is an irreducible genuine representation of U(p)′′. Then the map W 7→
ξ′′pW defines a bijection between the set of irreducible representations of U(p) and the

set of genuine irreducible representations of Ũ(p)′′. Therefore we define Λ(p) + m−r
2

1p

to be the set of highest weights of genuine representations of Ũ(p)′′.
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3.4. Unitary lowest weight modules. Let τµm−r be an irreducible genuine repre-

sentation of Õ(m − r) with highest weight µ. Let (ωM)µ denote the τµm−r isotypic
component of ωN with respect to the dual pair (3). It is well known that if it is
nonzero, then (see [KV])

(10) (ωM)µ = Θ(µ) � τµm−r

where Θ(µ) is an irreducible lowest weight module of S̃p(p,R)′′. Suppose µ =

(a1, . . . , ak, 0, . . . , 0)n ∈ Λ+(n), then the highest weight of the lowest Ũ(p)′′-type of
Θ(µ) is (See [KV] and [Ad]).

(11) (a1, . . . , ak, 0, . . . , 0)p +
n

2
1p.

3.5. We will compute the Kn,m-types of Ω(1). Let τλn � τκm denote an irreducible

genuine representation of Kn,m = Õ(n) ×2 Õ(m). Let Θ(λ) (resp. Θ(κ)) denote the

theta lift with respect to the dual pair (Õ(n), S̃p(p,R)′) (resp. (Õ(m), S̃p(p,R)′′)).

Let γ (resp. γ′) denote the lowest Ũ(p)′-type of Θ(λ) (resp. lowest Ũ(p)′′-type of
Θ(κ)).

Lemma 3.5.1. The multiplicity of τλn � τκm in Ω(1) is either one or zero. It is one

iff γ = γ′ as representations of Ũ(p)′.

Proof. Also see [KR], [LZ1] and [NZ1]. We set r = 0 in the see-saw pair in (5) and
the usual see-saw pair argument shows that

dim HomKn,m(τλn � τκm,Ω(1)) = dim Hom(sp(p,C),U(p))(Θ(λ)⊗Θ(κ)∗, 1)

= dim Hom(sp(p,C),Ũ(p)′)(Θ(λ),Θ(κ))

= dim HomŨ(p)′(γ, γ
′).

Applying the Schur’s lemma to the last equation proves the lemma. �

Combining the above lemma with (11) gives the next lemma.

Lemma 3.5.2. The Howe quotient Ωn,m
p (1) is Kn,m-multiplicity free and it is the sum

of all Kn,m-types of the form

(12) (a1, . . . , ak, 0, . . . , 0)n � (a′1, . . . , a
′
k′ , 0, . . . , 0)m

where ai, a
′
i are positive integers, ai ≥ ai+1 and a′i ≥ a′i+1 and

(13) (a′1, . . . , a
′
k′ , 0, . . . , 0)p = (a1, . . . , ak, 0, . . . , 0)p +

n−m
2

1p. �

Let τλn � τκm denote a Kn,m-type in Ω(1). By the above lemma, λ and κ determine
each other linearly and uniquely. Sometimes we write κ as κ(λ) to indicate that it is
a linear function of λ. We will denote the Kn,m-type τλn � τκm by τλn,m and we write

(14) Ω(1) =
∑
λ∈J

τλn,m =
∑
λ∈J

τλn � τκ(λ)
m

where J is a subset of (̂Õ(n))gen.
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Suppose Ω(1) is in Cases (I), (II) or (III) in Theorem 1.2.1 and we denote the index
J in (14) above as JI , JII and JIII respectively. It is easy to see that

JI = {(a1, . . . , ap, 0, . . . , 0) ∈ Λ+(n) : ap ≥
m− n

2
}(15)

JII = {(a1, . . . , amin(n,p), 0, . . . , 0) ∈ (Ô(n))gen : ai ≥ 0}(16)

JIII = {(a1, . . . , ap, 0, . . . , 0) ∈ Λ+(n) : an−p+1 = . . . = ap = 1}.(17)

This proves the claim about Ω(1) 6= 0 in these three cases.
We claim that Ωn,m

p (1) = 0 outside the above three cases. Indeed suppose Ω(1) 6= 0
and we are not in Cases (I) and (II), then by (13) ak > 0 and p = k ≤ n < m and
n < 2p. Since [n

2
] < p, ap = 1. This shows that m−n

2
= 1 and m = n+ 2, that is, Case

(III).

The following is an important corollary of (14).

Corollary 3.5.3. The Howe quotient Ωn,m
p (1) lifted from S̃p(p,R) to Õ(n,m) is

Õ(n)× 1-admissible. �

4. Howe quotient lifted from Θ(µ)

4.1. Recall §2.2 that Õ(n,m) contains Õ(n, r) · Õ(m−r) and Kn,r · Õ(m−r) ⊂ Kn,m.
In this section, we do not assume that n ≤ m.

Let Ω(1)µ denote the τµm−r isotypic component of Ω(1). By Corollary 3.5.3 this is an

(admissible) Harish-Chandra module of Õ(n, r)×Õ(m−r). By Proposition 1.6 [Ko2],
the subspaces of Kn,r-finite vectors and Kn,m-finite vectors agree and (6) becomes

(18) Ω(1)∗ = Hom(sp(p,C),Ũ(p))(ω(p(n+m)), ξs)Kn,r .

4.2. We recall §2.4 that S̃p(p,R)′ and S̃p(p,R)′′ are isomorphic. Let Θ(µ) be the

irreducible genuine lowest weight module of S̃p(p,R)′′ lifted from τµm−r of Õ(m − r)
in (10). We define Ω(1, µ) to be the Howe quotient lifted from Θ(µ) with respect to

the dual pair (S̃p(p,R)′, Õ(n, r)).
We will prove (1) which is the key lemma in this paper.

Lemma 4.2.1. Let µ denote the highest weight of the representation τµm−r and we
define Ω(1, µ) as above. Then (also see (1))

Ωn,m
p (1)µ = Ωn,r

p (1, µ) � τµm−r

as a Harish-Chandra module of Õ(n, r)× Õ(m− r).

Proof. Note that τµm−r is a self-dual representation. Let Ũ(p) be the maximal

compact subgroup of S̃p(p,R). Set N = p(n+ r) and M = p(m− r). By (18)

(Ω(1)µ)∗ = (Ω(1)∗)µ = Hom(sp(p,C),Ũ(p))((ωN+M)µ, ξs)Kn,r

= Hom(sp(p,C),U(p))(ωN � (ω∗M)µ, 1)Kn,r .(19)
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The character ξs is replaced by the trivial character in the second equation because

the action of Ũ(p) on ωN � (ω∗M) factors through U(p).

Eqn (19) = Hom(sp(p,C),U(p))(ωN � (Θ(µ))∗ � τµm−r, 1)Kn,r (By (10))

= Hom(sp(p,C),Ũ(p)′)(ωN ,Θ(µ))Kn,r � τµm−r.

Note that the last equality holds because Θ(µ) is Ũ(p)-admissible. �

Corollary 4.2.2. Let Ω(1), τµm−r and Θ(µ) as in §3.4 and §4.1. Then the local theta

lift θ(Θ(µ)) of the unitary lowest weight module Θ(µ) of S̃p(p,R) to Õ(n, r) is nonzero
if and only if

(i) Ω(1) is nonzero and
(ii) Ω(1) contains a Kn,m-type τλn,m (see (14)) whose restriction to 1 × Õ(m − r)

contains τµm−r as a subrepresentation.

