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Motivation

Mixed multinomial logit model: captures heterogeneity in
preferences of decision makers through random coefficients

Classical approach: Maximize simulated likelihood (McFadden &
Train 2000)

Bayesian approach: Markov chain Monte Carlo (MCMC) methods

Gibbs sampling + Metropolis-Hastings algorithm (Rossi et al. 2005)

Avoid convergence issues in classical approach

Consistency and efficiency under fewer restrictions (Train 2009)

MCMC computations prohibitively expensive for large datasets

Variational methods offer competitive accuracy at lower
computational cost (Braun & McAuliffe 2010)
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Proposed Methods

Explore alternative variational methods that allow posterior
independence assumption among random coefficients to be dropped

Use stochastic variational inference to accelerate convergence for
large datasets (data processed in minibatches)

Novel strategy to increase minibatch sizes adaptively
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Mixed multinomial logit models of discrete choice

Th choice events observed for each agent h, h = 1, . . . ,H

Agent selects from J alternatives at each choice event

Utility agent h obtains from alternative j at tth choice event:

Uhtj = xThtjβh + εhtj

xhtj : vector of observed variables that relate to alternative j and
agent h at tth choice event

βh: random vector of coefficients for agent h

εhtj : random error term representing unobserved utility
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Mixed multinomial logit model

yht = [y1
ht , . . . , y

J
ht ]

T : J × 1 indicator vector denoting outcome of
agent h at tth choice event and xht = [xht1, . . . , xhtJ ]T .

Assume random errors εhtj are iid extreme value and

βh ∼ N(ζ,Ω) for h = 1, . . . ,H.

Choice probabilities:

P(y jht = 1|xht , βh) =
exp(xThtjβh)∑J

j ′=1 exp(xThtj ′βh)
for j = 1, . . . , J,

p(yht |xht , βh) =
J∏

j=1

{
exp(xThtjβh)∑J

j ′=1 exp(xThtj ′βh)

}y j
ht

5



MMNL models Variational inference Stochastic variational inference Examples Conclusion

Bayesian approach to inference

Priors:

ζ ∼ N(µ0,Σ0)

Ω ∼ IW (ν + K − 1, 2ν diag(1/a)) , a = [a1, . . . , aK ]T

ak
iid∼ IG (1/2, 1/A2

k), Ak > 0 for k = 1, . . . ,K .

Hyperparameters µ0, Σ0, ν and A1, . . . ,AK considered known

Priors for Ω are marginally noninformative (Huang & Wand 2013)

Large Ak : weakly informative Half-t distributions on standard
deviation terms in Ω

ν = 2: marginal uniform distributions for correlation terms in Ω

Examples: ζ ∼ N(0, 106), ν = 2, Ak = 103 for k = 1, . . . ,K
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Mixed multinomial logit model

Unknown parameters: θ = {β, ζ,Ω, a} where β = [βT1 , . . . , β
T
H ]T

Global variables: ζ, Ω, a (common across all agents)

Local variables: βh (specific to a particular agent)

Joint density:

p(y , θ) =

{
K∏

k=1

p(ak |Ak)

}
p(Ω|ν, a)p(ζ|µ0,Σ0)

×
H∏

h=1

p(βh|ζ,Ω)
T∏
t=1

p(yht |xht , βh)
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Introduction to variational methods

Approximate p(θ|y) by more tractable density function q(θ)

Minimize Kullback-Leibler divergence between q(θ) and p(θ|y)

log p(y) =

∫
q(θ) log

p(y , θ)

q(θ)
dθ︸ ︷︷ ︸

Lower bound (L)

+

∫
q(θ) log

q(θ)

p(θ|y)
dθ︸ ︷︷ ︸

Kullback-Leibler divergence ≥ 0

Maximizing L ⇔ minimizing Kullback-Leibler divergence
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Variational Bayes (Attias, 1999)

Assume q(θ) =
∏m

i=1 qi (θi ) for θ = {θ1, . . . , θm}

Optimal densities maximizing L satisfy

qi (θi ) ∝ expE−θi{log p(y , θ)} for i = 1, . . . ,m.

