Understanding the Benjamini-Hochberg method

Tan Siew Li, Linda

Department of Statistics and Applied Probability National University of Singapore

False discovery rate

- False discovery rate (FDR) is the expected proportion of tests which are incorrectly called significant out of all the tests which are called significant.
- The table below lists all possible outcomes from M hypothesis tests. Thus ${\rm FDR}=E(V/R).$

	Not called significant	Called Significant	Total
H_0 true	U	V	M_0
H_0 false	T	S	M_1
Total	M-R	R	M

• The Benjamini-Hochberg (BH) method is a procedure which controls the false discovery rate so that FDR $\leq \alpha$.

Benjamini-Hochberg method

ullet Suppose we have computed the p-values for M hypothesis tests:

$$H_{0j}$$
 vs H_{1j} , $j = 1, ..., M$.

The Benjamini-Hochberg method can be performed as follows.

Benjamini-Hochberg Method

To control FDR $\leq \alpha$:

- 1. Let $p_{(1)} \leq \cdots \leq p_{(M)}$ be ordered p-values.
- 2. Define $L = \max \{j : p_{(j)} < \alpha j/M \}$.
- 3. Reject all hypotheses H_{0j} for which $p_j \leq p_{(L)}$.

Why does the Benjamini-Hochberg method work?

3

Understanding the Benjamini-Hochberg method

- Here we attempt to provide an intuitive understanding.
- Suppose we wish to perform M hypothesis tests of the form:

$$H_{0j}: \mu_{1j} = \mu_{2j}$$
 vs $H_{1j}: \mu_{1j} \neq \mu_{2j}, \quad j = 1, \dots, M.$

Here μ_{1j} and μ_{2j} denote the population means of the two groups in the $j{\rm th}$ test.

- ullet For example, we may have measurements of gene expressions for two groups of patients for M genes, and we want to identify the genes for which expressions of the two groups are different.
- Let M = 10000.
- Suppose out of these M tests, there are actually $M_0=9000$ tests for which H_0 is true and $M_1=1000$ tests for which H_0 is false.

Data simulation

- ullet Let us simulate some data and examine how the p-values are distributed.
- Suppose we have two groups, each of size 25.
- For $j=1,\ldots,10000$, we generate a μ_{1j} from N(0,1).
 - ▶ For $j \le 9000$, we set $\mu_{2j} = \mu_{1j}$.
 - For j > 9000, we set $\mu_{2j} = \mu_{1j} + 1$.
- Finally, we generate the observations such that,

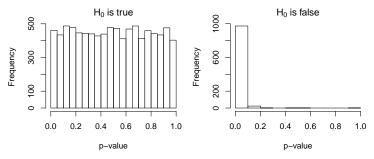
$$x_{ij} \sim \begin{cases} N(\mu_{1j},1) & \text{if observation } i \text{ belongs to group 1,} \\ N(\mu_{2j},1) & \text{if observation } i \text{ belongs to group 2,} \end{cases}$$

for
$$j = 1, ..., M$$
 and $i = 1, ..., 50$.

5

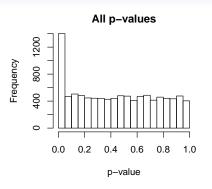
Distribution of *p*-values

ullet The p-values are then computed using two-sample independent t-tests.



- The histogram on the left shows only the p-values for which H_0 is true. We see that the p-values are uniformly distributed between 0 and 1.
- The histogram on the right shows only the p-values for which H_0 is false. Most of the p-values are very small and lie between 0 and 0.1.
- What happens if we combine all the p-values?

Distribution of *p*-values

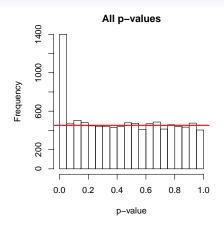


- The histogram shows that most of the p-values are uniformly distributed between 0 and 1 but there is a spike to the left close to zero. This spike is due to those p-values for which H_0 is false.
- Using this histogram, we can obtain an estimate of the number of hypotheses which are false and should be rejected.

7

Distribution of *p*-values

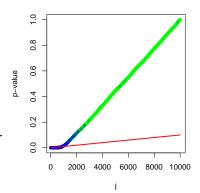
- Height of the first block is 1400.
- Average height of the 2nd to 20th block is 453 and a red line is drawn at this height.
- Hence an estimate of the number of hypotheses which are false and should be rejected is 1400 453 = 947.



- This estimate is quite close to the true value of 1000.
- However the first block contains 1400 p-values. Which of these should we reject? A good rule of thumb is to reject the smallest 947 p-values.

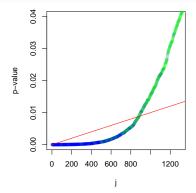
Applying Benjamini-Hochberg method

- If we sort the p-values in order from small to large and reject the smallest 947 values, 116 of these are actually p-values for which H_0 is true. Thus, there are 116 false discoveries and the proportion of false discoveries is 116/947 = 0.12.
- To keep FDR $\leq \alpha = 0.10$. We can apply the Benjamini-Hochberg procedure.
- Graphically, we plot the sorted p-values, draw a line with gradient α/M (red), find the largest p-value, $p_{(L)}$ that falls below the line and reject all p-values less than or equal to $p_{(L)}$.



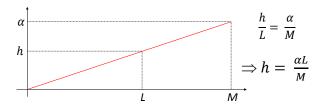
Applying Benjamini-Hochberg method

- Here L = 883.
- The number of false discoveries among these 883 smallest p-values is 83.
- Hence the actual proportion is 83/883=0.094, which is indeed smaller than 0.10.



- Why does the Benjamini-Hochberg method ensure FDR $\leq \alpha$?
- Recall that there are $M_0=9000\ p$ -values for which H_0 is true and they are uniformly distributed between 0 and 1. Thus the expected no. of p-values lying in any interval [0,h] is M_0h .

Why Benjamini-Hochberg method works?



- Consider the red line with gradient α/M . Let L be rank of the largest p-value that falls below this line. So we reject the smallest L p-values.
- The expected no. of p-values among these for which H_0 is true (false discoveries) is less than or equal to $M_0h=M_0\frac{\alpha L}{M}$. Thus

$$\mathsf{FDR} \leq \frac{M_0 \frac{\alpha L}{M}}{L} = \alpha M_0 / M \leq \alpha.$$