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Abstract. We construct automorphic representations of non-linear two-fold covers of
simply connected Chevalley groups via residues of Eisenstein series. In the process, we
establish some basic results in representation theory of local groups.

1. Introduction

Let G be a split, simply connected algebraic group corresponding to an irreducible root
system Φ. The group G can be constructed as a Chevalley group, which is defined over Z.
Over a local field R, Qp or the ring of adeles A = AQ, the group G has a unique non-trivial
2-fold central extension denoted by G:

1→ µ2 → G→ G→ 1.

An irreducible representation of G (local or global) is called genuine if the central subgroup
µ2 acts via the unique non-trivial character on the representation. The central extension
G(A) splits over the group of rational points G(Q). Thus it is natural to study the space
L2

gen(G(Q)\G(A)) where the subscript gen indicates that we consider only the functions f
such that f(εg) = εf(g) for every ε in µ2. This problem is a natural continuation of the
study of classical modular forms of half integral weight. One purpose of this paper is to
define Eisenstein series on G(A) and to construct residual representation(s) Θ which, if

G = SL2, correspond to the classical theta series 1 + 2
∑

n>0 q
n2

or its anti-holomorphic
analogue. Along the way, we study principal series representations of groups G(Qp) where
p is any prime.

In order to explain our results here, let T be a maximal split torus in G. Then its
inverse image T in G is not necessarily commutative. Since the Weyl group acts by
conjugation on irreducible genuine representations of T (Qp), a natural question is whether
there are Weyl group-invariant representations. A need for such representations is obvious:
If V is a genuine representation of T (Qp) then we can define a family of representations
i(χ) = V ⊗ χ by twisting with unramified characters of the torus T (Qp). If V is Weyl
group-invariant, then the conjugation action of the Weyl group on i(χ) reduces to the
conjugation action on the character χ. In this way, at least, one can express some basic
results on principal series in a neat way. For example, if G = Sp2n then Weyl group
invariant V can be constructed using the Weil index [W] [Rao]. On the other hand, in
[Sa2] an explicit construction of such representations is given for simply laced groups.
However, the corresponding Weyl group invariance was obtained by a somewhat tedious
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check using relations in the Steinberg group. In this paper we present a more natural
construction of those representations of T (Qp). Their Weyl group invariance will follow
from a simple global argument. More precisely, our result is based on an observation
that the analogous problem for real groups already has a solution for real groups, as
given by Adams, Barbasch, Paul, Vogan and Trapa in [A-V]. Let K∞ be a maximal
compact subgroup of G(R). Recall that T (R) has a decomposition MA, where M is the
centralizer of A in K∞. The group K∞ has certain small genuine representations, called
psuedo-spherical representations, whose property is that they reduce irreducibly to M . In
particular, Weyl group invariance of such representations of M is now obvious. Next, we
consider the space

L2
gen(AT (Q)\T (A))

of automorphic representations of T (A). Given a pseudo-spherical type δ, one easily sees
that there is only one automorphic representation π = ⊗πv of T (A) such that π∞ ∼= δ and
πp is unramified for all primes p. The uniqueness of π and the Weyl group invariance of δ
immediately imply the Weyl group invariance of all πp. If G = Sp2n then one easily sees
that our construction gives a Weil index.

We use π to define local principal series representations, the corresponding Eisenstein
series and a global residual representation Θ of Eisenstein series. Moreover, if p 6= 2
we use the central character γp of πp to normalize Hecke operators in the Iwahori Hecke
algebra H− of G(Q). Following [Sa2] this Hecke algebra is isomorphic to the Iwahori
Hecke algebra of an algebraic group Gl. This isomorphism allows us to (Shimura) lift
genuine representations of G(Qp) with Iwahori fixed vectors to the linear group Gl(Qp).
We show that the Shimura lift sends unitary representations to unitary representations.
For example, the local component Θp of Θ lifts to the trivial representation of Gl(Qp).
In particular, if G 6= SL2 it follows that Θp is isolated in the unitary dual of G(Qp). We
emphasize once again that the representation Θ and the isomorphism of Hecke algebra
depend on the choice of the pseudo spherical type δ.

Acknowledgment. This work has been motivated by the pioneering works of Gelbart
and Sally [GS] and of Kazhdan and Patterson [KP] on this subject. We would like to
thank Dan Ciubotaru, Goran Muić and Peter Trapa for help and interest in this work.
The first author would like to thank the hospitality of the University of Utah while part of
this paper was written. The second author is supported by an NSF grant DMS-0551846.

2. An Adèlic group

Let Φ be a root system with simple roots 4 = {α1, . . . , αl}. Let (α|β) denote the inner
product on Φ normalized such that (α|α) = 2 for a long root. We set α∨ := 2α

(α|α)
and

〈α, β〉 := (α|β∨). We extend 〈 , 〉 to a pairing between the root lattice and the coroot
lattice Λ.

Let g be the corresponding simple Lie algebra over Q. Fix a Chevalley basis in g. It
defines a simply connected group Chevalley group G. It is an algebraic group defined over
Z. For any field F the group G(F ) is generated by one-parameter subgroups Uα ' F for
every root α in Φ. More precisely, the choice of Chevalley basis fixes an isomorphism of
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F and Uα, t 7→ eα(t) for every t ∈ F . For example, if G = SL2 then eα(t) and e−α(t) are(
1 t
0 1

)
and

(
1 0
t 1

)
,

respectively. Define elements{
wα(t) = eα(t) e−α(−t−1) eα(t)

hα(t) = wα(t)wα(−1).

If G = SL2 then these elements are(
0 t
−t−1 0

)
and

(
t 0
0 t−1

)
.

By a result of Steinberg (Theorem 8(b), page 66 in [St]), the group G(F ) is abstractly
generated by the one-parameter groups Uα modulo relations

(1) [eα(t), eβ(u)] =

{ ∏
i,j≥1 eiα+jβ(cijt

iuj) if α + β is a root
1 if not, and −α 6= β,

and

(2) hα(s)hα(t) = hα(st)

where cij are integers depending on α, β.
Now assume that F = R or Qp. Let (·, ·) be the Hilbert symbol1 over F . It defines a

two fold central extension G(F )

1→ µ2 → G(F )
pr→ G(F )→ 1

by replacing the relation (2) by

(3) hα(s)hα(t) = hα(st) · (s, t)
1
2

(α∨|α∨).

Indeed, Steinberg (Theorem 12, page 86 in [St]) shows that a 2-fold central extension
of G(F ) is necessarily defined by these generators and relations, while Matsumoto [Ma]
proves existence of the central extension.

Let Uα be the subgroup of G(F ) generated by eα(t). Then Uα ' Uα and the splitting is
unique since F is 2-divisible. Important to us will be the subgroups Gα generated by Uα
and U−α. Let Gα

∼= SL2 be the projection of Gα in G. Since [hα(t), eα(u)] = eα((t2− 1)u),
the group Gα is perfect. Thus Gα is a central extension of Gα of degree mα. It follows
from (3) that mα = 2 except when α is a short root in Bn, Cn or F4 and then mα = 1.
Indeed, if α is a short root in Bn, Cn or F4, then (α∨|α∨) = 4 and there is no Hilbert
symbol in (3).