E−θi : expectation w.r.t.
∏

j 6=i qj(θj)

Conjugate priors:

optimal qi belong to recognizable density families

suffice to optimize parameters of qi
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Variational Bayes for mixed multinomial logit model

Assume

q(θ) = q(ζ)q(Ω)q(a)
H∏

h=1

q(βh)

q(ζ), q(Ω) and q(a): conjugate priors

Optimal densities: q(ζ) = N(µζ ,Σζ), q(Ω) = IW (ω,Υ) and

q(a) =
∏K

k=1 q(ak) where q(ak) = IG (bk , ck)

Likelihood p(yht |xht , βh) is nonconjugate w.r.t. prior over βh

Optimal q(βh) does not belong to any recognizable density family
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Optimizing local variational parameters

Optimize q(βh)

Laplace approximation
(Wang & Blei 2013)

Nonconjugate variational message passing
(Knowles & Minka 2011)

+
Multivariate delta method

(Bickel & Doksum 2007)

Stochastic linear regression
(Salimans & Knowles 2013)
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Laplace approximation

p(θ|y): intractable posterior density

Second-order Taylor approximation to log p(θ|y) at maximum a
posterior (MAP) estimate θ̂

log p(θ|y) ≈ log p(θ̂|y) +
1

2
(θ − θ̂)TH(θ̂)(θ − θ̂),

H(θ̂) = ∇2 log p(θ̂|y).

∇ log p(θ̂|y) = 0 since log p(θ|y) is maximized at θ̂.

Gaussian approximation:

p(θ|y) ≈ N(θ̂,−H(θ̂)−1).
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Laplace variational inference

Apply Laplace approximation within variational Bayes optimal
density update

Optimal q(βh) satisfies

q(βh) ∝ expE−βh

{
Th∑
t=1

log p(yht |xht , βh) + log p(βh|ζ,Ω)

}
∝ exp{f (βh)}

where

f (βh) =

Th∑
t=1

yThtxhtβh − log


J∑

j=1

exp
(
xThtjβh

)


− ω

2
(βh − µζ)TΥ−1(βh − µζ).
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Laplace variational inference

Suppose f (βh) is maximized at β̂h so that ∇f (β̂h) = 0

Second-order Taylor approximation of f (βh) at β̂h:

f (βh) ≈ f (β̂h) +
1

2
(βh − β̂h)TH(β̂h)(βh − β̂h)

H(β̂h) = ∇2f (β̂h)

As q(βh) ∝ exp{f (βh)},

q(βh) ≈ N(β̂h,−H(β̂h)−1)

β̂h: general numerical optimization methods

We use BFGS algorithm via optim in R
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Nonconjugate variational message passing (NCVMP)

Assume
1 q(θ) =

∏m
i=1 qi (θi ) for θ = {θ1, . . . , θm} (VB)

2 each qi (θi ) is a member of some exponential family:

qi (θi ) = exp{λTi ti (θi )− hi (λi )},

λi : vector of natural parameters, ti (·): sufficient statistics

Fixed point update (∇λi
L = 0 when L is maximized):

λi ← Covqi [ti (θi )]−1 ∇λi
Eq{log p(y , θ)} for i = 1, . . . ,m,

Counter convergence issues using damping
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Nonconjugate variational message passing

Assume q(βh) = N(µh,Σh)

NCVMP update (Wand 2014):

Σh ← −
1

2

[
vec−1

(
∂Eq{log p(y , θ)}

∂vec(Σh)

)]−1

µh ← µh + Σh
∂Eq{log p(y , θ)}

∂µh
.

Explicit updates reduces computational cost significantly

Numerical optimization of full K × K covariance matrix Σh is
expensive for large K .
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Delta method for moments

Eq{log p(y , θ)} cannot be computed in closed form as

Eq

[
log
{

1TJ exp(xThtβh)
}]

(1)

is intractable.