The corollary is evident from the last lemma. It is relatively easy to check Condi-
tions (i) and (ii) in the above corollary using the branching rules in Lemma 5.1.2 in
the next section.

We remark that in the case when Θ(µ) is a discrete series representation with
sufficiently regular infinitesimal character and 2p ≤ n + r, then Li [Li2] showed that
Ω(1, µ) is irreducible and unitarizable and it has nonzero (so(n, r), Kn,r)-cohomology
[VZ]. Also see some related recent articles of He [He1] [He2].

4.3. The next corollary is a special case of Theorems 1.5.1 and 1.5.2. However we can
give a simple and direct proof. Later we will use this to prove Case (III) in Theorem
1.2.1.

Corollary 4.3.1. If Ω(1) is a unitarizable (and hence irreducible) Harish-Chandra
module of Õ(n,m) and Ω(1, µ) is nonzero, then Ω(1, µ) is an irreducible and unita-
rizable (so(n, r), Kn,r)-module. In particular Ω(1, µ) is the local theta lift.

Proof. The Howe quotient Ω(1, µ) inherits the Hermitian form from Ω(1) and it is
therefore unitarizable. On the other hand, Ω(1, µ) is a cyclic (so(n, r), Kn,r)-module of
finite length with a unique quotient [Ho2]. Hence it is completely decomposable. This
implies that it is irreducible. The same argument also shows that Ω(1) is irreducible.

�

5. Transition Coefficients

The study of the reducibility and unitarizability of Ω(1) is closely related to the
computations of the transition coefficients which we will define in this section.

5.1. Branching rules and tensor products. We will state some well known re-
sults on the finite dimensional representations of O(n). Let τλn denote an irreducible
representation of O(n) with highest weight λ = (λ1, . . . , λn)n ∈ Λ+(n). The corre-
sponding statements about its double cover Õ(n) are obtained by tensoring τλn with
the genuine one dimensional character ξn.
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Lemma 5.1.1. Let τλn and τλ
′
n−1 denote irreducible representations of O(n) and O(n−

1) respectively. Let χ1 denote the nontrivial order 2 character of O(1) = Z/2Z.
Then the restriction of τλn to O(n− 1)×O(1) contains the irreducible representation

τ
(λ′1,...,λ

′
n−1)

n−1 � χs1 with multiplicity at most one. It is one iff

(i) λ1 ≥ λ′1 ≥ λ2 ≥ . . . ≥ λ′n−1 ≥ λn and

(ii) s =
∑n

i=1 λi −
∑n−1

i=1 λ
′
i.

The above lemma is well known. For a proof, see §10 [Pr] and §5.4.2.3 [Ho3]. The
next lemma is a simple consequence.

Lemma 5.1.2. Let 0 < r < n and let τλn and τλ
′
n−r denote irreducible representation

of O(n) and O(n − r) respectively. Then τλn contains τλ
′
n−r iff λi ≥ λ′i ≥ λi+r. Here

we set λi = −∞ if i > n.

Lemma 5.1.3. Let Cn denote the standard representation of O(n). Then

Cn ⊗ τλn =
n∑
i=1

τλ+εi
n +

n∑
i=1

τλ−εin

Here we assume that τλ±εin = 0 if λ± εi is not a highest weight of O(n).

Proof. The corresponding results are well known for SO(n). One can deduce the
results for O(n) from that of SO(n) and we will leave this as an exercise for the
reader. �

The following corollary follows by applying Lemma 5.1.1 to Lemma 4.2.1.

Corollary 5.1.4.

Res
(so(n,r),Kn,r)

(so(n,r−1),Kn,r−1)Ω(1, µ) =
∑
µ′

Ω(1, µ)

where the sum is taken over all highest weights µ′ = (µ′1, . . . , µ
′
r+1) of Õ(m − r + 1)

such that

µ′1 ≥ µ1 ≥ µ′2 ≥ µ2 ≥ . . . ≥ µm−r ≥ µ′m−r+1 ≥ 0.

5.2. Transition coefficients. Let so(n,m)C = (kn,m)C ⊕ p1 denote the Cartan

decomposition of the complexified Lie algebra of Õ(n,m). As a representation of
Kn,m = O(n)×O(m), p1 = Cn � Cm.

Next suppose τλn,m = τλn � τ
κ(λ)
m and τλ

′
n,m = τλ

′
n � τ

κ(λ′)
m are Kn,m-types of Ω(1).

Then we define the transition coefficient Tλ,λ′ as the composition of the following
Kn,m-morphisms

(20) Tλ,λ′ : p1 ⊗ τλn,m
L−→ Ω(1)

pr−→ τλ
′

n,m

where L is the Lie algebra action

L(X ⊗ v) = Xv for X ∈ p1, v ∈ τλn,m
and pr is the projection onto the Kn,m-type τλ

′
n,m.
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We will call two Kn,m-types τλn,m = τλn � τ
κ(λ)
m and τλ

′
n,m = τλ

′
n � τ

κ(λ′)
m , (resp. two

highest weights λ and λ′) neighbours if λ = λ′ ± εi for some i. By (13), this is
equivalent to κ(λ) = κ(λ′)± εj for some j.

By Lemma 5.1.3, p1⊗τλn,m contains a subspace Kn,m-isomorphic to τλ
′

n,m iff λ and λ′

are neighbours. Hence Tλ,λ′ 6= 0 implies that λ′ = λ±εi. Given such a λ′, the domain
of Tλ,λ′ has a unique subspace isomorphic to τλ

′
n,m and we can regard Tλ,λ′ as a scalar

multiplication by Schur’s lemma. It is possible to deduce the Lie algebra action on
Ω(1) from the maps Tλ,λ′ for all λ, λ′.

5.3. Let µ denote a highest weight of Õ(m− r) and vµ denote the highest weight of
τµm−r. Then Lemma 4.2.1 states that

Ω(1, µ) = Ω(1)vµ =
∑
λ∈J

(τλn,m)vµ =
∑
λ∈J

τλn � (τκ(λ)
m )vµ .

Let λ′ = λ±εi as before and suppose (τλn,m)vµ and (τλ
′

n,m)vµ are nonzero. Let so(n, r)C =

(kn,r)C⊕p2 denote the Cartan decomposition of the complexified Lie algebra of Õ(n, r).
Then we define the transition coefficient tλ,λ′ as the composite of the following Kn,r-
morphisms

tλ,λ′ : p2 � (τλn,m)vµ
L−→ Ω(1, µ)

pr−→ (τλ
′

n,m)vµ .

Lemma 5.3.1. Suppose (τλn,m)vµ and (τλ
′

n,m)vµ are nonzero. Then Tλ,λ′ 6= 0 iff tλ,λ′ 6= 0.
Furthermore Tλ,λ′ and tλ,λ′ uniquely determine each other.

Proof. The proof follows a similar argument in §6 in [LL1]. �

The following lemma is very useful for later proofs.

Lemma 5.3.2. Let 1 ≤ r ≤ m. Suppose τλn,m and τλ
′

n,m are two neighbouring Kn,m-

types of Ωn,m
p (1). Then there exists a genuine highest weight µ of Õ(m− r) such that

(τλn,m)vµ and (τλ
′

n,m)vµ are nonzero.

Proof. This follows by applying Lemma 5.1.2 to τ
κ(λ)
m and τ

κ(λ′)
m . �

Proposition 5.3.3. Given Õ(m − r) and suppose Ωn,m
p (1) is nonzero. Suppose for

every highest weight µ of Õ(m− r), Ωn,r
p (1, µ) is either zero or an irreducible Harish-

Chandra module of Õ(n, r), then Ωn,m
p (1) is irreducible.