1For reference: Hilbert symbol over Q2 is given by (2αu, 2βv)2 = (−1)r where u, v ∈ 1 + 2Z2 and

r =
(
u−1
2

) (
v−1
2

)
+α v

2−1
8 + β u

2−1
8 . The symbol over Qp is (pαu, pβv)p = (−1)r(up )β( vp )α where u, v ∈ Z×

p

and r = αβ
(
p−1
2

)
.
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The group G(Zp) is a (preferred) hyperspecial maximal compact subgroup of G(Qp). It
stabilizes the Chevalley lattice and is generated by eα(t) with t in Zp. By reducing modulo
p we have an exact sequence

1→ K1
p → G(Zp)→ G(Fp)→ 1.

Proposition 2.1. The central extension splits over G(Zp) for p 6= 2. The splitting homo-
morphism s : G(Zp)→ G(Qp) is unique and its image is henceforth denoted by Kp.

Proof. As the proof of Lemma 11.3 in [Mo] shows, the central extension splits over the
pro-p subgroup K1

p . Hence the central extension of G(Qp) gives rise to a central extension
of the finite group G(Fp). However, the group G(Fp) has no Schur multipliers of order 2
if p is odd and the group is not of type B3 [Gr]. This proves that the central extension
splits over the hyperspecial maximal compact subgroup except perhaps for the type B3.
However, a splitting for the type B4 implies a splitting for the type B3, by inclusion of the
corresponding groups.

It remains to show that the splitting is unique. Any two splittings differ by a homomor-
phism from G(Zp) to µ2. Such a homomorphism is clearly trivial on the prop p-group K1

p ,
and then it must be trivial on G(Fp) since it is a perfect group. (Both arguments rely on
the fact that p 6= 2.) �

Proposition 2.2. If p is odd then Kp contains eα(t) for all t ∈ Zp and, therefore, hα(t)
for all t ∈ Z×p .

Proof. Note that Uα and Kp give two splittings of Uα(Zp). They differ by a quadratic
character of Zp. Since Zp is 2-divisible if p 6= 2, the character is trivial. �

Let S be any finite set of places containing {∞, 2}. Let

µS =
{

(ε1, . . . , ε|S|) ∈ µ|S|2 : ε1 · · · ε|S| = 1
}
.

Define

GS =

(∏
v∈S

G(Qv)

)
/µS ×

∏
v 6∈S

Kv.

If S ⊆ S ′ then GS ⊆ GS′ . We define G(A) as a direct limit of all GS. We have a central
extension

1→ µ2 → G(A)→ G(A)→ 1.

For every α ∈ Φ and t ∈ Q, eα(t) can be viewed as an element in G(A) by diagonal
embedding. This is well-defined by Proposition 2.2. These elements clearly satisfy relations
(1). Moreover, corresponding hα(t)’s satisfy relations (2) by quadratic reciprocity for the
Hilbert symbol. In particular, we have an explicit splitting of the extension over G(Q).

Maximal compact K∞. There is an automorphism σ of G(R) such that σ : eα(t) 7→
e−α(−t) for every root α and t ∈ R (see Thm. 16 in [St]). The fixed points of σ on G(R)
is a maximal compact subgroup K∞. Similarly there is an automorphism σ of G(R) and
its fixed points K∞ is a maximal compact subgroup of G(R).
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3. The torus

Let T ⊆ G be the maximal split torus. If R is a ring then T (R) is generated by hα(t)
with t ∈ R×. If Λ is the coroot lattice then T (R) ' Λ⊗Z R

× with the isomorphism given
by

hα(t) 7→ α∨ ⊗ t.
Let T (F ) ⊂ G(F ) be the inverse image of T (F ). Then T (F ) is generated by hα(t). The
following commutator formula ([Ma], Lemme 5.4) is crucial to us throughout the paper:

[hα(s), hβ(t)] = (s, t)(α∨|β∨).

The goal of this section is to describe the structure of T (F ) for F = R and F = Qp, and
define pseudo-spherical representations of T (R) and T (Q2), and unramified representations
of T (Qp) for p odd.

Case F = Qp, with p odd. Define Tp = T (Qp) ∩ Kp. Then by Proposition 2.2, Tp is
generated by hα(t) for all t ∈ Z×p and is isomorphic to T (Zp) by hα(t) 7→ hα(t). Note that

the symbol (·, ·) is tame here, ie hα(s)hα(t) = hα(st) for all s, t ∈ Z×p . Let T 2
p be the set

of squares in Tp. Critical to us are the genuine representations of T (Qp) which are trivial
on T 2

p . A genuine representation of T (Qp) is unramified if it has a non-zero vector fixed
by Tp.

Case F = R. We note that (−1,−1) = −1. In this case T (R) = M A whereM ' Λ⊗{±1}
and A ' Λ ⊗ R+. Then T (R) = MA where M is generated by hα(−1) and contains the
kernel µ2 of the central extension. On the other hand A is generated by hα(t) for t ∈ R+

and A ' A. Note also that A is in the the center of T (R). Thus it is natural to concentrate
on genuine representations of M . Let Ms be the subgroup of M generated by hα(−1) for
all roots α such that mα = 1. Since hα(−1)hα(−1) = 1 for such roots, Ms does not contain
the central subgroup µ2 ⊂ M . An irreducible genuine representation of M trivial on the
normal subgroup Ms is called a pseudo-spherical representation. An important feature
of pseudo-spherical representations of M is that they are invariant under the conjugation
action of the Weyl group. See Lemma 4.11(3) in [A-V].

Case F = Q2. This is the most interesting case. The Hilbert symbol is ramified. The
group Z×2 has a filtration

Z×2 = 1 + 2Z2 ⊇ 1 + 4Z2 ⊇ 1 + 8Z2.

Note that 1 + 8Z2 = (Z×2 )2. In particular 1 + 8Z2 is in the kernel of the Hilbert symbol.
Since Z×2 /(1 + 8Z2) ' (Z/8Z)× = {±1,±5}, all values of the symbol are easily obtained
from the following table.

2 −1 5

2 1 1 −1
−1 1 −1 1

5 −1 1 1
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Observe that the kernel of the symbol (·, ·) when restricted to Z×2 is 1 + 4Z2. For every
integer i ≥ 1, let T i2 be the subgroup of T (Z2) isomorphic to

T i2 ' Λ⊗ (1 + 21+iZ2).

Let T (Z2) ⊂ G(Q2) be the inverse image of T (Z2). Since the Hilbert symbol is trivial on
1 + 4Z2, for every i ≥ 1, elements hα(t) for t ∈ 1 + 21+iZ2 generate a subgroup T i2 ⊂ T (Z2)
isomorphic to T i2. Note that T 1

2 is contained in the center of T (Z2), while T 2
2 is contained

in the center of T (Q2).
Since (−1,−1)2 = (−1,−1)∞ = −1, the subgroup of T (Z2) generated by hα(−1) is

isomorphic to M of the real case! Moreover, since the non-trivial coset of 1 + 4Z2 in
1 + 2Z2 = Z×2 is represented by −1, we have an isomorphism

T (Z2) 'M × T 1
2 .