Quadrature is computationally intensive

Braun & McAuliffe (2010): approximate (1) using Jensen’s inequality
or delta method for moments (restrict Σh to be diagonal)

We approximate (1) using the delta method

Consider full covariance matrix for Σh. Feasible as NCVMP is fast
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Delta method for moments

Let gt(βh) = log
{

1TJ exp(xThtβh)
}

Approximate gt(βh) with second order Taylor expansion at µh and
take expectations

Eq{gt(βh)}

= log
{

1TJ exp(xThtµh)
}

+ 1
2 tr
{
xTht

(
diag(ρht)− ρhtρTht

)
xhtΣh

}
ρht =

exp(xThtµh)

1TJ exp(xThtµh)

18



MMNL models Variational inference Stochastic variational inference Examples Conclusion

Delta method for moments

Closed form updates for µh and Σh:

Σh ←
{∑Th

t=1
xTht

(
diag(ρht)− ρhtρTht

)
xht + ωΥ−1

}−1

µh ← µh + Σh

[
− ωΥ−1(µh − µζ) +

∑Th

t=1
xTht(yht − ρht)

+ xTht

(
diag(ρht)− ρhtρTht

){
xhtΣhx

T
htρht − 1

2 diag(xhtΣhx
T
ht)
}]

Compute an approximation L∗ of L

Good posterior estimation

Convergence not guaranteed as L∗ is not lower bound to log p(y)
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Stochastic linear regression

Apply fixed-form variational Bayes to any posterior (closed form up
to proportionality constant) without evaluating integrals
analytically

Assumptions: as in NCVMP

NCVMP update:

λi = Covqi [ti (θi )]−1 Covqi [ti (θi ),E−qi{log p(y , θ)}]

Weighted Monte Carlo by generating random samples from qi (θi )

qi (θi ) = N(µi ,Σi ): Σi = P−1
i and µi = mi + Σigi

Pi = −Eqi [∇2
θi
E−qi{log p(y , θ)}], gi = Eqi [∇θiE−qi{log p(y , θ)}],

mi = Eqi{θi}
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Weighted Monte Carlo

Initialize µi , Σi , gi = 0, Pi = Σ−1
i , mi = µi , m̄i = 0, P̄i = 0 and ḡi = 0.

For n = 1, . . . ,N,

Generate θ̂i from N(µi ,Σi )

Compute gradient ĝi and Hessian Ĥi of E−qi{log p(y , θ)} at θ̂i

For 0 ≤ w ≤ 1, Pi ← (1− w)Pi − wĤi , gi ← (1− w)gi + wĝi ,
mi ← (1− w)mi + w θ̂i

Compute new estimates: Σi ← P−1
i and µi ← mi + Σigi

If n > N/2, P̄i ← P̄i − 2
N Ĥi , ḡi ← ḡi + 2

N ĝi and m̄i ← m̄i + 2
N β̂i

Set Σi = P̄−1
i and µh = Σi ḡi + m̄i
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Stochastic linear regression

qi updated continually

Weights w : diminish effects from early iterations (qi less accurate)

Fixed weights, average iterates over second half of iterations to
reduce variability

Set N: balance between accuracy and efficiency

Large N: inefficient

Small N: {µi ,Σi} not close to convergence, accuracy deteriorates

Does not require use of delta method to approximate expectations

Overcomes convergence issues in NCVMP (sufficiently small w
ensures convergence)
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Stochastic linear regression

Combined approach:
1 update q(βh) for h = 1, . . . ,H using stochastic linear regression

2 q(ζ), q(Ω) and q(a): explicit variational parameter updates

Straightforward extension to stochastic variational inference
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Comparison of three approaches

Laplace variational inference NCVMP Stochastic linear regression

q(βh) ≈ N(µh,Σh) q(βh) ≈ N(µh,Σh) q(βh) ≈ N(µh,Σh)

uses Laplace approximation
within variational Bayes
optimal density update

uses delta method
to approximate
intractable integrals

does not require
evaluating integrals
analytically

optimizes only µh

(location of Gaussian
variational posterior)

Set Σh as negative
inverse Hessian at
this point

often underestimates
standard deviation
terms in Ω

optimizes µh

and Σh using
closed form
updates

optimizes µh and
Σh using weighted
Monte Carlo
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Algorithm 1

Set bk = ν+K
2 for k = 1, . . . ,K and ω = H + ν + K − 1.

