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Abstract. In this paper we study compact dual pair correspondences arising from smallest
representations of non-linear covers of odd orthogonal groups. We identify representations
appearing in these correspondences with subquotients of cohomologically induced represen-
tations.

1. Introduction

Let p be an odd positive integer and let q be an even positive integer. Let SO0(p, q) be the
identity component of the Lie group SO(p, q) and let G be the central extension of SO0(p, q)
with a maximal compact subgroup

K0 =

{
Spin(p)× SO(q) if p < q

SO(p)× Spin(q) if q < p.

The group G is not a linear group. In [LS], we investigated the smallest representations of
G that do not factor through the linear quotient SO0(p, q). (Such representations are called
genuine.) We described the corresponding Harish-Chandra modules: one such module V if
p < q and two modules V + and V − if p > q. These representations are interesting for a
variety of reasons. For example, if G is split then V (in the case p + 1 = q) or V + and V −

(in the case p− 1 = q) lift to a trivial representation (of an appropriate algebraic group) via
the local Shimura correspondence [ABPTV].

Let g be the complexified Lie algebra of G. (Lie algebras in this paper are complex
unless specified otherwise.) Let W be the Harish-Chandra module of one of the smallest
representations above. We showed in [LS] that W is a (g, K)-module where K ⊇ K0 is
obtained by replacing the SO-factor of K0 by the corresponding full orthogonal group. This
extension is important for investigation of dual pair correspondences arising from W . More
precisely, let K2 = O(s). Consider a standard embedding of K2 into the O-factor of K.
Note that, by Witt’s lemma, this embedding is unique up to a conjugation. Let g1 be the
centralizer of K2 in g. Then

g1 =

{
so(p, r), r = q − s, if p < q

so(r, q), r = p− s, if p > q.

Let G1 be a connected subgroup of G corresponding to the Lie algebra g1 and let K0
1 =

G1 ∩K0. Then W , when restricted to g1 ×K2, decomposes discretely

W =
∑

τ

Θ(τ)⊗ τ
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where the sum is taken over all irreducible finite dimensional representations of K2, and Θ(τ)
is naturally a (g1, K

0
1)-module. In [LS], we obtained some partial results about Θ(τ), such as

irreducibility of Θ(τ), which were necessary to established a correspondence of infinitesimal
characters.

Our objective in this paper is to give a more thorough investigation of the correspondence.
Let m = p−1

2
and m′ = q

2
. Consider a θ-stable maximal parabolic subgroup q1 = l1 + n1 in

g1 whose Levi component corresponds to a subgroup

L1 =

{
Ũ(m)× SO0(1, r) if p < q

SO(r, 0)× Ũ(m′) if p > q

in G1. Here Ũ(m) ⊆ Spin(p) is a two-fold cover of U(m), which is given as a pull-back of
U(m) ⊆ SO(p). We identify Θ(τ) with subquotients of modules which are cohomologically
induced from irreducible representations of L1 which are trivial on the SO-factor and genuine
on the U-factor. In particular this implies that these cohomologically induced subquotients
are unitarizable and we have a detailed information about their K1-types, since the types of
Θ(τ) could be computed by the usual branching rules of orthogonal groups.

One can consider representations cohomologically induced from representations of L1

which are trivial on the SO-factor and not genuine on the U-factor. It is interesting to
note that these representations (of the linear quotient of G1) appear as double lifts from
compact orthogonal groups in the Howe correspondence [Lo] and [NZ].

In Section 6 we highlight a special case. Assume that r > q is an odd integer. Knapp
[Kn] introduced a family π′s of (so(r, q), SO(r)×Spin(q))-modules s = 0, 1, 2 . . .. The module
π′s is a Harish-Chandra module of a genuine representation of G1 if and only if s is even.
If s is even then p = r + s is odd. We show that π′s is isomorphic to our Θ(0) where 0
denotes the trivial representation of O(s). These results, therefore, complement the results
of Paul and Trapa [PT]. It is shown there that π′s for s odd appear as double lifts of trivial
representations of compact groups in the Howe correspondence [Lo] [NZ].

The study of our compact dual pairs unfortunately requires use of disconnected groups
for technical reasons. In order to avoid the complications of treating covers of disconnected
Lie groups, we will work exclusively with Harish-Chandra modules in this paper. The main
results and proofs for V and V ± are similar but each requires slightly different set of no-
tations. Hence we will divide the paper into two parts. The first part consists of Sections
2 to 4 where we concentrate on one family of dual pairs for the smallest representation V .
The main purpose is to explain the main ideas quickly and clearly without being buried by
the notations. In the Section 5, we will state but without proofs the corresponding results
for V ±.
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2. The smallest representation

In Sections 2 to 4, we will assume that p < q. Let V be the Harish-Chandra module of
the smallest representation of G as in [LS]. The module V is unitarizable and it extends to
an irreducible (g, K)-module for K = Spin(p) × O(q). We need some notation in order to
describe the K-types of V .

