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Introduction

Regression density estimation is the problem of flexibly estimating a response distribution as a function of covariates. Our approach considers flexible mixtures of heteroscedastic experts (MHE) regression models where

the response distribution is a normal mixture, with the component means, variances and mixture weights all varying as a function of covariates. Fast variational approximation (VA) methods are developed for inference

as computationally intensive MCMC methods are difficult to apply when it is desired to fit models repeatedly. A variational approximation for MHE models is described where the variational lower bound is in closed form

and this basic approximation can be improved by using stochastic approximation (SA) methods. The advantages of our approach for model choice and evaluation compared to MCMC based approaches are illustrated.

Heteroscedastic mixtures of experts model

Observed responses y1, ..., yn are modelled by a mixture of experts model

[1] with k mixture components. Conditional on latent variable, δi = j,

yi|β, α ∼ N(xTi βj, exp(α
T
j zi))

where xi, zi are vectors of covariates and βj, αj are vectors of unknown

parameters. The prior for δi is

P (δi = j|γ) = pij =
exp(γT

j vi)∑k
l=1

exp(γT
l vi)

, j = 1, ..., k

where vi is a vector of covariates and γj, j = 2, ..., k are vectors of

unknown parameters, with γ1 ≡ 0 for identifiability. For Bayesian infer-

ence, assume independent priors, βj ∼ N(µ0
βj,Σ

0
βj), αj ∼ N(µ0

αj,Σ
0
αj),

j = 1, ..., k, and γ = (γT
2 , ..., γ

T
k )

T ∼ N(µ0
γ,Σ

0
γ).

Variational approximation

Consider a VA q(θ) to the joint posterior of all parameters θ. A parametric form is chosen for q(θ) and we try to minimize the Kullback-

Leibler divergence between q(θ) and p(θ|y). This is equivalent to maximizing the lower bound on the log marginal likelihood. Let q(θ) =

q(δ)q(β)q(α)q(γ),

q(δ) =

n∏

i=1

q(δi), q(β) =

k∏

i=1

q(βi) q(α) =

k∏

i=1

q(αi)

where q(βi) is N(µq
βi,Σ

q
βi), q(αi) is N(µq

αi,Σ
q
αi), q(δi = j) = qij and q(γ) = Iγ=µ

q
γ
. We derived a closed form of the variational lower

bound and optimized it with respect to each set of variational parameters with others held fixed in a gradient ascent algorithm. Approximate

methods were developed for dealing with variance parameters whose updates cannot be obtained in closed form. To initialize the algorithm,

we generate a initial clustering of the data and set µq
αj = Σq

αj = 0 for j = 1, ..., k and qij as 1 if the ith observation lies in cluster j, 0

otherwise. Parameter updates are performed iteratively until the increase in the lower bound is less than a tolerance. To deal with multiple

modes, we considered 20 random clusterings, performed short runs of the algorithm and follow only the solution with the highest lower

bound to convergence.

Cross-validation

We use the log predictive density score (LPDS) to measure predic-

tive performance. In B-fold cross-validation (CV), the data is split

randomly into B equal parts. A training set Ti is formed by leaving

out one of the B parts (say, Fi) from the complete data set.

LPDS =
1

B

B∑

i=1

log p(yFi|XFi, yTi),

As log p(yF |XF , yT ) = log
∫
p(yF |XF , θ)p(θ|yT )dθ, we can esti-

mate the LPDS by replacing p(θ|y) with q(θ).

Model choice in time series

Predictive performance is measured by

log p(y>T |y≤T ) =
∑T ∗

i=1
log p(yT+i|y≤T+i−1).

Since p(yT+i|y≤T+i−1) =
∫
p(yT+i|θ, y≤T+i−1)p(θ|y≤T+i−1)dθ, dif-

ferent posterior distributions are involved as successive points are

added to the observed data. Our variational approach is very efficient

for implementing such sequential updating as result of the variational

optimization from the last time step can be used to initialize opti-

mization for the current time step so that the convergence time of

the variational scheme is small.

Improving the basic approximation

Variational approximations can underestimate the variance of the

posterior. We propose to improve estimates obtained from VA by us-

ing SA which has reduced computational cost compared to MCMC.

[2] independently proposed a similar approach but we offer improve-

ments in the form of an improved gradient estimate in the SA proce-

dure, and the idea of perturbing only the mean and scale of an initial

VA.