Proof. Suppose Ω(1) is nonzero and reducible, then by [Ho2], it has a nontrivial
unique irreducible quotient θ(1) called the local theta lift. Let φ : Ω(1)→ θ(1) denote
the quotient map. There exists two neighbouring Kn,m-types τλn,m and τλ

′
n,m such that

φ(τλn,m) is a Kn,m-type of θ(1), τλ
′

n,m lies in the kernel of φ, and Tλ,λ′ 6= 0. By Lemma

5.3.2, there exists a highest weight µ of Õ(m − r) such that (τλn,m)vµ and (τλ
′

n,m)vµ
are nonzero. Then θ(1)vµ contains the Kn,r-types (τλn,m)vµ but not (τλ

′
n,m)vµ . Hence

Ω(1)vµ = Ω(1, µ) is reducible. �
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5.4. Degenerate principal series representations of Õ(n,m). To end this sec-
tion, we will define a family of principal series representations of Õ(n,m) which we
will need in the proofs of Theorems 1.5.1 and 1.5.2.

Assume that n ≥ m. The group Õ(n,m) contains a unique parabolic subgroup Pm
with Levi decomposition Pm = (GLm(R)× Õ(n−m)) nNm.

Let τµn−m denote a genuine representation of Õ(n−m). Then for s ∈ C and σ = 0, 1,
we define In,m(s, σ, τµn−m) or In,m(s, σ, µ) to be the (genuine) Harish-Chandra module
of the normalized induced principal series representation

(21) Ind
Õ(n,m)
Pm

χs,σ � τn−m

where χs,σ is the one dimensional character of GLm(R) given by

χs,σ(g) = | detm(g)|s(sgn(detm(g)))σ, for g ∈ GLm(R).

If n = m, then τn−m in (21) is just the non-trivial character of Õ(0) = Z/2Z and
we write In,m(s, σ, τn−m) simply as In,n(s, σ). By Frobenius reciprocity, In,n(s, σ) has
Kn,n-types

(22) In,n(s, σ) =
∑
λ

τλn � (τλn det σn)

where the sum is taken over all genuine highest weight λ of Õ(n). Hence it is Kn,n-
multiplicity free. See Theorem A.2.1 for its composition series.

We recall a fact from [LL1]. Suppose n > m, then

(23) Res
Õ(n,n)

Õ(n,r)×Õ(n−r)In,n(s, 0) =
∑
µ

In,r(s, 0, µ) � τµn−r

where the sum is taken over all genuine highest weights µ of Õ(n− r).

6. Irreducibility of Ω(1)

6.1. In this section, we will prove the assertion in Theorem 1.2.1 that Ωn,m
p (1) is

irreducible in Cases (I) and (III). The main idea is that we first restrict Ω(1) to
Õ(n, 1)× Õ(m− 1). We will show that Ωn,1

p (1, µ) is irreducible for all highest weight

µ of Õ(m − r) and Proposition 5.3.3 will imply that Ωn,m
p (1) is irreducible. We will

postpone the proof of the unitarizability till §8.
The proof that Ω(1, µ) = Ωn,1

p (1, µ) is irreducible will occupy the rest of this section.

First we note that SO0(n, 1) embeds into Õ(n, 1). Hence we may consider Ω(1, µ) as
a Harish-Chandra module of SO0(n, 1). We will describe the Langlands parameters
and K-types of irreducible representations of SO0(n, 1) in §6.2. Next we compute the
Langlands parameters of the irreducible subquotients of Ω(1, µ) as a Harish-Chandra
module of SO0(n, 1). This will enable us to conclude that in all except one case
Ω(1, µ) is already irreducible as a (so(n, 1), SO(n))-module. In the exceptional case,
Ω(1, µ) is a discrete series representation of Õ(n, 1).
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6.2. Langlands subrepresentations of SO0(n, 1). Up to conjugation,
SO0(n, 1) has a unique parabolic subgroup with Levi decomposition (R+×SO(n−1))n
N1. Set r1 = [n−1

2
] and let I0

n,1(s, τ νSO(n−1)) or I0
n,1(s, ν) denote the Harish-Chandra

module of the normalized induced principal series representation

(24) Ind
SO0(n,1)

(R+×SO(n−1))nN1
det s1 � τ νSO(n−1)

where ν = (ν1, . . . , νr1) ∈ Λ(r1) is a highest weight of SO(n − 1) and s ∈ C. It has
infinitesimal character (s, ν + ρn−1) where ρn−1 ∈ 1

2
Λ(r1) is the half sum of all the

positive roots of SO(n− 1).
We will review Theorems 10 and 11 in [KG] on I0

n,1(s, ν) which were first stated

in [Hi]. Also see [LL1]. The principal series I0
n,1(s, ν) is K-multiplicity free where

K = SO(n). It is reducible only if s+ n−1
2
∈ Z.

From now on we assume that s + n−1
2
∈ Z and s ≤ 0. Let r′ = [n/2] and set

ν0 = ∞ and νj = 0 if j > r1. Let j denote the unique integer such that 1 ≤ j ≤ r′

and νj−1 ≥ −s− n−1
2

+ j − 1 ≥ νj. Then there exists a unique irreducible submodule
Ī0
n,1(s, ν) of I0

n,1(s, ν) whose K-types (K = SO(n)) is the sum over SO(n)-types with
highest weight λ = (λ1, . . . , λr′) ∈ Λ(r′) satisfying

λi ≥ νi ≥ |λi+1| for i = 1, . . . , r′

and −s− n−1
2

+ j − 1 ≥ |λj|.
The SO0(n, 1) exhibits the discrete series if and only if n = 2r′ is even. A discrete

series representation appears as a quotient of (24) if and only if j = r′ and −s− 1
2
≥ 0.

In this case the quotient I0
n,1(s, ν)/Ī0

n,1(s, ν) is a direct sum of two discrete series
representation W+ ⊕W−. The K-types of W± is the sum of SO(n)-types of highest
weight λ ∈ Λ(r′) such that

λ1 ≥ ν1 ≥ . . . ≥ νr′−1 ≥ (±λr′) ≥ −s+
1

2
> 0.

By the formulation of Langlands parameters the above exhausts all the irreducible
Harish-Chandra modules of SO0(n, 1) and the representations are not equivalent
to one another. Furthermore Ī0

n,1(s, µ) extends to an irreducible representation of
SO(n, 1). The direct sum W+⊕W− is an irreducible discrete series representation of
SO(n, 1).

From the above description, it not difficult to show that an irreducible Harish-
Chandra module of SO0(n, 1) is uniquely determined by its SO(n)-types and infini-
tesimal character.

Finally we relate In,1(s, σ, µ) defined in §5.4. As a (so(n, 1), SO(n))-module, we
have

In,1(s, σ, τµn−m) = I0
n,1(s,ResSO(n−1)τ

µ
n−m).

Similarly an irreducible Harish-Chandra module of Õ(n, 1) is uniquely determined by
its Kn,1-types and infinitesimal character.
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6.3. In this subsection, we will prove that Ωn,n+2
p (1) is irreducible in Case (III). In

Case (III), the Kn,m-types of Ωn,n+2
p (1) are

(25)
∑

(

p︷ ︸︸ ︷
a1, . . . , an−p, 1, . . . , 1, 0, . . . , 0)n � (a′1, . . . , a

′
n−p, 0, . . . , , 0)m

where ai = a′i + 1 and the sum is taken over all positive integers a1 ≥ a2 ≥ . . . ≥
an−p ≥ 1. Note that if n = p, then JIII = {(1, . . . , 1)n} (see (14)) and Ωn,n+2

p (1) =

(detn�C)ξn,n+2 is a one dimensional character of Õ(n)× Õ(n+ 2).