Notation. The following convention will be used throughout the paper. Given a multiple
of numbers λ = (λ1, . . . λr, 0, . . . , 0) then, by adding or removing 0’s at the tail, λ can be
considered an s-tuple for every s ≥ r. Let 1k := (1, . . . , 1) and 0k := (0, . . . , 0) where
there are k copies of 1’s and 0’s respectively. We set εi = (0, . . . , 0, 1, 0, . . . , 0) where 1
appears at the i-th position. Given β = (β1, . . . , βr) and γ = (γ1, . . . , γs), we will denote
(β1, . . . , βr, γ1, . . . , γs) by (β, γ) if there is no fear of confusion.

Let Λ(n) denote the set of highest weights λ = (λ1, . . . , λ[n/2]) of so(n). For e = 0, 1
2
, let

Λ(n, e) denote the subset of Λ(n) consisting of λ = (λ1, . . . , λ[n/2]) where λi ∈ Z + e. Hence
Λ(n) = Λ(n, 0)∪Λ(n, 1

2
). Let τλ

n denote the finite dimensional irreducible representations of

so(n) with the highest weight λ. If λ is in Λ(n, 0) then τλ
n is an irreducible representation

of the compact group SO(n). Otherwise it is an irreducible representation of Spin(n) which
does not descend to SO(n). The trivial representation may be denoted by CSO(n). Let
ρn = (n−2

2
, n−4

2
, . . .) ∈ Λ(n) denote the half sum of positive roots of so(n).

Next we discuss irreducible representations of O(n). Let Λ(O(n)) denote the subset of
elements in Zn such of the form

(1) (λ1, . . . , λk,0n−k) or (λ1, . . . , λk,1n−2k,0k)

where λi are positive integers, and k ≤ n
2
. Irreducible representations of O(n) are parameter-

ized by Λ(O(n)) (see [GoW] and [Ho]). We will call an element λ of Λ(O(n)) a highest weight
of O(n). Let τλ

O(n) denote the corresponding irreducible finite dimensional representation of

O(n). The trivial representation of O(n) is sometimes denoted by CO(n).

Finally we recall a branching rule: Suppose n > s, then τλ
O(n) contains τλ′

O(s) if and only if

λi ≥ λ′i ≥ λi+n−s for all 1 ≤ i ≤ s.

With this notation in hand, we can now describe the K-types of V . Recall that m = p−1
2

.
The restriction of V to K = Spin(p)×O(q) is

V =
∑

λ∈Λ(p,0)

τ
λ+ q−p

2
1m

p ⊗ τλ
O(q).

Here λ in τλ
O(q) is considered as an element of Λ(O(q)) by adding 0’s at the tail. In particular,

the minimal K-type of V is τ
q−p
2

1m

p ⊗ CO(q). The infinitesimal character of V is

µp,q = (1, 2, . . . ,
p− 1

2
,
1

2
,
3

2
, . . . ,

q − 1

2
).

We now consider the restriction of V to g1 ×K2, where g1 = so(p, r) and K2 = O(s) for
some integers r and s such that r + s = q. We obtain a direct sum

(2) V =
∑

λ′∈Λ(O(s))

Θ(λ′)⊗ τλ′

O(s)
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Note that every Θ(λ′) is a (g1, K1)-module, where K1 = Spin(p)×O(r). Since V is admissible
with respect to Spin(p) ⊆ K1, it follows that each Θ(λ′) is an admissible (g1, K1)-module.

The K1-types of Θ(τ). Let λ′ be in Λ(O(s)). Write λ′ = (λ′1, . . . , λ
′
t, 0, . . . , 0). We will now

describe the K1-types of

Θ(λ′) = Θ(τλ′

O(s)).

Let δ1 be a K1-type of Θ(λ′). Obviously, δ1 must be isomorphic to τ
λ+ q−p

2
1m

p ⊗ τµ
O(r) for

some λ = (λ1, . . . , λm) in Λ(p, 0), and it has to lie in the K-type δ = τ
λ+ q−p

2
1m

p ⊗ τλ
O(q) of V .

Furthermore, the multiplicity of δ1 in Θ(λ′) is given by

(3) dimC HomK1×K2

(
δ1 ⊗ τλ′

K2
, δ

)
= dimC HomO(r)×O(s)

(
τµ
O(r) ⊗ τλ′

O(s), τ
λ
O(q)

)
.

By the branching rule stated after (1), the right hand side is nonzero only if λi ≥ λ′i for all
i ≤ m, and λ′i = 0 for all i > m. In particular Θ(λ′) is nonzero if and only if the number of
nonzero integers in λ′ is not greater than (p− 1)/2, that is, t ≤ m. (If that is the case then
λ′ can be viewed as a highest weight for so(p).) Moreover, the branching rule implies that

W (λ′) = τ
λ′+ q−p

2
1m

p ⊗ CO(r)

appears in Θ(λ′) with multiplicity one and it is the (unique) minimal K1-type of Θ(λ′).
Let K0

1 = Spin(p) × SO(r) be the identity component of K1. We can view Θ(λ′) as a
(g1, K

0
1)-module. The minimal K1-type restricts irreducibly to K0

1 , and it is not hard to see
that it becomes the unique minimal K0

1 -type of Θ(λ′).
We will now state Theorem 9.1 in [LS]. The use of disconnected K2 is crucial here. (Note

that we have just proved the second part.)