As in the real case, let Ms be the subgroup of M generated by hα(−1) for all roots α such
that mα = 1. Then MsT

1
2 is a commutative subgroup of T (Q2). Note that this group is

generated by hα(t), where t is in 1 + 4Z2 if α is long, and t is in Z×2 if α is short. We
say that a genuine representation of T (Q2) is pseudo-spherical if it has a vector invariant
under MsT

1
2 .

Weyl groups. Assume that F = R or Qp. Let WF denote the subgroup of G(F ) generated
by wα(1) for all simple roots α. Let TF (Z) denote the subgroup generated by hα(−1) for all
simple roots α. Let W denote the Weyl group of G(Q). Then we have an exact sequence

(4) 1→ TF (Z)→ WF → W → 1.

Conjugation action of WF on T (F ) does not descend to that of W because TF (Z) does not
lie in the center of T (F ). Suppose (π, V ) is an representation of T (F ) and w ∈ WF . Let
V w denote the representation defined by t 7→ π(w−1tw). Note that the isomorphism class
of V w depends only on the projection of w into the Weyl group W . In other words, we have
a conjugation action of the Weyl group on the set of isomorphism classes of irreducible
representations of T (F ). The following lemma implies that the classes of pseudo-spherical
and unramified representations are preserved under the conjugation action of the Weyl
group.

Proposition 3.1. The following subgroups of T (F ) are normalized by WF :

(i) Tp if F = Qp and p is an odd prime.
(ii) T 1

2 and Ms if F = Q2.
(iii) A and Ms if F = R.

Proof. Combining (3) and Lemma 37(c) in [St] gives

wα(1)hβ(t)wα(−1) = hκ(t) · (c, t)
1
2

(β∨|β∨)

were κ = wα(β) and c = ±1 which depends on structure coefficients for the Chevalley
basis. In order to prove the proposition we need to show that the sign after hκ(t) is
trivial for hα(t) generating the relevant groups. If hα(t) is in Tp, T

1
2 or A then (c, t) = 1

by elementary properties of the Hilbert symbol. Finally, recall that Ms is generated by
hβ(−1) where β is a root such that (β∨|β∨) = 4. Thus the sign is trivial in here, too. �
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4. Representations of T (F )

Assume that H is subgroup of G which is the inverse image of an abelian subgroup
H in G. Assume furthermore that the center Z(H) of H has finite index in H. Let
H = H/Z(H) and q : H → H denote the quotient map. Since H is abelian, the square of
any element of H is contained in µ2 ⊆ Z(H). It follows that H ' (Z/2Z)r and we may
consider H as a vector space over Z/2Z. Given x = q(x),y = q(y) ∈ H for some x, y ∈ H,
we define B(x,y) = xyx−1y−1 ∈ µ2. The definition of B is independent of the choice of
x, y and B could be interpreted as a symplectic non-degenerate form on H. In particular,
we may write H = H1 ⊕H2 as a direct sum of isotropic subspaces with respect to B and
dim H = r is even. We define H1 = q−1H1 which is an abelian subgroup of H containing
Z(H).

Recall that an irreducible representation of H (resp. Z(H)) is called genuine if it is
nontrivial on the kernel µ2 of the covering map. Let Irrgen(H) be the set of equivalence
classes of irreducible genuine finite dimensional representations of H, and Irrgen(Z(H)) be
the set of genuine characters of Z(H).

Proposition 4.1. Given H and Z(H) as above. Then there is a one-to-one correspondence
between Irrgen(H) and Irrgen(Z(H)) given by sending an irreducible genuine representation
of H to its central character. Moreover, the dimension of every genuine irreducible repre-
sentation is equal to the square root of the index of Z(H) in H. �

Proof. This is essentially Proposition 2.2 in [A-V]. Let V ∈ Irrgen(H). Let χV denote its
character which is well defined since V is finite dimensional. The exact same argument as
in [A-V] shows that χV is supported on Z(H). By Proposition 3 in Chapter 8, Section 12
in [Bou], the isomorphism class of V is uniquely determined by χV . Hence the isomorphism
class of V is uniquely determined by its central character in Irrgen(Z(H)).

Conversely, given χ ∈ Irrgen(Z(H)), we can extend χ to a one dimensional character

χ̃ of H1. Indeed we may choose χ̃ to be an irreducible H1-submodule of IndH1

Z(H)χ. By

Mackey theory, IndHH1
χ̃ is an irreducible representation of H of dimension [H : Z(H)]1/2

with central character χ. �

We apply this proposition to the group M , which is the inverse image of M . In order
to describe the center Z(M) of M we need to consider the commutator map on M , which
induces a (symmetric) µ2-valued pairing on M ∼= Λ⊗{±1} ∼= Λ/2Λ. Since the commutator
is given by

[hα(−1), hβ(−1)] = (−1,−1)
(α∨|β∨)
2

the pairing is (the same as) the bilinear form (·|·) reduced modulo 2. The kernel is given
by the lattice Λ∩ 2Λ∗ where Λ∗ is the dual lattice. In particular, the index of µ2 in Z(M)
is equal to the index [Λ ∩ 2Λ∗ : 2Λ] and the index of Z(M) in M is equal to the index
[Λ : Λ ∩ 2Λ∗]. By Proposition 4.1 we have proved the following:

Proposition 4.2. The number of irreducible genuine representations of M is equal to the
index [Λ ∩ 2Λ∗ : 2Λ]. The dimension of each such representation is a square root of the
index of [Λ : Λ ∩ 2Λ∗].
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In the following table we give the index of Λ∩2Λ∗ in Λ in the simply laced case and G2:

Φ A2n−1 A2n D2n−1 D2n E6 E7 E8 G2

[Λ : Λ ∩ 2Λ∗] 4n−1 4n 4n−1 4n−1 43 43 44 4

The index for types Bl, Cl and F4 is the same as the index for Al−1, A1 and A2, respectively.
In other words, it is the same as the index for the subsystem generated by simple long
roots.

In order to discuss genuine irreducible representation V of T (Qp), we need to describe
the center of T (Qp). We need some notation at this point. We fix a choice of simple roots
4 = {α1, . . . , αl}. If λ = n1α

∨
1 + . . .+ nlα

∨
l is an element in the coroot lattice Λ, then we

define

η(λ) := hα1(p
n1) · · ·hαl(pnl) ∈ T (Qp).

We shall use ηp instead of η if there is need to distinguish between primes. Note that the
order of multiplication is important as the hαi(p

ni)’s may not commute with one another.
Indeed, the commutator is given by

[η(λ), η(λ′)] = (p, p)(λ|λ′),

which may be non-trivial since (p, p) = −1 if p ≡ 3 (mod 4). If Λ′ is a subset of Λ, then
we set η(Λ′) := {η(λ) : λ ∈ Λ′}.
Case p is odd: Note that we have a decomposition T (Qp) = Tp ·η(Λ) ·µ2. The commutator
of hα(p) in η(Λ) and hβ(t) in Tp is

[hα(p), hβ(t)] = (p, t)(α∨|β∨)
p .