Let µ be a highest weight of Õ(m− r) = Õ(n+ 1), then (Ωn,n+2
p (1))vµ = Ω(1, µ) is

nonzero if and only if µ is of the form

(26) µ = (µ1, . . . , µn−p, 0, . . . , 0)

where µi are nonnegative integers. In this case Ω(1, µ) has Kn,1-types

Ω(1, µ) =
∑
λ

τλn � ξ1 det
ε(λ)
1

where the sum is taken over all λ = (a1, . . . , an−p, 1, . . . , 1, 0, . . . , 0) such that ai ≥
µi + 1 ≥ ai+1 for i = 1, . . . , n− p and ε(λ) ≡ (n− p) +

∑n−p
j=1 (aj − µj) (mod 2).

The Lie algebras of Õ(n + 1) and Õ(n, 1) are real forms of o(n + 1,C). Let ρk =
(k

2
− 1, k

2
− 2, ...) ∈ 1

2
Λ([k/2]) denote the half sum of the positive roots of o(k). Since

τµn+1 and Ω(1, µ) both correspond to Θ(µ), by the correspondence of infinitesimal
characters [Ho1] [Pz], both τµn+1 and Ω(1, µ) have the same infinitesimal character
µ+ ρn+1. Up to the action of a Weyl group element, the infinitesimal character is

(27)

(
n+ 1

2
− p, µ̄+ ρn−1

)
∈ 1

2
Λ([

n+ 1

2
])

where µ̄ = (µ1 + 1, . . . , µn−p + 1, 0, . . . , 0) ∈ 1
2
Λ([n−1

2
]). We remark that µ̄ is well

defined because n− p ≤ [n−1
2

].

Proposition 6.3.1. Suppose we are in Case (III) and µ as in (26).

(i) As a Harish-Chandra module of SO0(n, 1), Ω(1, µ) = Ī0
n,1(n+1

2
− p, ν) where

ν = (µ1 + 1, . . . , µn−p + 1, 0, . . . , 0) ∈ Λ([n−1
2

]).
(ii) The Howe quotient Ω(1, µ) is an irreducible and unitarizable Harish-Chandra

module of Õ(n, 1).

Proof. (i) Let V denote the irreducible subquotient of Ω(1, µ) generated by the
lowest SO(n)-types. Part (i) follows by matching the possible SO(n)-types and infin-
itesimal character of V with the Harish-Chandra modules described in §6.2. We will
leave the details to the reader.

(ii) By Theorem 13 [KG] or [LL1], Ω(s, µ) = Ī0
n,1(n+1

2
− p, ν) is unitarizable as a

Harish-Chandra module of SO0(n, 1). By (25) an irreducible Kn,1-type of Ω(1, µ) is
also an irreducible SO(n)-type. Hence the restriction of the invariant Hermitian form
to an irreducible SO(n)-type is Kn,1-invariant. This shows that the (so(n, 1), SO(n))-
invariant Hermitian form on Ω(1, µ) is actually (so(n, 1), Kn,1)-invariant. �
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6.4. We will now show that Ω(1) is irreducible in Case (III) in Theorem 1.2.1. By
the above proposition, Ω(1, µ) is irreducible and by Proposition 5.3.3, Ωn,n+2

p (1) is
irreducible in Case (III). �

Using [Vo2] and Proposition 6.3.1, one can further show that Ω(1, µ) is the Lang-
lands subrepresentation of In,1(s, 1, ν ′) (see §5.4) where s = n+1

2
− p ≤ 0 and ν ′ =

(µ1 + 1, . . . , µn−p + 1, 0, . . . , 0) ∈ Λ+(n− 1).

6.5. Stable range. By Theorem 2.5.1, Ωn,m
p (1) is irreducible in Case (I). We will

sketch an alternative proof using the method similar to Case (III) above. It will yield
additional information on the Langlands parameters of Ωn,1

p (1, µ).
We assume that 2p ≤ n ≤ m and 2p < m. Let µ = (µ1, . . . , µ[(m−1)/2]) be a highest

weight of Õ(m−1). Note that p ≤ [m−1
2

]. Set m′ := m−n
2

. Then Ω(1, µ) = (Ωn,m
p )vµ 6=

0 iff µp+1 = 0 and in this case Ω(1, µ) has Õ(n)-types
∑

λ τ
λ
n where λp+1 = 0 and

λ1 ≥ µ1 +m′ ≥ λ2 ≥ . . . ≥ µp +m′ ≥ 0.

It has infinitesimal character (s, ν + ρn−1) where

(28) s = p− n− 1

2
and ν = (µ1 +m′, . . . , µp +m′, 0, . . . , 0) ∈ Λ([n−1

2
]).

A similar consideration of SO(n)-types, Kn,1-types and infinitesimal characters
gives the following conclusions:

(i) If n > 2p, Ω(1, µ) = Ī0
n,1(s, ν) is irreducible and unitarizable as a Harish-

Chandra module of SO0(n, 1) where s and ν are given in (28). It embeds
as an irreducible and unitarizable Harish-Chandra submodule of Õ(n, 1) into
In,1(s, 0, ν ′) (see §5.4) where ν ′ = (µ1 +m′, . . . , µp +m′, 0, . . . , 0) ∈ Λ+(n− 1).

(ii) If n = 2p, then Ω(1, µ) is the Harish-Chandra module of an irreducible discrete
series representation of Õ(n, 1).

Applying (i) and (ii) above to Proposition 5.3.3 shows that Ωn,m
p (1) is irreducible.

7. Proofs of Theorems 1.5.1 and 1.5.2

7.1. In this section we will proof Theorem 1.5.1 and some cases of Theorem 1.5.2.
First suppose µ = (µ1, . . . , µk, 0, . . . , 0)m−r where µk ≥ 1 and k ≤ p. We will
compute the infinitesimal character of Ω(1, µ) using the correspondences of infini-
tesimal characters [Ho1] [Pz]. If k > [n+r

2
] and m = n (part of Case (II)), then

µm−r−k+1 = . . . = µk = 1 and Ω(1, µ) has infinitesimal character

(µ1, . . . , µn+r−k+1, 0, . . . , 0) + ρn+r ∈ 1
2
Λ([n+r

2
])

where ρn+r is the half-sum of the positive roots of SO(n+ r). Otherwise if k ≤ [n+r
2

]
or we are in Case (III), then the infinitesimal character is

(29) (µ1, . . . , µk, 0, . . . , 0) +

(
m− n− 2r

2
1p,0[n+r−2p

2
]

)
+ ρn+r ∈

1

2
Λ([n+r

2
]).

Lemma 7.1.1. The Howe quotients Ω(1, µ) have distinct infinitesimal characters for
distinct genuine highest weights µ of Õ(m− r).
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Proof. We observe this from the above description. Nevertheless we will give an
alternative proof. If Ω(1, µ) and Ω(χ, µ′) have the same infinitesimal character, then
by the correspondence of infinitesimal characters, Θ(µ) and Θ(µ′) have the same

infinitesimal character. Again by the correspondence, τµn−r and τµ
′

n−r have the same
infinitesimal character. This means µ = µ′. �

7.2. Case I in Theorem 1.2.1. Suppose we are in the stable range and the dual pair

is not (S̃p(p,R), Õ(2p, 2p)), then Theorem 2.5.1 is already established, and Theorems
1.5.1 and 1.5.2 now follow from Corollary 4.3.1.