Theorem 2.1. Recall that g1 = so(p, r), K2 = O(s) and K0
1 = Spin(p) × SO(r). Let Θ(τ)

be the lift of an irreducible representation τ of K2. Then

(i) The (g1, K
0
1)-module Θ(τ) is either zero or irreducible.

(ii) Suppose τ and τ ′ are non-isomorphic irreducible representations of K2, and suppose
Θ(τ) and Θ(τ ′) are nonzero. Then the minimal K0

1 -types of Θ(τ) and Θ(τ ′) are non-
isomorphic. In particular, Θ(τ) and Θ(τ ′) are non-isomorphic (g1, K

0
1)-modules. �

3. Cohomological induction

The purpose of this section is to introduce cohomological induction and realize V in terms
of the cohomological induction.

Notation. We recall some basic definitions and notation from [KV] and [Wa1]. We use a
subscript 0 to denote a real Lie algebra. Those without are complex Lie algebras. Consider
a connected Lie group G. Let K0 be a maximal compact subgroup. Let g0 and k0 be the Lie
algebras of G and K0 respectively. Let θ be the Cartan involution of g0 fixing k0. Let q = l+n
be a θ-stable parabolic subalgebra of g. Let q denote its opposite parabolic subalgebra. Let
L denote the corresponding connected Lie subgroup of G with Lie algebra l0. If Z is an
irreducible (l, L ∩K0)-module, then we put Z] = Z ⊗ ∧topn and

indg
q̄Z = U(g)⊗q̄ Z.
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We will write indZ if it is clear what g and q are. If Z has infinitesimal character λZ , then
indZ] has infinitesimal character λZ + ρ(n). Let

Li(Z) = Πi(indZ])

where Πi = (Πg,K0

g,L∩K0)i is the i-th derived functor of the Bernstein functor. If Z = Cλ is

the one-dimensional character of (l, L ∩ K0), then we denote Aq(λ) = Ls0(Cλ) and it has
infinitesimal character λ + ρ(g).

Given a (g, K0)-module W , we set W h to be the subspace of K0-finite vectors in the
conjugate linear dual vector space of W . Let s0 := dim(n ∩ k) and let Γs0 be the s0-th
derived functor of the Zuckerman functor of taking K0-finite vectors. By Eq. (6.25) in [KV],
Ls0(Z)h = Γs0((indZ])h). By Theorem 6.3.5 in [Wa1], there is a non-degenerate sesquilinear
pairing between Γs0((indZ])h) and Γs0(indZ]). Hence if Γs0(indZ]) is K0-admissible then

Ls0(Z) = Γs0(indZ]).

In this paper, we find it more convenient to work with Γs0(indZ]) and ignore Ls0(Z) com-
pletely. However we will state all final results in Ls0(Z) because it is a more widely accepted
definition.

A positive root system. We now specialize to g = so(p, q) and K0 = Spin(p) × SO(q).
Recall that m = p−1

2
and m′ = q

2
. Let g0 and k0 be the real Lie algebras of G and K0,

respectively. Choose a compact Cartan subalgebra h0 ⊆ k0 of g0 and positive root system
Φ+ with respect to h0 such that the simple roots εi− εi+1 for 1 ≤ i ≤ m− 1 belong to so(p),
and εi − εi+1 for m + 1 ≤ i ≤ m + m′ − 1 belong to so(q). The non-compact simple roots
are εm − εm+1 and εm+m′ .

Let λ0 = (1m,0m′) ∈
√
−1h∗0. Let q = l + n be the maximal parabolic subalgebra in

g where l is spanned by roots perpendicular to λ0. Then q is θ-stable. The Levi factor l
corresponds to the subgroup

L = Ũ(m)× SO0(1, q)

in G. Here Ũ(m) ⊆ Spin(p) is a two-fold cover of U(m) ⊆ SO(p). We note that the weights

of finite dimensional representations of Ũ(m) which do not descend to U(m) can be identified
with m-tuples of half-integers. The one dimensional representation with the weight (1

2
, . . . , 1

2
)

is denoted by det
1
2

u(m). Under the adjoint action of L, the radical n decomposes as

n = Cm ⊗ C1+q ⊕ ∧2(Cm)

where Cm is the standard representation of U(m) and C1+q the standard representation of
SO0(1, q). The summand ∧2(Cm) is spanned by long roots εi + εj for 1 ≤ i < j ≤ m. These
long roots and short roots εi for 1 ≤ i ≤ m are precisely all compact roots contained in n.
It follows that

s0 = dim(n ∩ k) =
m(m + 1)

2
=

p2 − 1

8
,

and this number is independent of q.

A maximal compact subgroup of L is L ∩ K0 = Ũ(m) × SO(q). However, since our
considerations involve a disconnected group, we also need to consider a slightly larger group
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Ũ(m)×O(q). We view C1+q, in the decomposition of n above, as a natural (so(1, q), O(q))-
module. Then, as (l, U(m)×O(q))-modules,

∧topn ∼= det q+m
u(m) ⊗ det m

O(q).