Since (p, t)p = 1 if and only if t is a square in Z×p , it follows that the commutator defines a

pairing of Λ× Tp/T 2
p
∼= Λ× Λ/2Λ which is simply the restriction of the bilinear form (·|·)

modulo 2. This shows that the centralizer of Tp in η(Λ) is η(Λ ∩ 2Λ∗) and the centralizer
of η(Λ) in Tp is the group Cp containing T 2

p , and such that Cp/T
2
p
∼= (Λ ∩ 2Λ∗)/2Λ. It

follows that the center of T (Qp) is Zp = Cp · η(Λ ∩ 2Λ∗) · µ2. Note that the index of Zp in
T (Qp) is [Λ : Λ ∩ 2Λ∗]2. The next proposition follows from Proposition 4.1.

Proposition 4.3. There is a bijection between genuine irreducible representation V of
T (Qp) and genuine characters γ of Zp, the center of T (Qp). Moreover any such represen-
tation V has the dimension equal to the index [Λ : Λ ∩ 2Λ∗]. �

If γ is a genuine character of Zp, the corresponding representation of T (Qp) will be
henceforth denoted by V (γ). Let I be the set of isomorphism classes of genuine repre-
sentations V of T (Qp) with nonzero T 2

p -fixed vectors. Define an equivalence relation on I
where two representations V and V ′ are equivalent if V ′ is isomorphic to a twist of V by
an unramified character of the algebraic torus T (Qp).

Proposition 4.4. Two genuine representations V (γ) and V (γ′) in I are equivalent if and
only if γ|Cp = γ′|Cp. The number of equivalence classes is equal to the index [Λ∩2Λ∗ : 2Λ].
Only one of these classes consists of unramified representations of T (Qp).
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Proof. Since Zp = Cp ·η(Λ∩2Λ∗)·µ2, it easily follows that any two genuine characters of Zp
which coincide on Cp are unramified twists one of another. It follows that the equivalence
classes are parameterized by characters of the finite group Cp/T

2
p . Since the order of this

group is [Λ ∩ 2Λ∗ : 2Λ], we have proved the first two statements. If V (γ) is unramified,
that is, it contains a vector fixed by Tp, then the central character must be trivial on Cp.
The proposition is proved. �

Case p = 2: The set T 1(Q2) := T 1
2 ·η2(Λ) ·µ2 is a normal subgroup of T (Q2) and commutes

with M , as it can be seen from the values of the Hilbert symbol (·, ·)2. Thus

T (Q2) = (M × T 1(Q2))/µ2.

It follows that any genuine representation of T (Q2) is a tensor product of genuine rep-
resentations of M and T 1(Q2). Moreover, we have the following key proposition which
reduces the study of representations of T (Q2) to that of M and T (Qp) for p ≡ 1 (mod 4).

Proposition 4.5. Assume that p ≡ 1 (mod 4). Pick a non-square ζ in F×p . The map
given by hα(2) 7→ hα(p) and hα(5) 7→ hα(ζ) induces an isomorphism

T 1(Q2)/T 2
2
∼= T (Qp)/T

2
p .

Proof. This is obvious since the tame symbol (·, ·)p takes the following values:

p ζ

p 1 −1
ζ −1 1

�

5. Modular forms on T (A)

We are interested in studying Eisenstein series on G(A). To that end we need to under-
stand the space A = L2

gen(AT (Q)\T (A)). It is natural to look for maximally unramified

representations in A first. Recall that Tp = Kp ∩ T (Qp) if p is odd and T 1
2 is generated by

hα(t) for all simple roots α and t ∈ 1 + 4Z2.

Proposition 5.1. Let A0 be the space of all right T 1
2

∏
p 6=2 Tp-invariant functions in A.

Note that this is naturally an M×M module where the two factors sit in T (R) and T (Z2).
As such it is isomorphic to the genuine part of the regular representation of the finite
group M :

A0
∼= L2

gen(M).

Proof. In the proof, hα,Q(t), hα,∞(t) and hα,p(t) denote elements of the global group T (Q),
and the local groups T (R) and T (Qp), respectively. Let I be the group of invertible adeles.
In view of the decomposition

I = Q× · R+ ×
∏
p

Z×p

the space A0 is indeed isomorphic to L2
gen(M) where M is here considered as a subgroup

of T (Z2). In order to finish the proof we need to determine the action of hα,∞(−1) for this
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identification. Let f be in A0. Since f is left T (Q) and right Tp-invariant, p 6= 2, for every
m in T (Z2) we have

f(mhα,∞(−1)) = f(hα,Q(−1)−1mhα,∞(−1)) = f(hα,2(−1)−1m).

�

Recall that Ms ⊆ M is generated by hα,2(−1) for all roots α such that mα = 1. In
particular it is a central subgroup. Now let A00 be the subspace of A0 consisting of Ms-
invariant functions. Let M̄ = M/Ms be the quotient group. By the Peter-Weyl theorem,
we have

A00
∼= L2

gen(M̄) = ⊕δδ ⊗ δ∨

where the sum is taken over irreducible genuine representations δ of M̄ or, equivalently
over the pseudo-spherical representations of M . Thus we have the following corollary:

Corollary 5.2. Let δ be a pseudo-spherical representation of M . Then there exists a
unique representation π ⊆ L2

gen(AT (Q)\T (A)) such that π∞ ∼= δ and πp is unramified at
all primes. The isomorphism class of πp is invariant under the conjugation of the Weyl
group.

Proof. The uniqueness is obvious. Now consider a Weyl group conjugate πw. Note that πw

is again unramified at all primes. Since δw ∼= δ it follows that πw ∼= π by the uniqueness
of π. �

Let π be the global representation as in the previous corollary. We would like to deter-
mine the local components πp. To that end we need to determine the the corresponding
central characters. A large part of the center acts trivially on π, independent of the choice
of δ:

Proposition 5.3. Let p be any prime. For any t in Q×p the central element hα,p(t
mα) acts

trivially on A00.

Proof. Since A00 is (MsT
1
2 )
∏

p 6=2 Tp-right invariant it suffices to check this for t = p.

Assume first that p is odd. Let f be in A00. Note that f is right hα,q(p
mα)-invariant for

every q 6= p. Indeed, hα,q(p
mα) is contained in Tq if q 6= 2 and in MsT

1
2 , if q = 2. (This

is clear if mα = 1, otherwise it follows from p2 ≡ 1 (mod 4) for every odd p.) Using left
hα,Q(pmα)-invariance of f we have

f(mhα,p(p
mα)) = f(hα,Q(pmα)−1mhα,p(p

mα)) = f(m).

Now assume that p = 2. Then, analogously,

f(mhα,2(2mα)) = f(hα,Q(2mα)−1mhα,2(2mα)) = f(m).

�

In order to determine the central character of πp we need to determine the action of the
full center of T (Qp) on δ ⊗ δ∨ ⊆ A00. Observe that (p, p)p = (p, p)2 = (−1)(p−1)/2 for any
odd prime. This allows us to define a homomorphism

ϕ : ηp(Λ) · µ2 → T (Z2)
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by sending hα,p(p) to hα,2(p). The restriction of ϕ to ηp(Λ ∩ 2Λ∗) has the image in the
center of T (Z2). Thus, if γ∞ is the central character of δ, then the composite

(5) γp = γ∞ ◦ ϕ

defines an unramified central character for T (Qp). We also define γ2 to be γ2(η2(λ)) = 1
for any λ in Λ ∩ 2Λ∗.