7.3. Case II in Theorem 1.2.1. Next we suppose n = m. We do not assume that
it is outside stable range. By [Zhu] (see (37)), Ω(1) is a submodule of the following
degenerate principal series representation of Õ(n, n) (see §5.4)

(30) In,n(p− n− 1

2
, 0).

By comparing (23) and (1) we obtain the following proposition.

Proposition 7.3.1. The Howe quotient Ω(1, µ) embeds into In,r(p− n−1
2
, 0, µ).

By the above proposition, Theorems 1.5.1 and 1.5.2 will follow from the following
theorem.

Theorem 7.3.2. Suppose we are given Õ(n, r)×2Õ(n− r) ⊂ Õ(n, n) as in §2.2. Let
Ω̃ denote an irreducible subquotient of the degenerate principal series representations
of Õ(n, n) in (30).

(i) For every genuine highest weight µ of Õ(n − r), (Ω̃)vµ is either zero or an
irreducible subquotient of In,r(p− n−1

2
, 0, µ).

(ii) The subquotient Ω̃ is unitarizable iff (Ω̃)vµ is unitarizable for every highest

weight µ of Õ(n− r).

Proof. We have proven a corresponding statement for SO0(n, n) in Part 2 [LL1].
The extension to Õ(n, n) is a straightforward exercise after taking into account The-
orem A.2.1 and (23). We will leave the details to the reader. �

The following lemma is useful in the next section.

Lemma 7.3.3. Let Ω̃ be an irreducible subquotient of Ω(1), then Tλ,λ′ defined in (20)

is nonzero for any two neighbouring Kn,m-types τλn,m and τλ
′

n,m in Ω̃.

Proof. If n = m, the lemma follows from the computation of the transition coeffi-
cients of the degenerate principal series in (30) due to [J], [Le], [Sa] and [Zha]. Suppose
n < m. By Lemma 5.3.2, there exists highest µ of Õ(m − 1) such that (τλn,m)vµ and

(τλ
′

n,m)vµ are nonzero Kn,1-types of Ω̃vµ . Since Ω̃vµ is an irreducible Harish-Chandra

module of Õ(n, 1), it follows from [Hi], [KG] or [LL1] that tλ,λ′ 6= 0. By Lemma 5.3.1
Tλ,λ′ 6= 0 too. �
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8. Unitarity

8.1. In this section let Ω̃ denote an irreducible subquotient of Ωn,m
p (1). Our goal is

to complete the proof of Theorem 1.5.2. First we will show that Ω̃ exhibits a (not
necessary positive definite) Hermitian product H. Next we will prove the remaining
cases of Theorem 1.5.2 with the help of the Hermitian form. Finally in §8.8 we will
determine the unitarizability of all the irreducible subquotients of Ω(1, µ).

8.2. Let Ω̃h denote the Hermitian dual representation of Ω̃.

Proposition 8.2.1. (i) The (so(n,m), Kn,m)-modules Ω̃ and Ω̃h are isomorphic

irreducible modules. Hence Ω̃ exhibits a nondegenerate invariant Hermitian
form.

(ii) Let µ denote a genuine highest weight of Õ(m − r). Then the restriction of
the invariant Hermitian form to Ω̃vµ is nondegenerate.

First we see that (i) implies (ii). Indeed let τλn,m be a Kn,m-type of Ω̃. Since Ω̃ is

Kn,m-multiplicity free, the invariant Hermitian form on Ω̃ in (i) is either positive or
negative definite on τλn,m. Hence the restriction to (τλn,m)vµ is also positive or negative
definite. This proves (ii).

8.3. It remains to prove Proposition 8.2.1(i). If we are in the stable range, then Ω(1)
is irreducible and unitarizable and the above proposition holds. If n = m, then Ω̃ is a
subquotient of one of the degenerate principal series representations in (30) and the
proposition follows from [J], [Sa] or [Zha].

From the above discussion, it remains to prove Case (III) in Theorem 1.2.1. One
method is to show that Ω̃ and Ω̃h has the same Langlands parameter. Nevertheless
we will give a more elementary proof which works for Cases I, II and III. The idea is
to restrict Ω(1) to Õ(n, 1). The proof will occupy §8.4 and §8.5. Readers may proceed
to §8.6 without loss of continuity.

8.4. Suppose Ω̃ has Kn,m-types (see (14))

(31) Ω̃ =
∑
λ∈I

τλn,m

where I ⊂ J . Then Ω̃h has the same Kn,m-types as Ω̃ and we write

Ω̃h =
∑
λ∈I

τ̂λn,m

and let φλ : τλn,m → τ̂λn,m denote an isomorphism of irreducible Kn,m-modules.

Suppose λ, λ′ ∈ I are neighbours and let Tλ,λ′ and T h
λ,λ′ denote the transition

coefficients of Ω̃ and Ω̃h respectively. By Lemma 7.3.3, Tλ,λ′ 6= 0 for neighbouring
λ, λ′. It is easy to see that this implies T h

λ,λ′ 6= 0 too.
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Lemma 8.4.1. There exists a nonzero complex number C(λ, λ′) such that the follow-
ing diagram commutes.

p1 ⊗ τλn,m
Tλ,λ′−→ τλ

′

n,m

id⊗ φλ ↓ ↓ C(λ, λ′)φλ′

p1 ⊗ τ̂λn,m
Th
λ,λ′−→ τ̂λ

′

n,m

Proof. Let Vλ′ be the unique subspace of p1 ⊗ τλn,m such that Vλ′ is isomorphic to

τλ
′

n,m (see §5.2). The maps T h
λ,λ′ ◦ (id⊗φλ) and φλ′ ◦Tλ,λ′ are Kn,m-isomorphisms from

Vλ′ to τ̂λ
′

n,m. Hence by Schur’s Lemma they differ by a nonzero constant C(λ, λ′). �

8.5. It follows that if C(λ, λ′) = 1 for all λ and λ′ in Lemma 8.4.1, then
∑

λ∈I φλ
is a (so(n,m), Kn,m)-isomorphism from Ω̃ to Ω̃h. More generally if there exists
B(λ) ∈ C∗ such that C(λ, λ′) = B(λ′)B(λ)−1 then

∑
λ∈I B(λ)φλ is a (so(n,m), Kn,m)-

isomorphism from Ω̃ to Ω̃h. Hence our goal is to replace φλ by a nonzero multiple of
itself so that C(λ, λ′) = 1 for all λ, λ′ = λ± εi.

One way to achieve the above is as follows: First we set r = 1 and we consider the
dual pair (Õ(n, 1), Õ(m − 1)). By Lemma 5.3.2, there exists a highest weight µ of
Õ(m− 1) such that (τλn,m)vµ and (τλ

′
n,m)vµ are nonzero Kn,1-types of Ω̃vµ . Since Ω̃vµ is

irreducible and it has the same Kn,1-types and infinitesimal character as Ω̃h
vµ , by §6.2

they are isomorphic as (so(n, 1), Kn,1)-modules. Let

φ(µ) : Ω̃vµ → Ω̃h
vµ

denote the isomorphism between them. Since the isomorphism is unique up to a
nonzero scalar, we may assume that φ(µ) = φλ on (τλn,m)vµ . We scale φλ′ so that

φ(µ) = φλ′ on (τλ
′

n,m)vµ . It is now clear that C(λ, λ′) = C(λ′, λ) = 1.
We claim that the scaling of φλ′ is independent of µ. Indeed first we may assume

that C(λ, λ′) = 1 after scaling using µ. Let β be another highest weight of Õ(m− r).
Let so(n, 1)C = (kn,1)C ⊕ p2 denote the Cartan decomposition and let tλ,λ′ and thλ,λ′

denote the transition coefficients of Ω̃vβ and Ω̃h
vβ

respectively. Then in the commuta-

tive diagram in Lemma 8.4.1, C(λ, λ′) = 1 so thλ,λ′ ◦ φλ = φλ′ ◦ tλ,λ′ on p2 ⊗ (τλn,m)vβ .
This proves our claim.