The action of so(1, q) is, of course, trivial. Recall that if Z is an (l, Ũ(m)×O(q))-module then,
using the cohomological induction, Z gives rise to a (g, K0)-module Γs0(indZ]). There are
two important observations to be made here: First, since indZ] is already SO(q)-finite, the
functor Γs0 is simply the s0-th derived functor of the Zuckerman functor of taking Spin(p)-
finite vectors. Using the definition and the treatment of Γs0 in Chapter 6 in [Wa1], Γs0(indZ])

can be computed by considering indZ] as an (so(p), Ũ(m))-module. Furthermore since indZ]

is an O(q)-module, and the action of so(p) commutes with the action of O(q), Γs0(indZ]) is
naturally an O(q)-module. In other words, Γs0(indZ]) extends to a (g, K)-module.

Let Z0 be a one-dimensional (l, Ũ(m)×O(q))-module such that the action of so(1, q) ⊆ l

is trivial and, as Ũ(m)×O(q)-modules,

(4) Z0
∼= det

− p+q
2

u(m) ⊗ det m
O(q).

We set M0 = Γs0(indZ]
0). One easily checks that the infinitesimal character of M0 is µp,q,

the infinitesimal character of V .

Lemma 3.1. The (g, K)-module M0 is Spin(p)-admissible so M0 = Ls0(Z0). It contains

the K-type W0 = τ
q−p
2

1m

p ⊗ CO(q) with multiplicity one. The K-type W0 is also the minimal
K0-type of M0. In particular, M0 is nonzero.

We will derive this lemma as a corollary of the proof of Theorem 4.2 in the next section.
Alternatively the lemma also follows from the Blattner formula (see Thm 5.64 in [KV]).

Since the K-type W0 appears in Ls0(Z0) with multiplicity one, we define Ls0(Z0) to be
the unique irreducible (g, K)-subquotient of Ls0(Z0) containing W0.

Proposition 3.2. The irreducible (g, K)-modules V and Ls0(Z0) are isomorphic.

Proof. Both representations have the same infinitesimal character µp,q and the minimal K0-
type W0. We showed in [LS] that V is the unique irreducible (g, K0)-module with infini-

tesimal character µp,q and minimal K0-type τ
q−p
2

1m

p ⊗ CSO(q). Hence the two modules are
isomorphic (g, K0)-modules. There are two ways to extend V from a (g, K0)-module to a
(g, K)-module. One differs from the other by the determinant character of O(q). Hence V
and Ls0(Z0) are the same because they have the same minimal K-type W0. �

4. Identifying Θ(λ′)

Let r and s be two integers such that r + s = q. Choose a standard embedding of O(s)
into O(q), the second factor of K. Let g1

∼= so(p, r) be the centralizer of O(s) in g. Note
that g1 is θ-invariant. In this section we consider the restriction of V to (g1, K

0
1)×K2 where

K0
1 = Spin(p)× SO(r) and K2 = O(s).
Suppose λ′ = (λ′1, . . . , λ

′
s) is in Λ(O(s)) such that Θ(λ′) in (2) is nonzero. Then by (3),

λ′i = 0 if i > m = p−1
2

. In particular, λ′ can be considered in element in Λ(p, 0) by adding or
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removing some 0’s at the tail. The irreducible (g1, K
0
1)-module Θ(λ′) has a unique minimal

K0
1 -type

W (λ′) = τ
λ′+ q−p

2
1m

p ⊗ CSO(r).

Using the θ-stable parabolic q = l+n in g, we define q1 = q∩g1. Write q1 = l1 +n1. Then
l1 corresponds to a subgroup

L1 = Ũ(m)× SO0(1, r)

in G1. For every λ′ such that Θ(λ′) 6= 0 (or equivalently λ′i = 0 for i > m) let Z(λ′) be an
irreducible L1-module such that the action of SO0(1, r) is trivial and

(5) Z(λ′) ∼= τ
λ′+ q−p−2r

2
1m

u(m)

as Ũ(m)-modules. Set M(λ′) := Γs0(indZ(λ′)]). We have explained in the previous section
that we may take Γs0 to be the s0-th derived functor of the Zuckerman functor of taking
Spin(p)-finite vectors.

Lemma 4.1. The (g1, K
0
1)-module M(λ′) is Spin(p)-admissible so M(λ′) = Ls0(Z(λ′)). Any

of its Spin(p)-type is isomorphic to

τ
λ′+ q−p

2
1m+κ

p

where κ is an m-tuple of non-negative integers. The module M(λ′) contains the K0
1 -type

W (λ′) with multiplicity one and it is the minimal K0
1 -type.

We will prove Lemma 4.1 together with Theorem 4.2 below. One could also verify this
lemma directly using the Blattner’s formula.

Let Ls0(Z(λ′)) denote the unique irreducible subquotient of M(λ′) = Ls0(Z(λ′)) containing
the minimal K0

1 -type W (λ′). We can now state the main result of this section.

Theorem 4.2. The irreducible (g1, K
0
1)-modules Θ(λ′) and Ls0(Z(λ′)) are isomorphic. In

particular Ls0(Z(λ′)) is unitarizable and it has K0
1 -types given by the branching (3).

Remarks. It is interesting to note that Ls0(Z(λ′)) is not always in the good or weakly good
range (see Definition 0.49 in [KV]). Hence it may be reducible. It is of separate interest that
the image of the bottom layer map induces an unitarizable subquotient. The infinitesimal
character of L(Z(λ′)) is

(λ′ +
q − p− 2r

2
1m,0[ r+1

2
]) + ρp+r.