Proposition 5.4. Fix a pseudo-spherical representation δ of M . Let π ⊆ A be the unique
representation such that π∞ ∼= δ, and πp is unramified for all primes p, as in Corollary
5.2. Let γp be the central character defined by (5). Then π2

∼= δ∨ ⊗ V (γ2) and πp ∼= V (γp)
for p odd.

Proof. The proof is completely analogous to the proof of Proposition 5.3. We leave details
to the reader. �

For uniformity, we set γ∞ to be the central character of π∞ = δ extended trivially to A.
We set V (γ∞) to be the representation δ extended trivially to A.

6. Principal series representations of G(Qv)

In this section we define principal series representations of G(Qv) where v = ∞ or p.
Let B = TU denote the Borel subgroup of G where U is generated by eα(t) for all positive
roots α. Let Ū be the group generated by eα(t) for all negative roots α.

Fix a pseudo-spherical representation δ of M . It gives rise to a global representation π
of T (A), such that π∞ ∼= δ as in Corollary 5.2. Let χ be an unramified character of T (Qv).
If v =∞ an unramified character is a character trivial on M . Let i(χ) be the twist of πv
by χ. Since πv is Weyl group invariant, we have i(χ)w ∼= i(χw) for every w in W . In this
section we study induced representations (normalized induction)

I(χ) = IndGB(i(χ)).

Let α be a simple root. A character χ is called α-dominant if χ(hα(t)) = |t|s with
<(s) > 0. A character χ is called dominant if it is α-dominant for all simple roots. For
every w in WQv we have an intertwining map Aw : I(χ)→ I(χw) defined by

Aw(f)(g) =

∫
U∩wŪw−1

f(w−1ug)du.

Proposition 6.1. The operator Aw is absolutely convergent if χ is dominant.

Proof. Our proof is, of course, based on the corresponding result for algebraic groups.
(See, for example, Section 2.1 of [Sh]). Let `(w) denote the length of the projection of w
into the Weyl group. The proof of the proposition is on induction on the length `(w). We
consider the case of `(w) = 1. Then w corresponds to a simple root, so we shall denote it
by wα.

Lemma 6.2. Let α be a simple root and χ an unramified α-dominant character of T .
Then Awα is absolutely convergent.
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Proof. The proof of this Lemma is a reduction to SL2. Let s ∈ C such that χ(hα(t)) = |t|s.
Then <(s) > 0 since χ is α dominant. In the formula for Awα(f) we can assume that g = 1,
by replacing f if necessary. Note that U ∩wαŪw−1

α = Uα, thus the question of convergence
is answered by working in Gα. Let Bα = B ∩ Gα = TαUα. The restriction of f to Gα

belongs to the induced representation IndGαBα(i(χ)). Note that Tα, the group generated by
elements hα(t), is commutative. Decompose i(χ) = ⊕µi as a sum of characters of Tα. It
follows that IndGαBα(i(χ)) = ⊕Ii where Ii are principal series representation induced from
the characters µi. Recall that i(χ) = πp⊗ χ. Since Proposition 5.3 describes the action of
hα(t) on πp it follows that

|µi(hα(t))| = |t|<(s)

for every i and α. Thus, if we write f = ⊕fi with fi in Ii(s) then |fi| belongs to a principal
series representation I(<(s)) of Gα

∼= SL2 induced from the character hα(t) 7→ |t|<(s). The
convergence of the integral for |fi| can be easily calculated. If Qv = R the integral is
bounded by a multiple of ∫

R

(
1

1 + x2

)<(s)+1
2

dx

while if v = p then the integral is bounded by a multiple of

∞∑
i=n

1

pn<(s)
.

Both of these converge if <(s) > 0. �

Now we can easily finish the proof of the proposition. Assume that χ is dominant and Aw
is absolutely convergent for some w in W . If `(wαw) = `(w)+1 then χw is α-dominant. In
particular the composite Awα ◦Aw is absolutely convergent. It is equal to Awαw by Fubini’s
theorem. The proposition is proved. �

Recall that mα is the degree of the central extension Gα of Gα
∼= SL2. This number is

equal to 2 except when α is short root in the root systems Cn, Bn and F4. A character

χ0 : T (Qv)→ R+ such that χ0(hα(t)) = |t|
1
mα for every simple root α is called exceptional.

Note that χ0 is unique and dominant.

Proposition 6.3. The induced representation I(χ0) has a unique quotient. We denote
the quotient by Θ(γv).

Proof. When v is the archimedean place, Θ(γ∞) is the Langlands quotient of I(χ0).
Suppose v = p. In this case this is a standard result for induced representations with

a regular inducing character. More precisely, we say that i(χ) is regular if i(χ) is not
isomorphic to i(χw) for any non-trivial element w in the Weyl group. If that is the case
then I(χ) has a unique irreducible submodule and, dually, unique irreducible quotient.
This can be seen as follows. By the geometric lemma in [BZ], the semi simplification of
the (unnormalized) Jacquet module I(χ)U is

I(χ)U ∼= ⊕w∈W [ρU · i(χw)]
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where ρU is the square root of the modular character with respect to U . Suppose V
is an irreducible submodule of I(χ). Then, by Frobenius reciprocity, HomG(V, I(χ)) =
HomT (VU , ρU · i(χ)), so ρU · i(χ) must be a summand of VU . By exactness of the Jacquet
functor and regularity of i(χ), V must be unique. This proves the proposition. �

Remark. For G(Qv) of type Cn, the exceptional representation Θ(γv) is an even com-
ponent of the oscillator representation [W]. The representation πv = V (γv) = γv is one
dimensional and it is the Weil index [Rao].

If v = p then the Jacquet functor Θ(γp)U can be exactly described.

Proposition 6.4. Let χ0 be the exceptional character and w0 the longest element in the
Weyl group. Then Θ(γp)U ∼= ρU · i(χw0

0 ).

Proof. Let α be a simple root. Let Pα = Gα ·B be a parabolic subgroup, where Gα is the
group generated by one parameter subgroups Uα and U−α. We need the following lemma:

Lemma 6.5. For every simple root α, the induced representation IndPαB (i(χ0)) is reducible.