Emulation of a rainfall runoff model

Our goal is to emulate the streamflow response (y) of the

Australian Water Balance Model (Boughton, 2004) as a func-

tion of maximum storage capacity (x1) and baseflow reces-

sion factor (x2). The data consists of model simulations for

500 parameters values and we considered fitting five models.

Models A, B, C and D are MHE models with both predictors

in the mean and variance models, having respectively 2, 3, 4

and 5 mixture components. Model E is similar to model C but

with only an intercept in the variance model (homoscedastic

mixture of experts).

Model A Model B Model C Model D Model E

ML VA -803.4 -688.4 -678.5 -682.8 -729
LPDS VA -65.9 -54.5 -51.5 -52.1 -57.2
LPDS MCMC -65.5 -54.2 -51.2 -51.4 -57.4

Table 1: Marginal log likelihood estimated by variational lower bound (1st

row) and LPDS with ten-fold CV estimated by VA (2nd row) and MCMC

(3rd row).

LPDS values in Table 1 computed by VA compare well with

those obtained by MCMC. The results suggest that model C

with 4 mixture components is adequate and Figure 1 summa-

rizes model C. Here observations are separated into clusters

according to which mixture component each observation is

most likely to belong to.

Model A Model B Model C Model D Model E

Full VA 88 146 215 274 254
data MCMC 330 473 650 825 659

CV VA 121 184 281 393 276
MCMC 2941 4409 5979 7626 5929

Table 2: CPU times (in seconds) for full data and CV computations by

VA and MCMC.

CV computation times in Table 2 indicate an approximately

20 fold speed up for all models by using VA when using

just 10,000 iterations in the MCMC sampling. The difficulties

of convergence assessment in the MCMC approach are also

avoided by the variational method.

For model C, we compared posterior distributions obtained

via MCMC with both our simple VA and VA incorporating

SA correction. Computation of the SA correction took 166

seconds of CPU time. The SA correction is helpful for ob-

taining an improved approximation for at least some of the

parameters, with the estimated posterior marginals from SA

generally being closer to the Monte Carlo estimated marginals

than the simple variational estimated marginals.
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Figure 1: Fitted component means (1st column) and standard deviations

(2nd column) for model C.
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Figure 2: Marginal posterior distributions for parameters in the gating

function estimated by Monte Carlo method (red), simple VA (blue) and

VA with SA correction (green) for model C.

Time series example

Following [3], we consider data for the S&P500 stock market index, taking 4646 daily returns

from Jan 1, 1990 to May 29, 2008 as training set and the subsequent 199 daily returns from

May 30, 2008 to March 13, 2009 as validation set. Our response yt is log pt/pt−1 where

pt is the closing S&P500 index on day t. We consider MHE models with only an intercept

term in the mean model but an intercept and the covariates LastWeek, LastMonth and

MaxMin95 in the variance model and gating function and m = 1, 2, 3 and 4 experts.

No. of mixture components

1 2 3 4

No sequential updating, MCMC -477.8 -471.2 -469.0 -470.6

No sequential updating, VA -478.0 -470.1 -470.1 -471.7

With sequential updating, VA -477.7 -470.0 -470.1 -473.3

Table 3: LPDS values and MCMC method with approximation of [3] (1st line), variational method with approximation

of [3] (2nd line) and variational method with sequential updating (last line).

No. of mixture components

1 2 3 4

Initial fit MCMC 504 2463 3427 4417

Initial fit VA 1 739 1022 1442

Initial fit + validation VA 250 1902 2552 4754

Table 4: Computation times (seconds) for LPDS calculations. Rows 1-3 respectively are times for initial fit for MCMC,

initial fit for VA, and initial fit plus sequential updating for validation for VA.

[3] uses an approximation posterior that is not updated after end of the training period. From

Table 3, based on the largest LPDS, a two component mixture is adequate. Computation

times for MCMC and VA in Table 4 indicate a roughly 200 fold speed up from employing the

variational method as computational cost for the initial fit for MCMC needs to be multiplied

by approximately 199 to get total computational cost.
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Figure 3: Estimated predictive densities at covariate values for t = 1000 (left) and t = 4000 (right) based on entire

training data set using MCMC (red) and VA (blue) for 2 component mixture model.

The MCMC and variational predictive densities in Figure 3 are nearly indistinguishable, so

that the VA provides excellent predictive inference here.
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