From now on, it is a matter of book keeping to make sure that we can scale all the
φλ inductively in a uniform manner. First for λ = (λ1, . . . , λn) ∈ I in (31) we define
|λ| =

∑
i λi. Let λ0 denote the λ in I with the smallest |λ|. From the description of

the Kn,m-types of irreducible subquotient Ω(1) in (15) to (17) or Theorem A.2.2, λ0

is unique. Starting with the φλ0 and we scale φλ using the method above inductively
on |λ|. We will leave the details to the reader. This proves Proposition 8.2.1. �

8.6. We will now prove that Ω(1) is unitarizable in Case (III) in Theorem 1.2.1.
Indeed let H denote the (unique up to scalar) so(n,m)-invariant Hermitian form on
Ω(1) as given in Proposition 8.2.1(i).
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Suppose H does not have positive signature, then there exists two nonzero Kn,1-
types τλn,m and τλ+εi

n,m of Ω(1) where H takes opposite signatures. By Lemma 5.3.2

there exists a genuine highest weight µ of Õ(m− 1) such that (τλn,m)vµ and (τλ+εi
n,m )vµ

are nonzero. Hence H ′ have opposite signatures on these two Kn,1-types of Ω(1)vµ .
On the other hand by Proposition 6.3.1, Ω(1)vµ is irreducible and unitarizable.

Therefore H ′ is the unique Hermitian form on Ω(1)vµ and it is positive definite. This
leads to a contradiction and we conclude that H is positive definite. �

8.7. We will now prove Theorems 1.5.1 and 1.5.2 for Ω(1) in Case (III). Indeed this
follows from Corollary 4.3.1 because Ω(1) is irreducible and unitarizable by §6.4 and
§8.6.

We would like to mention that up to this point we have completed the proofs of
Theorems 1.2.1, 1.5.1 and 1.5.2.

8.8. Composition series of Ωn,r
p (1, µ). We will describe the composition series of

Ω(1, µ) and its unitarizable irreducible subquotients.
Let q = m− r and let µ = (µ1, . . . , µq) be a highest weight of Õ(q). We extend µ

such that µi =∞ for i ≤ 0 and µi = 0 for i > q.

Theorem 8.8.1. The Howe quotient Ωn,r
p (1, µ) is nonzero if and only if one of the

following situations holds.

(i) p ≤ min(n, r + q), µp+1 = 0 and µp−q ≥ max(0, n−r−q
2

).
(ii) p ≤ n ≤ 2p− 1, r + q = n+ 2 and µn−p+1 = 0.

(iii) p+ 2 ≤ n ≤ 2p+ 1, r + q = n− 2, µn−p+1 ≤ 1, µp+1 = 0 and µp−q ≥ 1.
(iv) n = r + q ≤ 2p and µp+1 = 0.

In (i), (ii) and (iii) Ω(1, µ) is irreducible and unitarizable.

Proof. In order to determine whether Ωn,r
p (1, µ) = (Ωn,r+q

p )(1)vµ is nonzero, we
apply the branching rules to the Kn,m-types of Ωn,r+q

p (1) in four situations. These
four situations are (i) Case I; (ii) Case III where r + q = n + 2; (iii) Case III where
r+ q = n− 2 and (iv) Case II. The computations are straightforward so we will leave
them to the reader. �

Suppose n = r + q ≤ 2p and µp+1 = 0 so that Ω(1, µ) 6= 0 as in Theorem 8.8.1(iv).
Set i0 = max{i : µi ≥ p − n + 1 + i} and j0 = max{j : µj−r ≥ p − n + 1 + j}. Note
that 1 ≤ i0 ≤ j0 ≤ n/2. We will describe the composition series of Ωn,r

p (1, µ) and the
unitary of its subquotients with the help of Theorem A.2.2. Also see the appendix
for the notation R(n, s, 0, i).

Theorem 8.8.2. Suppose n = r + q ≤ 2p, s = p− n−1
2

and µp+1 = 0.

(i) The Howe quotient Ωn,r
p (1, µ) is a submodule of In,r(s, 0, µ) (see §5.4). It has

a filtration of length j0 − i0 + 1. In particular, Ωn,r
p (1, µ) is irreducible if and

only if i0 = j0.
(ii) Suppose n

2
≤ p ≤ n − 1 and µn−p = 0, then i0 = 0 and by Theorem A.2.2(ii)

Ωn,r
p (1, µ) = (Ωn,n

p (1))vµ has module diagram

(R+(n, s, 0))vµ → (R(n, s, 0, n− p))vµ → · · · → (R(n, s, 0, j0)))vµ .
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In this case the theta lift (R+(n, s, 0))vµ is unitarizable and it is the dual rep-
resentation of the Howe quotient Ωn,r

n−1−p(1, µ) lifted from the group

S̃p(n− 1− p,R) in Theorem 8.8.1(i).
(iii) Suppose n

2
≤ p ≤ n−1 and µn−p > 0, or, n ≤ p, then by Theorem A.2.2(ii)(iii)

Ω(1, µ) has module diagram

(R(n, s, 0, i0))vµ → (R(n, s, 0, i0 + 1))vµ → · · · → (R(n, s, 0, j0)))vµ .

An irreducible subquotients in (ii) and (iii) are unitarizable if and only if it is in
one of the following situations:

(a) The subquotient (R+(n, s, 0))vµ in (ii).
(b) When n is even, j0 = n/2, that is, µq−n/2 ≥ p+1−n/2. Then R(n, s, 0, n/2))

is unitarizable and therefore (R(n, s, 0, n/2)))vµ is unitarizable too.
(c) Up to tensoring τµq with detO(q), µj0−r+1 = 0. Then (R(n, s, 0, j0)))vµ is uni-

tarizable.

In (b) and (c) above (R(n, s, 0, j0)))vµ is not the theta lift because i0 < j0. Hence we
conclude that in Case (II), the theta lift is unitarizable if and only if it is (R+(n, s, 0))vµ
in (ii) above.

Proof. We will briefly explain the proof of the above theorem. In order to determine
which subquotients of Ω(1, µ) = Ω(1)vµ is nonzero, we follow the method of proof of
Theorem 8.8.1 by applying the branching rules to the Kn,n-types of the subquotients
of Ω(1). The computation is a little tedious but straightforward so we will leave them
to the reader.

In (ii), R+ and Ω(1, µ) are dual representations because they have the same Kn,r-
types and they lie in In,n(s, 0, µ) and In,n(−s, 0, µ) respectively.

Parts (a) and (b) are self-explanatory. For the unitarizability of the remaining
subquotients, we use Theorem 7.3.2(b). First we restrict a subquotient to so(n, 1)
and check this against the list of unitarizable Harish-Chandra modules of Õ(n, 1).
This is a very tedious case by case consideration and we will not do it here. �

8.9. Associated Varieties. It is interesting to compute the associated varieties
and associated cycles of Ω(1) and Ω(1, µ). See for example [Vo4] for the definition
of associated variety and associated cycle. Some of the results in this area are [HL],
[NZ1] and [NZ2]. There are also some nice relationships between discretely decom-
posable restrictions and associated varieties [Ko2]. Applying Theorem 3.7 in [Ko2] to
Theorem 1.5.1 gives the following proposition.