Proof. Let us restrict this representation to Gα. Decompose i(χ) = ⊕µi as a sum of
characters of Tα = Gα ∩T . It follows that IndPαB (i(χ0)) = ⊕Ii where Ii are principal series
representations of Gα, parabolically induced from the characters µi. The characters µi
are determined as follows. Recall that i(χ0) is a twist, by χ0, of a Weyl-group invariant
representation of T (Qp) appearing as a local component of a representation in A. Hence,
if mα = 1, then Proposition 5.3 implies that µi(hα(t)) = χ0(hα(t)) = |t|. It follows that
each Ii has the Steinberg representation as a submodule and the trivial representation
as a quotient. Since T normalizes Gα, the sum of all Steinberg submodules is a proper
submodule for Pα. A similar argument works if mα = 2. Then Proposition 5.3 implies
that µi(hα(t2)) = χ0(hα(t2)) = |t|. It follows that each Ii reduces with a discrete series
representation as a submodule and a quotient isomorphic to an even component of an
oscillator representation [GS]. Again, the sum of discrete series representations is an Pα-
submodule. The lemma is proved. �

We now follow an argument of Rodier [Ro]. Let Vα be the unique quotient of IndPαB (i(χ0)).
Then, by induction in stages, IndGPα(Vα) is a quotient of I(χ0). Since Θ(γp) is the unique

irreducible quotient of I(χ0), it must also be a quotient of IndGPα(Vα). Since

IndGPα(Vα)U = ⊕w∈W,w(α)<0 [ρU · i(χw0 )]

it follows that Θ(γp)U is a sum of ρU · i(χw0 ) for w in the Weyl group such that w(α) is
negative for all simple roots α. But this holds only for w = w0, the longest element in the
Weyl group. The proposition is proved. �

Assume that p is odd. Let v◦ be a non-zero element in i(χ) fixed by Tp. Note that v◦ is
unique up to a non-zero scalar. Then the representation I(χ) contains a unique Kp-fixed
vector f ◦χ normalized by f ◦χ(1) = v◦. The action of the intertwining operators on the
spherical vector has been computed in [Sa2].
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Proposition 6.6. Assume that p 6= 2. Let α be a simple root. Then

Awα(f ◦χ) =
1− p−1(χ(hα(pmα)))

1− χ(hα(pmα))
f ◦χwα .

Note that the formula for Awα(1)(f
◦
χ) depends on the projection of wα into the Weyl

group W . Thus, for a general element in WQp we have the following corollary.

Corollary 6.7. Let w be in W and w a preimage of w in WQp. Then

Awf
◦
χ =

∏
α>0,w(α)<0

1− p−1(χ(hα(pmα)))

1− χ(hα(pmα))
f ◦χw . �

7. Eisenstein series

Recall that B = TU denote the Borel subgroup of G where U is generated by eα(t) for
all positive root α. In the same fashion, we define the Borel subgroup B = TU of G.

We identify Al ' T (A) by (x1, . . . , xl) 7→
∏l

i=1 hαi(xi). For s = (s1, . . . , sl) ∈ Cl, we
define the Hecke character χs of T (Q)\T (A) by χs(hαi(xi)) = |xi|si for every simple root
αi. Here |xi| =

∏
v |xi|v. We extend this to a function on G(A) by χs(utk) = χs(t) where

u ∈ U(A), t ∈ T (A) and k ∈
∏

pK∞G(Zp). The square root of the modular function is

given by ρ = χ(1,...,1) = χ1 where 1 = (1, . . . , 1).
Similarly for a place v of Q, we define a character χs,v of T (Qv) by χs,v(hαi(t)) = |t|siv

for all every simple root αi. We extend this to a function on G(Qv) by χs,v(utk) = χs,v(t)
where u ∈ U(Qv), t ∈ T (Qv) and k ∈ Kv.

Let π be as in Corollary 5.2. Let K = K∞
∏

pKp. Let J denote the space of functions

on G(A) satisfying the following conditions:

(1) f(ubag) = f(g) for u ∈ U(A), b ∈ B(Q), a ∈ A, g ∈ G(A),
(2) f is K-finite and for each k ∈ K, the function t 7→ f(tk) is a function in π,

Let I(χs) denote the representation of G(A) on functions of the form g 7→ f(g)χs+1(g)
where f ∈ J . We have

I(χs) = Ind
G(A)
B(A)πχs =

(
Ind

G(R)
B(R)π∞χs,∞

)⊗
p

Ind
G(Qp)

B(Qp)πpχs,p

where all the induced representations are normalized inductions. We form an Eisenstein
series:

E(g, s, f) =
∑

x∈B(Q)\G(Q)

f(xg)χs+1(g)

where g ∈ G(A), s ∈ Cl, f ∈ J . The above sum converges absolutely and uniformly on
compact sets contained in the region Re(si) > 1 for all i. The Eisenstein series can be
continued meromorphically to Cl, see [MW]. We define the constant term of the above
Eisenstein series by

E(g, s, f)U =

∫
U(Q)\U(A)

E(ug, s, f)du.
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A standard computation in the domain of convergence of E(g, s, f) gives

E(g, s, f)U =
∑
w∈W

(Aw(s)f)(g)

where

(Aw(s)f)(g) =

∫
(U(Q)∩wŪ(Q)w−1)\(U(A)∩wŪ(A)w−1)

f(w−1ug)χs+1(w−1ug)du

and w ∈ WQ is an (arbitrary) element such that pr(w) = w. Suppose S is a finite set of
primes including 2 and ∞ and f = (

⊗
v∈S fv)⊗ (

⊗
p 6∈S f

◦
p ), then by Corollary 6.7

(Aw(s)f)(g) =

(⊗
v∈S

Aw,v(s)fv

)
⊗

(
cS(w, s)

⊗
p6∈S

f ◦w(s),p

)
where

cS(w, s) =
∏
p 6∈S

∏
α>0,w(α)<0

1− p−1(χs,p(hα(pmα)))

1− χs,p(hα(pmα))
=

∏
α>0,w(α)<0

ζS(mαα(s))

ζS(1 +mαα(s))
.

Here ζS(z) =
∏

p 6∈S(1− p−s)−1 is the partial Riemann zeta function, and α(s) =
∑l

i=1 nisi

if α =
∑l

i=1 niαi as a sum of simple roots. Therefore as s tends to s0 = (m−1
α1
, . . . ,m−1

αl
),

each term (
∏l

i=1(si −m−1
αi

))Aw(s)f vanishes except the term where w = w0 is the longest
element of W . Furthermore if we set S = {2,∞}, then Aw,v(s0) for v ∈ S are nonzero

intertwining operators so we may arrange f such that (
∏l

i=1(si−m−1
αi

))Aw(s)f is nonzero.
For f ∈ J , we define

θf (g) = lim
s→s0

(
l∏

i=1

(si −m−1
αi

)

)
E(g, s, f).

Then ∫
U(Q)\U(A)

θf (ug)du = Aw0(s0)(f)

and, by the criterion of Jacquet (see [J] and [MW]), θf (g) is a square integrable function
in L2(G(Q)\G(A)). Let Θ denote the span of {θf : f ∈ J }. We now recall the exceptional
representation Θ(γv) defined in Section 6.

Theorem 7.1. The span Θ lies in L2(G(Q)\G(A)). It is an irreducible automorphic
representation of G(A) and it is isomorphic to

⊗
v Θ(γv).

Proof. For every f ∈ J , the map fχs0+1 7→ θf defines a nonzero intertwining operator
from the induced representation to L2(G(Q)\G(A)). Thus the image Θ must decompose
as a direct sum of irreducible representations. On the other hand, at each local place v the
exceptional representation Θ(γv) is a unique quotient of the local induced representation.
This implies that Θ ∼=

⊗
v Θ(γv), as desired. �

Corollary 7.2. The exceptional representation Θ(γv) is unitarizable. �
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In a terminology of [A-V], Θ(γ∞) corresponds to the trivial representation of a split
group Gl(R) which will be introduced in the next section. The unitarity of Θ(γ∞) was
proved and studied for classical groups of type Bl in [Kn], [LS] and [T]. The unitarity for
other groups may be new.