Hence Theorem 4.2 gives an alternative proof of the correspondence of infinitesimal charac-
ters of so(p, r) and so(s), Theorem 1.2 in [LS].

The rest of this section contains the proofs of Lemma 3.1, Lemma 4.1 and Theorem 4.2.
It is inspired by the work of [GW] and [Wa2].

Recall that n1 ⊆ n. We have a decomposition n = n1 + n2 such that n2 = Cm ⊗ Cs is a
tensor product of standard representations of U(m) and O(s), while the group SO0(1, r) acts
trivially on it. We extend n2 to a representation of U(m)×U(s). It is well known that (see
[GoW] and [Ho])

(6) Symnn2 =
∑

µ

τµ
U(m) ⊗ τµ

U(s)
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where the sum is taken over all partitions µ of n of length not longer than min(m, s). (So
every such partition can be viewed as a highest weight for both U(m) and U(s).) We further
restrict the summand τµ

U(s) to O(s)

(7) τµ
U(s) =

∑
λ′↑µ

τλ′

O(s).

The notation λ′ ↑ µ simply means that τλ′

O(s) is a subrepresentation of τµ
U(s), and the sum is

taken with multiplicities. Note that τµ
O(s) appears in the restriction from τµ

U(s) with multi-

plicity one. Using this notation, we get

(8) Symnn2 =
∑

µ

∑
λ′↑µ

τµ
U(m) ⊗ τλ′

O(s)

as a sum of irreducible representations of U(m)×O(s).

We now recall the definition of Z0 from (4). One easily sees that the restriction of Z]
0 to

L1 ×O(s) is given by

Z]
0 = det

q−1
2

u(m) ⊗ Cso(1,r) ⊗ CO(s).

Let symm : Sym(g) → U(g) denote the symmetrization map (see §0.4.2 in [Wa1]). By the
Poincare-Birkhoff-Witt theorem,

(9) indZ]
0 = U(n1)⊗ symm(Sym(n2))⊗ Z]

0

as L1 ×O(s)-modules. Let Sn(n2) =
∑n

i=0 Symi(n2). We define Fn to be the (g1, L1 ∩K0
1)-

submodule of indZ]
0 generated by 1⊗ symm(Sn(n2))⊗Z]

0. Hence {Fn : n = 0, 1, 2, . . .} forms

an exhaustive increasing filtration of g1 × O(s)-submodules of indZ]
0. We will now state a

special case of a known fact which is used in proof of the Blattner formula in [KV].

Lemma 4.3. For every positive integer n, we have an isomorphism of g1 ×O(s)-modules

Fn/Fn−1 =
∑

µ

∑
λ′↑µ

indg1
q̄1

(τ
µ+( q−1

2
)1m

u(m) ⊗ Cso(1,r))⊗ τλ′

O(s)

where µ is any partition of n of length not more than min(m, s) and τλ′

O(s) is counted with

multiplicity with which it appears in the restriction of τµ
U(s). �

We shall use the filtration Fn to compute Γs0(indZ]
0).

Case 1. We first consider the filtration Fn in the case r = 0 and s = q. In particular,
g1 = so(p). Put

V (µ) = indg1
q̄1

(τ
µ+( q−1

2
)1m

u(m) ).

The infinitesimal character of V (µ) is the same as the infinitesimal of τ
µ+ q−p

2
1m

p . In particular,
these infinitesimal characters are pairwise different for different partitions µ. It follows that
the filtration Fn splits:

(10) indZ]
0 =

∑
µ

∑
λ′↑µ

V (µ)⊗ τλ′

O(q).

Here the first sum is taken over all partitions µ of length no more than m = p−1
2

, and τλ′

O(q)

is counted with multiplicity with which it appears in τµ
U(q).



DUAL PAIR CORRESPONDENCES FOR NON-LINEAR COVERS OF ORTHOGONAL GROUPS 9

Lemma 4.4. Let µ be a partition of length not more than m. Then V (µ) is an irreducible
so(p)-module.

Proof. Since V (µ) is u(m)-finite generalized Verma module, any proper submodule of V (µ)
must be a quotient of some V (µ′) where µ 6= µ′. Note that the lowest u(m)-type τ ′ of V (µ′)
is a nonzero u(m)-type of V (µ).

Let hm denote the maximal Cartan subalgebra of u(m). We claim that the highest weight
of τ ′ is of the form µ + ( q−1

2
)1m + κ where κ is sum of roots of n1 restricted to hm. Indeed

by (9),

V (µ) = Sym(n1)⊗ τ
µ+( q−1

2
)1m

u(m)

as a u(m)-module. By Proposition 3.2.12 in [Vo], an irreducible u(m)-module (in particular
τ ′) on the right hand side of the above equation has highest weight µ + ( q−1

2
)1m + κ where

κ is a hm-weight of Sym(n1). This proves our claim.
The roots of n1 are of the form εi or εi+εj so κ is a m-tuple of non-negative integers. Since

V (µ′) is proper, κ is nonzero. The infinitesimal characters of V (µ) and V (µ′) correspond to
the weights µ + q−p

2
1m + ρp and µ + q−p

2
1m + κ + ρp respectively under the Harish-Chandra

homomorphism. These two weights correspond to partitions of different lengths because the
entries of µ, κ, ρp are non-negative, q > p and κ is nonzero. Hence V (µ) and V (µ′) do
not have the same infinitesimal character, and V (µ′) cannot map to V (µ). The lemma is
proved. �

We recall the previous section that the Zuckerman functor Γj is computed in the category

of (so(p), Ũ(m))-modules. If we apply Γj to both sides of (10) then

(11) Γj(indZ]
0) =

∑
µ

∑
λ′↑µ

Γj(V (µ))⊗ τλ′

O(q).