Initialize µζ = µh = 0, Σζ = Σh = 0.01 IK , Υ = (ω − K + 1) IK , c = b.

Cycle:

Update µh and Σh for h = 1, . . . ,H using
1 Laplace variational inference

2 NCVMP

3 Stochastic linear regression

Σζ ←
(
Σ−1

0 + HωΥ−1
)−1

, µζ ← Σζ

(
Σ−1

0 µ0 + ωΥ−1
∑H

h=1 µh

)
Υ← 2νdiag

(
b
c

)
+
∑H

h=1{(µh − µζ)(µh − µζ)T + Σh}+ HΣζ

ck ← νωΥ−1
kk + 1

A2
k

for k = 1, . . . ,K

until convergence
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Stochastic variational inference

Algorithm 1: Update {µh, Σh} for h = 1, . . . ,H, before
re-estimating {µζ , Σζ , Υ, c} at each iteration

Procedure increasingly inefficient as H increases

Stochastic variational inference (Hoffman et al. 2013)

At each iteration,

draw a minibatch B of agents randomly from entire pool of agents

Local variational parameters: Optimize µh and Σh for h ∈ B
(as a function of current global variational parameters)

Global variational parameters: Stochastic natural gradient ascent
(Robbins and Monroe 1951). Compute gradient estimates using
optimized µh and Σh for h ∈ B
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Stochastic variational inference

Computation time reduced significantly when H is large.

Large datasets in discrete choice modelling increasingly common

Stochastic variational inference: important role in estimation

Stochastic variational inference
via

Laplace variational inference

NCVMP

Stochastic linear regression
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Stochastic gradient ascent updates

Gobal variational parameters

At lth iteration,
λ

(l+1)
i = λ

(l)
i + αl ∇̃λi

L.

∇̃λi
L: natural gradient of L w.r.t λi

Premultiply ordinary gradient ∇λi
L with inverse of Fisher

information matrix of qi (θi ) to obtain ∇̃λi
L

qi (θi ): member of exponential family

∇̃λi
L = Covqi [ti (θi )]−1 ∇λi

Eq{log p(y , θ)} − λi
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Stochastic gradient ascent updates

λζ , λΩ and λβh
: natural parameter vectors of q(ζ), q(Ω) and q(βh)

λopt
βh

: λβh
optimized as function of current global variational

parameters

∇̃λζ
L = Covq(ζ)[t(ζ)]−1∇λζ

[∑H

h=1
Eq{log p(βh|ζ,Ω)}|λβh

=λopt
βh

+ Eq{log p(ζ|µ0,Σ0)}
]
− λζ

B: minibatch of agents drawn randomly from entire pool of agents

Unbiased estimate of ∇̃λζ
L: λ̂ζ − λζ

λ̂ζ = Covq(ζ)[t(ζ)]−1∇λζ

[
H
|B|

∑
h∈B

Eq{log p(βh|ζ,Ω)}|λβh
=λopt

βh

+ Eq{log p(ζ|µ0,Σ0)}
]
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Stochastic gradient ascent updates

Unbiased estimate of ∇̃λΩ
L: λ̂Ω − λΩ

λ̂Ω = Covq(Ω)[t(Ω)]−1∇λΩ

[
H
|B|

∑
h∈B

Eq{log p(βh|ζ,Ω)}|λβh
=λopt

βh

+ Eq{log p(Ω|ν, a)}
]

Stochastic gradient updates:

λ
(l+1)
ζ = (1− αl)λ

(l)
ζ + αl λ̂ζ and λ

(l+1)
Ω = (1− αl)λ

(l)
Ω + αl λ̂Ω.

Recover updates in Algorithm 1 when |B| = H and αl = 1
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Stochastic gradient ascent updates

Iterates converge under certain regularity conditions (Spall 2003).