8. Iwahori-Hecke algebras

We will fix an odd prime p in this section. We fix an Iwahori subgroup I of Kp such that
I contains Uα(Zp) for all positive α and I ∩ T (Qp) = Tp. We recall that µ2 is the kernel
of the covering map pr : G(Qp) → G(Qp). Let H− = H−(G(Qp)) denote the algebra of
all compactly supported I-bi-invariant functions on G(Qp) such that f(εg) = εf(g) for all
ε ∈ µ2. The multiplicative structure of H− is defined by convolution of functions,

(f ′ · f ′′)(g) =

∫
G

f ′(h)f ′′(h−1g)dh

where dh is a Haar measure on G so that the volume of µ2 × I is one. We call H− the
Iwahori-Hecke algebra of G. The following is Proposition 6.1 in [Sa2].

Proposition 8.1. Let N ′ denote the normalizer in G of Tp. Then the support of the Hecke
algebra is supp(H−) = IN ′I. �

One can easily describe N ′. Recall that, if N(Qp) is the normalizer of T (Zp) in G(Qp),
then the quotient of the two is isomorphic to the affine Weyl group ΛoW . The group N ′

is smaller than the inverse image of N(Qp). Recall that ηp(λ) centralizes (or normalizes)
Tp if and only if λ is in

Λ′ := Λ ∩ 2Λ∗.

In particular, we have an exact sequence

1→ µ2 × Tp → N ′
φ→ Λ′ oW → 1.

where φ is defined by sending wα(1) to the reflection wα in W and ηp(λ) to λ in Λ′.

We now define a normalization of elements in the Hecke algebra. Let πp be an unramified,
Weyl group invariant, irreducible genuine representation of T (Qp) as in Corollary 5.2. Let
γp be the central character of πp. Recall that ηp(λ) is in the center of T (Qp) for every λ
in Λ′. In particular, γp(ηp(λ)) is well defined for every λ in Λ′. The Weyl group invariance
of the central character of πp implies that we can extend γp to N ′ by setting

γp(wα(1)) = 1.

Thus, γp is a character of N ′ which is trivial on Tp. For w in Λ′ oW , we define ew ∈ H−
by it values for every x in N ′, as follows:

ew(IxI) =

{
γp(x) if φ(x) = w

0 otherwise .

We note some elementary properties of elements ew. Let `(w) denote the usual length
function on the affine Weyl group ΛoW . If `(w1w2) = `(w1) + `(w2), for two elements in
Λ′oW , then ew1w2 = ew1 · ew2 . (See [Sa2]. A key here is the multiplicative property of γp.)
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Let L denote the C-span of eλ where λ is dominant in Λ′. Note that `(λ) = 〈ρ, λ〉
for dominant λ. It follows that `(λ + λ′) = `(λ) + `(λ′) for dominant λ, λ′ in Λ′. Hence
eλ · eλ′ = eλ+λ′ . In particular, L is a commutative subalgebra in H−.

Let H denote the subalgebra consisting of functions supported on µ2×Kp. It has basis
{ew : w ∈ W}. If α is a simple root and wα is the corresponding simple reflection, then
we denote ewα by eα. These elements satisfy the following relations:

(1) (eα − p)(eα + 1) = 0 and
(2) eα · eβ · eα . . . = eβ · eα · eβ . . . where the number of factors on each side is equal to

the order mαβ of the element wαwβ in W .

Conversely H is the C-algebra generated by the set of eα for all simple roots α satisfying
the above two relations. One easily sees that

H− = H · L ·H.
An important result is that for a positive λ ∈ Λ′, eλ is an invertible element in H−. This

implies that if V is an admissible genuine G-module generated by the subspace V I , then
every submodule V1 of V is also generated by its subspace V I

1 .
Given λ ∈ Λ′, we write λ = λ1 − λ2 where λ1, λ2 are positive in Λ′. We define

tλ = p−
1
2
〈ρ,λ〉eλ1 · e−1

λ2
.

This definition does not depend on the choice of λ1 and λ2. We state the main results of
[Sa1] and [Sa2]. (Note that we have already explained the first three relations.)

Theorem 8.2. Let α, β be two simple roots, and λ, λ′ ∈ Λ′. Then eα, eβ, tλ and tλ′ satisfy
the following relations:

(1) (eα − p)(eα + 1) = 0.
(2) eα · eβ · eα . . . = eβ · eα · eβ . . . where there are mαβ factors on each side.
(3) tλ · tλ′ = tλ+λ′.

(4) eα · tλ − twα(λ) · eα = (q − 1)
tλ − twα(λ)

1− t−mαα∨
.

Conversely, let H′− be the C-algebra abstractly generated by eα for all simple roots α,
and tλ for all λ ∈ Λ′, and these generators satisfy the relations (1) to (4) above, then
H′− = H−. �

Remark: The above theorem was stated in [Sa2] only for simply laced G, but for any
degree central extension. The proof of relation (4) takes place in the Levi factor of the
parabolic subgroup Pα. Thus the calculation given there (relying on γp(hα(pmα)) = 1;
Proposition 5.3) is applicable to our situation.

Definition of Gl. We will define an algebraic split group Gl(Qp). In order to do this, it
suffices to define its coroots Ψ∨ and its co-character lattice Λc. We recall that Λ is the
coroot lattice of G and we define

Ψ∨ :=
{mα

2
α∨ ∈ Λ⊗ R|α∨ ∈ Φ∨

}
and Λc := 1

2
Λ′. Note that the root system Ψ is dual to the root system Φ. The isogeny class

of Gl is determined by the lattice Λc. Let Λcr be the Z-span of co-roots in Ψ∨. The group
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Gl is a split, algebraic group obtained by taking a quotient of the split, simply connected
algebraic group corresponding to Ψ by the central subgroup isomorphic to Λc/Λcr. It is an
elementary 2-group. Its order is equal to the number of pseudo-spherical representations
of M . The following table lists all cases when this 2-group is non-trivial:

Φ A2n−1 D2n−1 D2n Cn B2n E7

Ψ A2n−1 D2n−1 D2n Bn C2n E7

[Λc : Λcr] 2 2 4 2 2 2

The Iwahori-Hecke algebra H(Gl) of Gl is similarly generated by tλ and ew where λ ∈ Λc

and w ∈ W .
Let f(x) ∈ H(G) (resp. H(Gl)). We define f ∗(x) = f(x−1). Hence ∗ : H− → H− (resp.
∗ : H(Gl) → H(Gl)) satisfies (f ∗)∗ = f and f ∗ · g∗ = (g · f)∗, i.e. it is an algebra anti-
involution. We have e∗λ = e−λ and e∗w = ew−1 in H−. Similarly, e∗λ = e−λ and e∗w = ew−1 in

H(Gl).

Theorem 8.3. (i) There is an algebra homomorphism A : H(Gl)→ H− given by A(tλ) =
t2λ and A(ew) = ew for λ ∈ Λc and w ∈ W .