Proposition 8.9.1. Let Ω̃ be an irreducible subquotient of Ω(1) and let µ and δ be
two genuine highest weights of Õ(m−r). Suppose Ω̃vµ and Ω̃vδ are nonzero, then they
have the same associated variety. �

9. Relations with Vogan-Zuckerman’s Aq(λ)

9.1. Recall that Ωn,m
p (1) (resp. Ωn,r

p (1, µ)) has a unique irreducible quotient called
the theta lift. We would like to relate unitarizable theta lifts in the last section with
Vogan-Zuckerman’s Aq(λ).
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First by Theorem 8.8.2(ii), we see that in Case (II), the unitarizable theta lifts are
dual to certain theta lifts in Case (I). Therefore we will only concentrate on Cases (I)
and (III) where Ω(1) and Ω(1, µ) are irreducible and they are the theta lifts.

Let µ = (µ1, . . . , µk, 0, . . . , 0)m−r be a highest weight of Õ(m− r). Here µk ≥ 1 and
k ≤ p. We include the most degenerate case where m = r so that µ = ∅. In this case
we set Ω(1, µ) = Ω(1).

We will assume that Ω(1, µ) is nonzero and unitarizable in Cases (I) and (III) as
described in Theorems 1.2.1 and Theorem 8.8.1. It is easier to work with Ω(1, µ) as
a Harish-Chandra module of SO(n, r). Unfortunately it is not always irreducible so
we will describe an irreducible Harish-Chandra submodule Ω0(1, µ) of Ω(1, µ) below.

Using the branching rule and the Kn,m-types of Ω(1), we check that Ω(1, µ) has
lowest Kn,r-type

(32) τn,r =

(
(µ1, . . . , µk, 0, . . . , 0)n + (

m− n
2

1p,0n−p)n

)
� ξr det εr

where ε = 1 if n = m+ 2 ≤ 2p+ 1 and ε = 0 if otherwise. Note that SO(n, r)×Z/2Z
embeds into Õ(n, r). It is clear that the restriction of τn,r to S(O(n)×O(r)) remains
irreducible. Since so(n, r) acting on the lowest Kn,r-type generates the (irreducible)
Ω(1, µ), the restriction of Ω(1, µ) as a Harish-Chandra module of SO(n, r) is irre-
ducible.

Furthermore τn,r is a reducible representation of K0
n,r := SO(n) × SO(r) if and

only if m > n = 2p. First suppose τn,r is irreducible over K0
n,r, then a similar

argument shows that it is an irreducible Harish-Chandra module of SO0(n, r). We
set Ω0(1, µ) = Ω(1, µ) in this case.

Next suppose τn,r is reducible over K0
n,r. By (9) τn,r decomposes into a sum of two

irreducible representations τ+
n,r ⊕ τ−n,r of K0

n,r. By a result of Vogan, an irreducible

Harish-Chandra module of the connected SO0(n, r) has only one lowest K0
n,r-type so

Ω(1, µ) is reducible. Let Ω0(1, µ) be the irreducible (so(n, r), K0
n,r)-module generated

by τ+
n,r. A simple application of Frobenius reciprocity shows that

Ω(1, µ) = Ind
(so(n,r),S(O(n)×O(r)))

(so(n,r),K0
n,r)

Ω0(1, µ).

9.2. Before we state the next lemma, we need to define a θ-stable parabolic subalgebra
q of so(n, r)C. Let h = t ⊕ a denote a θ-stable fundamental Cartan subalgebra
of so(n, r)C. Here t is a Cartan subalgebra of K0

n,r. Let p ≤ [n
2
] and let (p, p −

1, . . . , 1, 0, . . . , 0)[n+r
2

] denote a weight of h. Let q = l⊕u denote the θ-stable parabolic

subalgebra of so(n, r)C defined by this weight. Note that l is the complexified Lie
algebra of Levi subgroup Tp ·SO0(n− 2p, r) of SO0(n, r) where Tp is a compact torus
of dimension r.

Let ρn+r (resp. ρ(u), ρ(u ∩ p)) denote the half-sum of positive roots of so(n + r)
(resp. u, u ∩ p) with respect to h. We check that

2ρ(u ∩ p) = (r1p, 0, . . . , 0) ∈ Λ+([n+r
2

]).
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We define Aq(λ) and Aq(λ) as on page 330 in [KnV]. We note that Aq(λ) and Aq(λ)
are isomorphic in the weakly fair range. Both has infinitesimal character λ + ρn+r

and lowest K0
n,r-type (λ+ ρ(u ∩ p))|t.

Lemma 9.2.1. The irreducible unitarizable (so(n, r), K0
n,r)-module Ω0(1, µ) has the

same infinitesimal character and lowest K0
n,r-type as Aq(λ) (and also Aq(λ)) where q

is the θ stable parabolic subalgebra of so(n, r)C defined above and

(33) λ = (µ1, . . . , µk, 0, . . . , 0)N +

(
m− n− 2r

2
1p,0N−p

)
N

.

where N = [n+r
2

].

Proof. We simply compare the infinitesimal character and lowest K0
n,r-type of Aq(λ)

with those of Ω(1, µ) in (29) and (32). �

We remark that λ is in the weakly fair range if and only if µp ≥ p − m−r
2

. It is in

the weakly good range if µp ≥ n+2r−m
2
− 1. In particular, we see that if r = m, then

it is never in the weakly fair range.
It is a well known result of Vogan that Aq(λ) for λ in the weakly fair range is

unitarizable [Vo3]. T. Kobayashi has shown that the Aq(λ)’s in Lemma 9.2.1 in the
weakly fair range are nonzero and irreducible (see Theorem 3(5) in [Ko1]).

We recall Theorem 6.1 in [VZ] which gives the characterization of Aq(λ). Suppose

(34) 〈α, λ|t〉 ≥ 0 for all α roots in u.

Then any irreducible unitarizable Harish-Chandra module having the same infin-
itesimal character λ + ρ and containing the K0

n,r-type τn,r in (32) is isomorphic
to Aq(λ). This characterizes all irreducible Harish-Chandra modules with nonzero
(g, K)-cohomology.

Combining this characterization with Lemma 9.2.1 gives the following proposition.

Proposition 9.2.2. In Lemma 9.2.1 the irreducible Ω(1, µ)0 is isomorphic to Aq(λ)
if 2µp +m− n ≥ 2r ≥ 2.

If we apply the above proposition to Corollary 5.1.4, we get the following corollary.

Corollary 9.2.3. Let N = [n+r
2

] and λ as in (33) such that 2µp + m− n ≥ 2r ≥ 4.
Then

Res
(so(n,r),K0

n,r)

(so(n,r−1),K0
n,r−1)

Aq(λ) =
∑
λ′

Aq′(λ
′)

where λ′ = (µ′1, . . . , µ
′
k, 0, . . . , 0)N−1 +

(
m−n−2r

2
1p,0N−1−p

)
N−1

is taken over

µ′1 ≥ µ1 ≥ µ′2 ≥ . . . ≥ µk ≥ µ′k ≥ 0.

When n is even, then Aq(λ) is in the discrete series and the corollary is a special
case of Proposition 3 in [GW2].