Since s0 = dim(n1 ∩ k1) = m(m+1)
2

= p2−1
8

, by the Borel-Weil-Bott-Kostant theorem,

Γj(V (µ)) = 0 if j 6= s0 and Γs0(V (µ)) = τ
µ+ q−p

2
1m

p . The reader may recognize that we have
essentially followed the proof of the Blattner formula in [KV] to compute K-types of Ls0(Z0).
Now we have the following conclusions:

(A) A Spin(p)-type of Γs0(indZ]
0) is of the form τ

µ+ q−p
2

1m
p with multiplicity given by dim τµ

U(q).

Therefore Γs0(indZ]
0) is admissible with respect to Spin(p). This also follows from a very

general criterion in [Ko]. We now have Γs0(indZ]
0) = Ls0(Z0).

(B) A K-type of Ls0(Z0) is of the form τ
µ+ q−p

2
1m

p ⊗τλ′

O(q), where τλ′

O(q) appears in the restriction

from τµ
U(q). In particular, the minimal K-type is W0 = τ

q−p
2

1m

p ⊗CO(q) which occurs with

multiplicity one. It is also the image of the bottom layer map. With this, we have
proven Lemma 3.1.

Case 2. Now we return to the general r for g1 = so(p, r). Consider the filtration Fn in this
situation. We recall (5) and we abbreviate

L(µ) = indg1
q̄1

(Z(µ)]) = indg1
q̄1

(τ
µ+( q−1

2
)1m

u(m) ⊗ Cso(1,r)).

Then, Fn/Fn−1 is a direct sum of L(µ) where µ is a partition of n of length not more than
min(m, s). By (10) and Lemma 4.4, L(µ) is a direct sum of various V (µ′), and L(µ) is a
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(so(p), Ũ(m))-submodule of (10). Since Γs0 is computed in the category of (so(p), Ũ(m))-

modules, Γs0(L(µ)) is a Spin(p)-submodule of Γs0(indZ]
0). By Conclusion (A) in Case 1,

Γs0(indZ]
0) is Spin(p)-admissible so Γs0(L(µ)) is Spin(p)-admissible and Γs0(L(µ)) = Ls0(Z(µ)).

This proves the first assertion of Lemma 4.1.
In order to understand Spin(p)-types of Γs0(L(µ)), we must describe µ′ such that V (µ′) ⊆

L(µ).

Lemma 4.5. If V (µ′) ⊆ L(µ), then µ′ = µ + κ where κ is an m-tuple of non-negative
integers.

Proof. The proof is similar to part of the proof of Lemma 4.4. Let hm denote the maximal
Cartan subalgebra of u(m). Let τ ′ be the lowest u(m)-type of V (µ′). It has highest hm-weight

µ′ + ( q−1
2

)1m. As a u(m)-module L(µ) = Sym(n2) ⊗ τ
µ+( q−1

2
)1m

u(m) . Since τ ′ is a u(m)-type in

L(µ), by Proposition 3.2.12 in [Vo], the highest hm-weight of τ ′ is of the form µ+( q−1
2

)1m +κ
where κ is a hm-weight of Sym(n1), ie sum of roots of n1. Since the roots of n1 when restricted
to hm are of the form εi or εi + εj, κ is an m-tuple of non-negative integers. �

In addition, L(µ) contains a unique copy of V (µ) and SO(r) acts trivially on it. By the

above lemma, the Spin(p)-types of Γs0(L(µ)) are τ
µ+ q−p

2
1m+κ

p , here κ is an m-tuple of non-

negative integers, and the K0
1 -type W (µ) = τ

µ+ q−p
2

1m

p ⊗ CSO(r) occurs with multiplicity one.
This proves Lemma 4.1.

Lemma 4.6. Let Fn be the filtration as in Lemma 4.3. Then Γj(Fn) = 0 if j 6= s0.
Furthermore we have an exact sequence

0 → Γs0(Fn−1) → Γs0(Fn) → Γs0(Fn/Fn−1) → 0.

Proof. Let F̄n := Fn/Fn−1. Then Fn and F̄n are direct sums of V (µ)’s in (10). As explained

in the previous section, we may compute ΓjF̄n in the category of (so(p), Ũ(m))-modules.
Hence Γj(Fn) and Γj(F̄n) are direct sums of Γj(V (µ)) and we have shown that these are
zeros if j 6= s0. Finally we apply the functor Γ to the exact sequence

0 → Fn−1 → Fn → F̄n → 0

to get the long exact sequence. The exact sequence in the lemma follows immediately. �

Lemma 4.7. In the category of (g1, K
0
1)-modules, Γs0(Fn) is an exhaustive increasing filtra-

tion of Ls0(Z0) and

Γs0(Fn)/Γs0(Fn−1) = Γs0(Fn/Fn−1) =
∑

µ

∑
λ′↑µ

Γs0(L(µ))⊗ τλ′

O(s).