(ii) The algebra isomorphism A commutes with anti-involutions ∗ on H(Gl) and H−.

Proof. Part (i) follows by comparing relations in H(G′) in [Lu] and those for H− in The-
orem 8.2. For (ii) we first have A(e∗w) = A(ew−1) = ew−1 = e∗w for any w in W . By the
decomposition H− = H · L ·H, it remains to show that A(e∗λ) = (A(eλ))

∗ for a dominant
co-character λ. To that end, let w be the unique element in W such that w(∆) = −∆.
Then µ = −λw is again-dominant. Since{

`(µw) = `(µ) + `(w)

`(−wλ) = `(w) + `(−λ)

we have ewe−λ = e−wλ = eµew, and a similar statement for elements in H−. Now we

have A(e∗λ) = A(e−λ) = A(e−1
w eµew) = e−1

w A(eµ)ew = p−`(µ)/2e−1
w e2µew = p−`(µ)/2e−2λ =

p−`(λ)/2e∗2λ = A(eλ)
∗ as required. �

9. Representations with Iwahori fixed vectors

Let I and I ′ denote the Iwahori subgroups of G and Gl respectively which give rise
to isomorphic Iwahori Hecke algebras H− and H = H(Gl) in Theorem 8.3. Let R(H−)
and R(H) denote the categories of finite dimensional representations of the Iwahori-Hecke
algebras H− and H respectively.

Let RI
−(G) denote the category of admissible smooth genuine representations V of G

such that V I generates V as a G-module. Similarly we let RI′(Gl) denote the category of
admissible smooth representations V of Gl such that V I′ generates V as a Gl-module.

By [Bo] and [BZ], the functor V 7→ V I′ is an equivalence of categories from RI′(Gl)
to R(H). Let Cc(G

l/I ′) denote locally constant, compactly supported, complex valued
functions on Gl/I ′. This is a right H-module. Then the inverse functor is given by
E 7→ I(E) := Cc(G

l/I ′)⊗H E.
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Similarly the functor V 7→ V I is an equivalence of categories from RI
−(G) to R(H−).

Let Cc,−(G/I) denote locally constant, compactly supported, complex valued functions on
G/I such that f(εxI) = εf(xI) for ε ∈ µ2, x ∈ G. This is a right H−-module. Then the
inverse functor is given by E 7→ I(E) := Cc,−(G/I)⊗H− E.

We recall the isomorphism A : H → H− in Theorem 8.3. This establishes an equivalence
of categories betweenR(H) andR(H−). Hence the following four categories are equivalent:

(6) RI′(Gl) ' R(H) ' R(H−) ' RI
−(G).

Suppose V is a representation in RI
−(G), then we call the corresponding representation in

RI′(Gl) the local Shimura lift of V . For example, the Shimura lift of Θ(γp) is the trivial
representation.

Hermitian representations. We gather some facts from [BM1] and [BM2]. Let (π,E)
be a finite dimensional representation of H. We say that E is a Hermitian representation
of H if there exists a Hermitian form 〈 , 〉 on E such that

〈π(f)v1, v2〉 = 〈v1, π(f ∗)v2〉
for all v1, v2 ∈ E and f ∈ H. We say that E is a unitary representation of H if the
Hermitian form is positive definite. Similarly we define Hermitian representations and
unitary representations of H−.

Let V be a representation in RI′(Gl) (resp. RI
−(G)). Suppose 〈 , 〉 is a non-degenerate

Gl-invariant (resp. G-invariant) Hermitian form on V . Then the restriction of the Her-
mitian form on V I gives a Hermitian representation of H (resp. H−). Similarly, a unitary
representation V gives rise to a unitary representation of the Iwahori-Hecke algebra H
(resp. H−).

Conversely if E is a Hermitian representation of H (resp. H−), then I(E) exhibits an Gl-
invariant (resp. G-invariant) Hermitian form. Moreover, if E is a unitary representation of
H then I(E) is a unitary representation ofGl. This non-trivial statement is due to Barbasch
and Moy (see [BM1] and Thm 8.1 in [BM2]). This, combined with the equivalence of the
four categories in (6) (with the middle isomorphism preserving the anti-involution ∗) gives:

Theorem 9.1. If V is an irreducible unitary representation in RI
−(G), then its local

Shimura lift to Gl(Qp) is unitary. �

Note that the Shimura lift of the exceptional representation Θ(γp) is the trivial repre-
sentation of Gl(Qp). We have proved unitarizability of Θ(γp) by global methods.

Corollary 9.2. Assume that G 6= SL2. Then the unitary representation Θ(γp) is isolated
in the unitary dual G(Qp). �

Proof. Recall that the space of (equivalence classes of) smooth irreducible representations
of G(Qp) is equipped with a Fell topology [Ta]. To every irreducible representation Π
we can attach a point in the support Ω of the Bernstein center of G(Qp). (The support
is a disjoint union of complex varieties of dimension less then or equal to the rank of
G(Qp)). Tadic in [Ta], Theorem 5.7, shows that this map is continuous and closed. Thus,
the question whether Θp is isolated with respect to Fell’s topology is equivalent to the
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same question for the Bernstein center. Since our isomorphism of Hecke algebras gives
an equivalence of categories, Θp must be isolated in the unitary dual since the trivial
representation in the unitary dual of Gl(Qp). �

Remark: Theorem 9.1 completes a part of [Hu]. Indeed, a key to Theorem 9.1 is that the
isomorphism of Hecke algebras preserves ∗-structures. This was claimed but not verified
in [Hu]. In retrospect, a verification of this statement at that time was impossible since
normalizations of Hecke operators were not properly defined in [Sa1].
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[Bou] N. Bourbaki, Éleménts de Mathématique, Algèbre Chapitre 8: Modules et anneaux semisimples,
Hermann, Paris, (1958).

[BFG] D. Bump, S. Friedberg and D. Ginzburg Small representations for Odd Orthogonal Groups. IMRN
(2003) 1363-1393.

[GS] S. Gelbart and P. Sally, Intertwining operators and automorphic forms for the metaplectic group.
Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 1406–1410.

[Gr] R. Griess, Schur multipliers of the known finite simple groups. Bulletin of the AMS, 78 no. 1 (1972),
68-71.

[Hu] J.-S. Huang, Metaplectic correspondences and unitary representations. Comp. Math. 80 no. 3 (1991),
309-322

[J] H. Jacquet, On the residual spectrum of GL(n) in Lie group representations II. LNM 1041 Springer
Verlag (1983), 185-208.

[KP] D. A. Kazhdan and S. J. Patterson. Metaplectic forms. Pub. Math. IHES 59 (1984), 35-142.
[Kn] A. W. Knapp, Nilpotent orbits and some small unitary representations of indefinite orthogonal

groups. J. of Funct. Anal. 209, (2004), 36-100.
[LS] H. Y. Loke and G. Savin, The smallest representation of non-linear covers of odd orthogonal groups.

Amer. J. Math. 130 (2008) 763-798.
[Lu] G. Lusztig, Affine Hecke algebras and their graded version. JAMS 2 (1989), 599-685.
[Ma] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. sci. ENS,
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