Stepsizes: αl → 0,
∑∞

l=0 αl =∞ and
∑∞

l=0 α
2
l <∞

Common gain sequence: αl = d
(l+D)γ , 0.5 < γ ≤ 1

Stochastic approximation algorithms sensitive to rate of decrease of
stepsizes. Tuning usually required

Adaptive stepsize (Ranganath et al. 2013): minimize expected
distance between stochastic and batch updates
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Adaptive batch sizes

Assume

large but finite number of agents H

possible to process dataset all at once (batch mode)

Propose: Increase minibatch size adaptively as optimization
proceeds until whole dataset is used

Existing approach: keep minibatch size fixed, use decreasing
stepsize to reduce noise
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Adaptive batch sizes (Motivation)

Beginning: estimates of global variational parameters are far from
optimum. Only a small minibatch required to compute appropriate
direction to move in.

Estimates move closer towards optimum: more accurate definition
of direction to move is required (use larger minibatches)

Eventually: entire dataset is used. Convergence ensured, same level
of accuracy attained as in batch mode

Avoid having to specify a stopping criterion
Most criteria do not guarantee that terminal iterate is close to
optimum and may be satisfied by chance

Termination often based on predetermined computational budget

Avoid risk of iterates appearing to converge due to diminishing
stepsizes
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Previous methods

Least mean squares (Orr 1996):

Derived formula for optimal minibatch size at each iteration

Results of theoretical interest but difficult to apply in practice

L1-regularized problems (Boyles et al. 2011) and matrix factorization
(Korattikara et al.1 2011):

Constructed frequentist hypothesis tests based on Central Limit
Theorem to determine if parameter updates are in correct direction

Increase minibatch size when all parameters fail their tests

Attempted hypothesis testing approach – Tests tend to fail too
early
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Proposed strategy for increasing minibatch sizes adaptively

Perform stochastic variational inference with minibatches (size |B|)

Update global variational parameters with constant stepsize:

No formal convergence

Popular practice as algorithm tends to be more robust

Iterates move monotonically towards optimum at first

Near the optimum, iterates bounce around instead of converge
towards it as stepsizes remain large

Oscillation: current minibatch size inadequate in providing
direction to move

More resolution required: increase minibatch size by a factor κ

Repeat until whole dataset is used.
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Detecting oscillation

Ratio of progress and path (Gaivoronski, 1988)

φ(l) =
|λ(l−M)

i − λ(l)
i |∑l−1

r=l−M |λ
(r)
i − λ

(r+1)
i |

for a univariate variable λi at iteration l

0 ≤ φ(l) ≤ 1

φ(l) = 0: no progress after M iterations

φ(l) = 1: path from λ
(l−M)
i to λ

(l)
i is monotonic

Small φ(l): path is erratic, a lot of back and forth movement.

Store λ
(l−M)
i , . . . , λ

(l)
i in memory for computing φ(l)

Gaivoronski (1988) used this ratio to define an adaptive stepsize
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Proposed strategy

Monitor “ratio of progress and path” for elements in µζ and
diag(Υ)

Set M=20. Compute ratios when l > 5 using available history

If 5 < l < M, φ
(l)
1k =

|Υ(0)
kk −Υ

(l)
kk |∑l−1

r=0 |Υ
(r)
kk −Υ

(r+1)
kk |

and φ
(l)
2k =

|µζ
(0)
k −µζ

(l)
k |∑l−1

r=0 |µζ
(r)
k −µζ

(r+1)
k |

If l ≥ M, φ
(l)
1k =

|Υ(l−M)
kk −Υ

(l)
kk |∑l−1

r=l−M |Υ
(r)
kk −Υ

(r+1)
kk |

and φ
(l)
2k =

|µζ
(l−M)
k −µζ

(l)
k |∑l−1

r=l−M |µζ
(r)
k −µζ

(r+1)
k |

min
{
φ

(l)
1k , φ

(l)
2k | k = 1, . . . ,K

}
< Φ: increase |B| by factor κ

Vary Φ with |B|. For small |B|, a smaller Φ is required as path of
algorithm can be erratic even though progress is being made due to
greater randomness between iterations
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Algorithm 2 (1)

Set bk = ν+K
2 for k = 1, . . . ,K and ω = H + ν + K − 1.