It is tempting to conclude that Ω(1, µ) or Ω(1, µ)0 is Aq(λ) as in Lemma 9.2.1. This
is not the case as we will see in one special case below.
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9.3. Quaternionic representations. We set p = n = 4 and m an even number
greater than 4. We define λ and q as in Lemma 9.2.1. Using a standard spectral
sequence argument, Ω(1)0 or Ω(1, µ)0 embeds into Aq(λ) and the image is the unique
irreducible Harish-Chandra module generated by the lowest K0

n,m-type.

In [GW1], Gross and Wallach shows that the lowest K0
4,m-type of Aq(λ) generates

the unique (proper) irreducible submodule which they denote by π′m−2. Hence we

conclude that the irreducible submodule Ω(1)0 in the theta lift Ω(1) from S̃p(2,R) to
Õ(4,m) is π′m−2 and it is a proper submodule in Aq(λ).

The above discussion points to the following conjecture.

Conjecture 9.3.1. In Lemma 9.2.1, Ω0(1, µ) is an irreducible submodule of Aq(λ)
generated by the lowest K0

n,r-type. In particular if λ is in the fair range, then Ω0(1, µ)
is isomorphic to Aq(λ).

We remark that the above discussion implies that conjecture is true if n = 4.
In this case Corollary 5.1.4 coincides with the restriction formula in [Lo]. A check
against the list of Õ(n, 1) representations also shows that the conjecture is true if
r = 1.

9.4. We end our investigation of the dual pair (S̃p(n,R), Õ(n,m)) with a conjecture.
Suppose we replace Õ(n, r)×2 Õ(m− r) in the see-saw pair in (5) with Õ(n′,m′)×2

Õ(n′′,m′′) where n = n′ + n′′ and m = m′ + m′′. We assume that p is very small
compared to n′, n′′,m′ and m′′. Let µ be a genuine highest weight of Õ(r′) and suppose
Ωn,m
p (1), Ωn′,m′

p (1, µ) and Ωn′′,m′′
p (1, µ) are irreducible and unitarizable. Using the see-

saw pair argument as in Lemma 4.2.1, there exists a nonzero (so(n′,m′)×so(n′′,m′′))-
morphism

Ωn,m
p (1)→ Ωn′,m′

p (1, µ) � Ωn′′,m′′

p (1, µ).

Theorem C and §9 in [KoO] study the situation where p = 1 and this motivates our
next conjecture.

Conjecture 9.4.1. The tensor product Ωn′,m′
p (1, µ) � Ωn′′,m′′

p (1, µ) occurs discretely
in the unitary representation U with Harish-Chandra module Ωn,m

p (1).

Appendix A. The Howe quotient Ωn,n
p (1) with respect to the dual pair

(S̃p(p,R), Õ(n, n)) by Soo Teck Lee

A.1. In this appendix we shall study the structure of the Howe quotient Ωn,m
p (1) in

the case when n = m by following the method of [LZ1] and [LZ2], that is, we embed
Ωn,n
p (1) into some degenerate principal series of O(n, n).

A.2. Representations of Õ(n). If λ is given in (7) (resp. (8)), we set e(λ) =
1 (resp. e(λ) = −1). We also denote λ by (λ′, e(λ)) where r = [n/2] and λ′ =
(a1, ..., ak, 0, ..., 0)r.
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A.2.1. We first describe the structure of the degenerate principal series representa-
tion In,n(s, σ) of Õ(n, n) in §5.4. With some work, it can be deduced from a similar
degenerate principal series of SO0(n, n) whose structure is known ([J], [Sa], [Zha]).

Let r = [n/2]. Under the action of Õ(n)× Õ(n),

In,n(s, σ) =
∑

λ∈Λ+(r), e=±1

S(λ, e),

where for each λ ∈ Λ+(r) and e = ±1,

S(λ, e) ∼= τ (λ,e)
n � τ (λ,(−1)σe)

n .

If s ∈ n−1
2

+ Z, then let t = t(s) = max(0, n−1
2
− |s|). For t+ 1 ≤ i ≤ r, we define the

following subspace of In,n(s, σ):

R(n, s, σ, i) =
∑{

S(λ, e) : λi ≥ |s| −
n− 1

2
+ i ≥ λi+1,

e =

{
1 if n = 2r is even and λr 6= 0
±1 otherwise.

}
If |s| ≤ n−1

2
and ε = ±1, we also define

Rε(n, s, σ) =
∑
{S(λ, ε) : λt+1 = 0} .

We refer to [LL1] for the definition of the module diagram of a representation of
finite length. The following theorem summarizes the structure of In,n(s, σ):

Theorem A.2.1. Let s ∈ C.

(a) If s+ n−1
2
6∈ Z, then In,n(s, σ) is irreducible.

(b) Suppose that s+ n−1
2
∈ Z

(i) If s ≤ −n+1
2

, then the module diagram of In,n(s, σ) is given as follows:

(35) R(n, s, σ, r)→ R(n, s, σ, r − 1)→ · · · → R(n, s, σ, 0).

(ii) If −n−1
2
≤ s ≤ 0, then the module diagram of In,n(s, σ) is given as follows:

(36) R(n, s, σ, r)→ R(n, s, σ, r − 1)→ · · · → R(n, s, σ, t+ 1)

R+(n, s, σ)
↗
↘

R−(n, s, σ),

where t = s+ n−1
2

. In particular, if n is odd and s = 0, then

In,n(0, σ) = R+(n, 0, σ)⊕R−(n, 0, σ)

is a sum of two irreducible submodules.
(iii) If s > 0, then the diagram of In,n(s, σ) can be obtained by reversing that

of In,n(−s, σ) given in (35) or (36).
(iv) R±(n, s, σ) are unitarizable. R(n, s, σ, i) is unitarizable iff n is even and

i = r.
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A.2.2. By the work of [Zhu], there is an Õ(n, n)-embedding

(37) Ωn,n
p (1)

ψ
↪→ In,n

(
p− n− 1

2
, 0

)
.

Now under the action of Õ(n)× Õ(n),

Ωn,n
p (1) =

∑
λp+1=0

τλn � τλn .

Thus by matching the Õ(n)×Õ(n) types and Theorem A.2.1, one immediately obtain
the structure of Ωn,n

p (1). The results are given in the following theorem.

Theorem A.2.2. Let s = p− n−1
2

and r =
[
n
2

]
.

(i) If 1 ≤ p ≤ n−1
2

, then

ψ
(
Ωn,n
p (1)

)
= R+(n, s, 0).

Thus in this case, Ωn,n
p (1) is irreducible.

(ii) If n
2
≤ p ≤ n− 1, then ψ

(
Ωn,n
p (1)

)
is the submodule of In,n(s, 0) with diagram

R+(n, s, 0)→ R(n, s, 0, n− p)→ · · · → R(n, s, 0, r).

(iii) If p ≥ n, then
ψ
(
Ωn,n
p (1)

)
= In,n(s, 0).

So the diagram of Ωn,n
p (1) is given by

ψ−1 (R(n, s, 0, 0))→ ψ−1 (R(n, s, 0, 1))→ · · · → ψ−1 (R(n, s, 0, r)) .

In particular, the theta lift ψ−1 (R(n, s, 0, 0)) is finite dimensional.

One interesting case is when n = 2r = 2p is even, that is when the dual pair is

(S̃p(p,R), Õ(2p, 2p)). By the above theorem, the image of Howe quotient Ω2p,2p
p (1) in

In,n(1/2, 0) has diagram

R+(2p, 1/2, 0)→ R(2p, 1/2, 0, p),

which is not irreducible. Also see Remark 5.3 in [Li1].
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