Here the first sum is taken over all partitions of length no more than min(m, s) and τλ′

O(s) is

counted with multiplicity with which it appears in τµ
U(s).

Proof. This follows from Lemmas 4.6 and 4.3. �

We are finally ready to prove Theorem 4.2, that is, compute Θ(λ′) where λ′ is in Λ(O(s))
of length not more than min(m, s). We define S(λ′) as the set of all partitions µ of length not
more than min(m, s) such that τµ

U(s) contains τλ′

O(s). Since V is an irreducible subquotient of
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Ls0(Z0), it follows that Θ(λ′) is an irreducible subquotient of Ls0(Z0), considered as (g1, K
0
1)-

module. It follows that Θ(λ′) is an irreducible subquotient of Γs0(L(µ)) for some µ in S(λ′).
We now need the following lemma.

Lemma 4.8. Let µ be in S(λ′). The K0
1 -type W (λ′) = τ

λ′+ q−p
2

1m

p ⊗CSO(r) occurs in Γs0(L(µ))
if and only if µ = λ′.

Proof. We check Spin(p)-types. If W (λ′) is contained in Γs0(L(µ)) for some then, as we have
just seen, λ′ = µ + (κ1, . . . , κm) where κi ≥ 0. On the other hand, since τµ

U(s) contains τλ′

O(s),

this is possible only if µ = λ′ as desired. �

Since Θ(λ′) contains W (λ′) the lemma implies that Θ(λ′) is an irreducible subquotient of
Γs0(L(λ′)) = Ls0(Z(λ′)). This proves Theorem 4.2.

5. The smallest representation V +

In this section, we will extend Theorems 2.1 and 4.2 to representations V + and V −. Since
the proofs are almost identical to those in the previous sections, we will only state the main
results.

Let g = so(p, q) and K = O(p) × Spin(q). Recall that m = p−1
2

and m′ = q
2
. Let

g0 and k0 be the real Lie algebras of G and K0, respectively. Choose a compact Cartan
subalgebra h0 ⊆ k0 of g0 and positive root system Φ+ such that the simple roots εi− εi+1 for
1 ≤ i ≤ m′ − 1 belong to so(q) and, εi − εi+1 for m′ + 1 ≤ i ≤ m + m′ − 1 and εm′+m belong
to so(p). The non-compact simple root is εm′ − εm′+1.

We refer to the notation on cohomological induction introduced in of Section 3. We set
λ0 = (1m′ ,0m) ∈

√
−1h∗0 and we let q = l + n be the corresponding parabolic subalgebra.

The algebra l corresponds to subgroup

L = SO(p)× Ũ(m′)

in G. We have s0 = m′(m′−1)
2

= q(q−2)
8

. Let Z0 be a one dimensional O(p)× Ũ(m′)-module

Z0 = det m′

O(p) ⊗ det
−( p+q

2
)

u(m′) .

We consider the (g, K)-module Ls0(Z0). It is equal to Aq(λ) where λ = −p+q
2

λ0. The
following is essentially a result of [Kn] and [T]. The only difference is that we consider K
and not K0. See Section 6 for more details.

Theorem 5.1. Recall that p > q and K = O(p)× Spin(q).

(i) The minimal K-type of Ls0(Z0) is W0 = CO(p) ⊗ τ
p−q
2

1m′
q and it occurs in Ls0(Z0) with

multiplicity 1.
(ii) Let V + = Ls0(Z0) denote the irreducible subquotient of Ls0(Z0) generated by W0. Then

V + is an unitarizable (g, K)-module. �

Remark. As in the case of V in Section 4, we work with Γs0(indZ]
0) instead of Ls0(Z0).

Part of the proof involves establishing the fact that Γs0(indZ]
0) is K0-admissible so that

Γs0(indZ]
0) = Ls0(Z0). The same applies to Ls0(Z(λ′)) in Theorem 5.3 below.

The restriction of V + to K = O(p)× Spin(q) is

V + =
∑

λ∈Λ(q+1,0)

τλ
O(p) ⊗ τ

λ+ p−q
2

1m′
q .
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Its infinitesimal character is
(

q
2
, q−2

2
, . . . , 1, p−2

2
, p−4

2
, . . . , 1

2

)
. The module V + remains irre-

ducible as a (g, K0)-module. In [LS] we call V + a smallest representation of the non-linear
cover of SO(p, q), and there is also an outline of a construction of V + using Gelfand-Zetlin
bases.

Remark. We note that by an outer automorphism action of the pair (so(p, q), K) on V +,
we get another smallest representation V −. All the results in this paper on V + would
immediately give corresponding results for V − via this outer automorphism. Therefore we
will only work with V +.

Choose a standard embedding of K2 = O(s) into O(p), the first factor of K. Let g1
∼=

so(r, q) be the centralizer of O(s) in g. Note that g1 is θ-invariant. In this section we consider
the restriction of V + to K2 × (g1, K1) where K1 = O(r)× Spin(q).