Initialize µζ = µh = 0, Σζ = Σh = 0.01 IK , Υ = (ω − K + 1) IK , c = b,

l = 0 and |B| = 25.

While |B| < H,

l ← l + 1

Randomly select minibatch B of agents from entire pool of agents

Optimize µh and Σh for h ∈ B using

Laplace variational inference (as in Algorithm 1),

NCVMP (Cycle updates in Algorithm 1 until convergence), or

Stochastic linear regression (as in Algorithm 1)
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Algorithm 2 (2)

Σζ ←
(
Σ−1

0 + HωΥ−1
)−1

,

µζ ←
(
1− α|B|

)
µζ + α|B|Σζ

(
Σ−1

0 µ0 + ωΥ−1 H
|B|
∑

h∈B µh

)
.

Υ←
(
1− α|B|

)
Υ + α|B|

[
2νdiag

(
b
c

)
+ HΣζ

+ H
|B|
∑

h∈B{(µh − µζ)(µh − µζ)T + Σh}
]
.

ck ← νωΥ−1
kk + 1

A2
k

for k = 1, . . . ,K .

If l > 5, compute φ
(l)
1k and φ

(l)
2k for k = 1, . . . ,K .

If min
{
φ

(l)
1k , φ

(l)
2k | k = 1, . . . ,K

}
< Φ|B|, |B| ← min {κ|B|,H},

l ← 0
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Algorithm 2 (3)

If |B| = H, cycle

Update µh and Σh for h = 1, . . . ,H using

Laplace approximation (as in Algorithm 1),

NCVMP (Cycle updates in Algorithm 1 until convergence in the first
iteration and perform just once subsequently), or

stochastic linear regression (as in Algorithm 1)

Σζ ←
(
Σ−1

0 + HωΥ−1
)−1

, µζ ← Σζ

(
Σ−1

0 µ0 + ωΥ−1
∑H

h=1 µh

)
.

Υ← 2νdiag
(
b
c

)
+
∑H

h=1{(µh − µζ)(µh − µζ)T + Σh}+ HΣζ .

ck ← νωΥ−1
kk + 1

A2
k

for k = 1, . . . ,K .

until convergence.
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Algorithm 2

Note: Local variational parameters should be optimized as a function of
current global variational parameters

Laplace variational inference: optimizes only µh. Convergence
ensured as entire dataset is used eventually

NCVMP: updates for µh and Σh, are recursive, cycle until
convergence

Stochastic linear regression: Fix number of iterations at N and
assume this is sufficient for {µh,Σh} to be close to convergence
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Algorithm 2

Use constant stepsizes within each minibatch size

Allow stepsize α|B| to increase with |B|
Beginning: smaller stepsizes required as we are less confident in the
directions of gradient ascent computed using small minibatches of
optimized local variational parameters

As minibatch size increases, confidence level increases

Stepsize is 1 when algorithm transits to batch mode (|B| = H)

Start with |B| = 25, α|B| = 0.4 and Φ|B| = 0.4

Increase α|B| and Φ|B| linearly with |B| until they are 1 when
|B| = H
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Assessing proposed variational methods

Improved random walk Metropolis algorithm for drawing βh using
fractional likelihood approach (Rossi et al. 2005)

Exhibits better mixing, dissipates initial conditions in shorter time
than random walk Metropolis and independence Metropolis sampler

Implemented in R package bayesm via rhierMnlRwMixture

Modify function to accommodate marginally noninformative priors
for Ω

Use this algorithm as basis for comparing MCMC with proposed
variational methods
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True predictive choice distribution

True predictive choice distrbution of ynew(J×1) given observed
variables xnew(J×K):

ptrue(ynew|xnew, ζ,Ω) =

∫
p(ynew|xnew, β)p(β|ζ,Ω) dβ (2)

Simulated data (ζ and Ω known): compute true predictive choice
distribution using Monte Carlo integration by making 106 draws of
β from N(β|ζ,Ω) (variability not noticeable)
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Estimated predictive choice distribution

