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Introduction
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped
data such as gene expression profiles.

MLMMs can be estimated by likelihood maximization through EM algorithm.
A suitable number of components is determined conventionally by comparing
different mixture models using penalized log-likelihood criteria such as BIC.

We propose fitting MLMMs with variational methods which can perform
parameter estimation and model selection simultaneously.

Contributions
We describe a variational approximation for MLMMs where the variational
lower bound is in closed form, allowing fast evaluation.

Develop a variational greedy algorithm for model selection and learning of
the mixture components. This approach handles algorithm initialization and
returns a plausible number of mixture components automatically.

In cases of weak identifiability of model parameters, we use hierarchical
centering to reparametrize the model and show that there is a gain in
efficiency in variational algorithms similar to that in MCMC algorithms.

Prove that the rate of convergence of variational algorithms by Gaussian
approximation is equal to that of the corresponding Gibbs sampler. This
suggests that reparametrizations can lead to improved convergence in
variational algorithms just as in MCMC algorithms.

Mixtures of linear mixed models

Suppose we observe n multivariate responses yi = (yi1, ..., yini)
T , i = 1, ..., n.

Let the number of mixture components be k and zi , i = 1, ..., n be latent
variables indicating which component the ith cluster corresponds to.
Conditional on zi = j ,

yi = Xiβj + Wiai + Vibj + εi (1)

where Xi , Wi and Vi are design matrices, βj are fixed effects, ai and bj are
random effects and εi are random errors. Note that units from the same
cluster are correlated. Given zi = j , ai ∼ N(0, σ2

aj I ), bj ∼ N(0, σ2
bj
I ) and

εi ∼ N
(

0,Σij
)

where Σij = blockdiagonal(σ2
j1Iκi1, ..., σ

2
jg Iκig ) with∑g

l=1 κil = ni for each i . We assume

P(zi = j) = pij =
exp(uTi δj)∑k
l=1 exp(uTi δl)

(2)

where ui = (ui1, ..., uid)T is a vector of covariates and δj = (δj1, ..., δjd)T are
unknown parameters, j = 2, ..., k , with δ1 = 0. This model allows the mixture
weights to vary with covariates across clusters. For Bayesian inference, we
assume the priors: βj ∼ N(0,Σβj), δ = (δT2 , ..., δ

T
k )T ∼ N(0,Σδ),

σ2
aj ∼ IG (αaj , λaj), σ2

bj
∼ IG (αbj , λbj) and σ2

jl ∼ IG (αjl , λjl), where IG

denotes inverse gamma,.

Variational Approximation

Consider a variational approximation q(θ) to the joint posterior of all
parameters θ. A parametric form is chosen for q(θ) and we try to minimize the
Kullback-Leibler divergence between q(θ) and the true posterior. This is
equivalent to maximizing the lower bound on the log marginal likelihood. We
consider a variational approximation of the form

q(θ) = q(δ)
k∏

j=1

{q(βj)q(bj)q(σ2
aj)q(σ2

bj
)}

n∏
i=1

{q(ai)q(zi)}
k∏

j=1

g∏
l=1

q(σ2
jl)

where q(βj) is N(µ
q
βj
,Σ

q
βj

), q(ai) is N(µ
q
ai ,Σ

q
ai), q(bj) is N(µ

q
bj
,Σ

q
bj

), q(σ2
aj) is

IG (α
q
aj , λ

q
aj), q(σ2

bj
) is IG (α

q
bj
, λ

q
bj

), q(σ2
jl) is IG (α

q
jl , λ

q
jl), q(δ) is a delta

function placing point mass of 1 on µ
q
δ , and q(zi = j) = qij where∑k

j=1 qij = 1 for each i . Variational posterior for δ is relaxed to a normal
distribution at convergence.

We derived a closed form of the variational lower bound and optimized it with
respect to each set of variational parameters with others held fixed in a
gradient ascent algorithm. This leads to an iterative scheme for obtaining the
variational parameters known as Algorithm 1.

Partial Centering

When Xi = Wi in (1), we introduce ηi = βj + ai conditional on zi = j so that
(1) is reparametrized as

yi = Xiηi + Vibj + εi

and ηi ∼ N(βj , σ
2
aj Ip) is centered about βj . We replace q(ai) with

q(ηi) = N(µ
q
ηi ,Σ

q
ηi) in the variational approximation. Resulting iterative

scheme is known as Algorithm 2.

Full centering

When Xi = Wi = Vi in (1), we introduce ρi = νj + ai and νj = βj + bj , conditional on
zi = j so that (1) is reparametrized as

yi = Xiρi + εi

with ρi ∼ N(νj , σ
2
aj Ip) centered about νj and νj ∼ N(βj , σ

2
bj
Ip) centered about βj . We

replace q(ai) and q(bj) in the variational approximation with q(ρi) = N(µ
q
ρi ,Σ

q
ρi) and

q(νj) = N(µ
q
νj ,Σ

q
νj). Resulting iterative scheme is known as Algorithm 3.

Variational Greedy Algorithm (VGA)

VA refers to Variational Algorithm which can be Algorithm 1, 2 or 3. Let fk denote the
k-component mixture model and Ck the set of k components that form fk .

1 Compute the one-component mixture model f1 using VA.
2 Find the optimal way to split each component in the current mixture fk . Each

component goes through a trial where it is randomly partitioned into two and a
partial VA is applied to the resulting (k + 1)-component mixture. Only variational
parameters of the two split components are updated. M trials are performed for each
component and the trial with the highest lower bound yields the optimal way.

3 The components in Ck are then split in descending order according to the lower
bound. Each time a component is split, a partial VA is applied where variational
parameters of components awaiting to be split are kept fixed. A split is “successful”
if the estimated log marginal likelihood increases after the split. Stop once an
unsuccessful split is encountered.

4 If there are s successful splits in step 3, then a (k + s)-component model f
temp
k+s is

obtained and we apply VA on f
temp
k+s updating all variational parameters this time to

obtain fk+s .
5 Repeat steps 2–4 until all splits of the current mixture model are unsuccessful.

Optional merge merges may be carried out after the VGA has converged.

Results: Clustering of time course data

Spellman et al. (1998) identified 800 genes that meet an objective minimum criterion
for cell cycle regulation. We consider the 18 α-factor synchronization where the yeast
cells were sampled at 7 min intervals for 119 mins and a subset of 612 genes with no
missing data across all 18 time points. Our aim is to obtain an optimal clustering of
these genes using the VGA.
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Figure: Clustering results for time course data after applying one merge move to a 17-component
mixture produced by VGA using Algorithm 1. The x-axis are time points and y -axis are gene expression
levels. Line in black is the posterior mean of the fixed effects.

Results: Clustering of water temperature data

We consider the daily average water temperature readings collected during 9 Sep
2010–10 Aug 2011 at Upper Peirce Reservoir, Singapore. No data were available during
the periods 23–28 Dec 2010, 10–23 Feb 2010 and 14 Apr–10 May 2011. Readings were
collected at eleven depths from the water surface; 0.5m, 2m, 4m, 6m, 8m, 10m, 12m,
14m, 16m, 18m and at the bottom. Using data from the remaining 290 days, we apply
the VGA to obtain a clustering of this data.
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(a) Clustering results for water temperature data
obtained from VGA using Algorithm 3. The x-axis is
depth and y -axis is temperature.
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(b) Fitted probabilities from gating function (2).
The x-axis are days 1 to 290 and y -axis are
probabilities.

VGA with Algorithm 1 took an average of 725 s, while Algorithm 3 took 469 s.
Computation time was reduced by 35% using hierarchical centering.
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