V + =
∑

λ′∈Λ(O(s))

τλ′

O(s) ⊗Θ(λ′).

Since O(s) is compact, the right hand side is a direct sum. Furthermore V + is admissible
with respect to Spin(q), so Θ(λ′) is an admissible (g1, K1)-module.

The K1-types of Θ(λ′) can be computed using branching rules similar to (3). More pre-

cisely, suppose δ1 = τµ
O(r)⊗ τ

λ+ q−p
2

1m′
q is a K1-type of Θ(λ′). Then δ1 has to lie in the K-type

δ = τλ
O(p) ⊗ τ

λ+ q−p
2

1m′
q of V +. The multiplicity of δ in Θ(λ′) is given by

(12) dimC HomK1×O(s)

(
δ1 ⊗ τλ′

O(s), δ
)

= dimC HomO(r)×O(s)

(
τµ
O(r) ⊗ τλ′

O(s), τ
λ
O(p)

)
.

By the right hand side of (12), Θ(λ′) is nonzero if and only if nonzero entries of λ′ is not
greater than q

2
. The minimal K0

1 -type of Θ(λ′) is

(13) W (λ′) = CSO(r) ⊗ τ
λ′+ p−q

2
1m′

q .

We compare the next theorem with Theorem 2.1.

Theorem 5.2. Recall that g1 = so(r, q), K2 = O(s) and K0
1 = SO(r) × Spin(q). Let Θ(τ)

be the lift of an irreducible representation τ of K2. Then

(i) The (g1, K
0
1)-module Θ(λ′) is either zero or irreducible.

(ii) Suppose Θ(λ′) and Θ(η′) are nonzero. Then Θ(λ′) and Θ(η′) are isomorphic (g1, K
0
1)-

modules if and only if λ′ = η′.

Part (i) follows the same argument as that of Theorem 9.1 in [LS]. We will omit the proof.
Part (ii) is a consequence of (13) because if λ′ 6= η′, then Θ(λ′) and Θ(η′) have distinct
minimal K0

1 -types.

Cohomological induction. We would like to identify Θ(λ′) as a subquotient of a cohomo-
logical induced module.

Suppose Θ(λ′) is nonzero. Then the number of nonzero entries in λ′ is not greater than
m′. Let q1 = q ∩ g1 be a theta-stable parabolic subalgebra of g1. Its Levi subalgebra l1
corresponds to a subgroup

L1 = SO(r)× Ũ(m′)
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in G1. Let Z(λ′) be an irreducible L1-module which is trivial on SO(r) and such that the

restriction to Ũ(m′) is

Z(λ′) ∼= τ
λ′+ p−q−2r

2
1m′

u(m′) .

We consider the cohomologically induced representation Ls0(Z(λ′)). Its minimal K0
1 -type

is W (λ′) in (13) and it occurs with multiplicity one. Let Ls0(Z(λ′)) denote the unique
irreducible (g1, K

0
1)-subquotient of Ls0(Z(λ′)) containing W (λ′). The next theorem is proved

in the same way as Theorem 4.2.

Theorem 5.3. The irreducible (g1, K
0
1)-modules Θ(λ′) and Ls0(Z(λ′)) are isomorphic. In

particular, Ls0(Z(λ′)) is nonzero and unitarizable. �

6. On results of Knapp and Trapa

The aim of this section is to relate our results to some results of Knapp and Trapa. Assume
that r is an integer and r ≥ q. For every non-negative integer s, Knapp [Kn] defined an
(so(r, q), K0

1)-module π′s as a certain (naturally unitarizable) subquotient of Aq(λ) where
q = l + n, l = u(m′) + so(r) and

λ =

(
s− r − q

2
1m′ ,0[ r

2
]

)
.

The module π′s contains the minimal K0
1 -type of Aq(λ). Trapa showed in [T] that π′s is

irreducible. We now focus our attention to nonnegative integral values of s so that Aq(λ) is
a faithful representation of K0

1 . This implies that s−r−q
2

∈ Z + 1
2
, that is, r + s is odd.

Consider W = V + and the dual pair (g1, K1) × O(s) where g1 = so(r, q), K1 = O(r) ×
Spin(q) and p = r + s. Let Θ(0) denote the theta lift of the trivial representation of O(s).
Then Θ(0) is an (so(r, q), K0

1)-module. The next theorem follows from Theorem 5.3.

Theorem 6.1. Let r and s be two positive integers such that r ≥ q and p = r + s is odd.
Then the (so(r, q), K0

1)-module Θ(0) is isomorphic to π′s. �

We note that Knapp computed K0
1 -types of π′s. His computation shows that K0

1 -types of
π′s coincide with K0

1 -types of Θ(0). Hence this paper gives an independent proof of the fact
that π′s is irreducible (see [T]).

An interesting way to formulate the above result for odd r is as follows: Let π′0, π′2, . . . be
Knapp’s family for so(p, q) , where p > q. Then π′2a

∼= Θ(0) where Θ(0) is the theta lift of
the trivial representation of O(2a). Again, we note that Paul and Trapa studied how π′2a+1

appear in the Howe correspondence [PT].
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