Point estimate of predictive choice distribution obtained by taking
mean of (2) under posterior of ζ and Ω:

p̂(ynew|xnew, y) =

∫ {∫
p(ynew|xnew, β)p(β|ζ,Ω) dβ

}
× p(ζ,Ω|y) dζ dΩ

Compute estimated predictive choice distribution using Monte
Carlo integration for variational and MCMC methods

Use 500 draws of {ζ,Ω} from q(ζ)q(Ω) for variational methods
and 10000 draws from MCMC simulations

More samples used in case of MCMC as draws are autocorrelated
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Total variation (TV) metric

Compute distance between two predictive choice distributions
(Levin et al. 2009)

Simulated data: TV distance between estimated and true
predictive choice distributions at attribute matrix xnew:

TV[ptrue(ynew|xnew), p̂(ynew|xnew)]

=
1

2

J∑
j=1

|ptrue(y jnew = 1|xnew)− p̂(y jnew = 1|xnew)|

Real data: true predictive choice distribution unknown

Compute TV distances between predictive choice distributions
estimated using MCMC and variational methods
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Examples

Stochastic linear regression (SLR):

Set N = 40 and w = 0.25

Algorithm 1: mean runtime and standard deviation over 5 runs

Algorithm 2: mean runtime and standard deviation over 10 runs

MCMC

4 independent chains, first half of each discarded as burn-in

Report average time taken to run a single chain and standard
deviation over four chains

Gelman-Rubin diagnostics: 10000 draws that remained after
thinning are good approximaton of posterior distribution
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Simulated data

Simulate data from MMNL model

low heterogeneity (Ω = 0.25IK ) high heterogeneity (Ω = IK )

H = 10000 agents, J = 12 alternatives, K = 10 attributes

Th = 25 observed events for each agent h

ζ: equally spaced values from −2 to 2

Entries in xht generated independently from N(0, 0.52)

MCMC: 10000 iterations in each chain, thinning factor: 2

Algorithm 2: experimented with κ from 2 to 20. Larger κ led to
greater reduction in computation time
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Simulated data

Heterogeneity Methods Algorithm 1 Algorithm 2 (κ = 20) Reduction

Low

Laplace 1008 470 (29) 53%

NCVMP 432 311 (11) 28%

SLR 1752 (5) 797 (51) 55%

MCMC 23991 (152) – –

High

Laplace 1348 674 (51) 50%

NCVMP 716 389 (42) 46%

SLR 1752 (4) 1104 (110) 37%

MCMC 24052 (250) – –

Table : CPU times (seconds) for MCMC and Algorithms 1 and 2. Last
column indicates percentage reduction in CPU times from using Algorithm 2
instead of 1. Standard deviation over repeated runs in brackets.

All variational methods are faster than MCMC by an order of
magnitude
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Simulated data
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Figure : Plots show average number of iterations spent by Algorithm 2 at each
minibatch size |B|. Blue dashed lines correspond to Laplace, red lines to
NCVMP and black dotted lines to SLR.
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Simulated data

Het. Methods Min. 1st Qu. Median Mean 3rd Qu. Max

Low

Laplace 1.04% 2.04% 2.38% 2.38% 2.69% 4.02%

NCVMP 0.14% 0.38% 0.50% 0.49% 0.60% 0.96%

SLR 0.13% 0.34% 0.44% 0.45% 0.54% 0.92%

MCMC 0.09% 0.37% 0.47% 0.47% 0.57% 0.89%

High

Laplace 0.63% 1.52% 1.76% 1.79% 2.04% 3.02%

NCVMP 0.07% 0.31% 0.41% 0.44% 0.54% 1.00%

SLR 0.04% 0.29% 0.41% 0.44% 0.57% 1.08%

MCMC 0.04% 0.31% 0.42% 0.45% 0.56% 1.05%

Table : Summary of TV errors of MCMC and variational methods from true
predictive choice distribution. TV errors computed at 500 attribute matrices
xnew (entries generated randomly from N(0, 0.52))

Little difference in accuracy between NCVMP, SLR and MCMC,
while Laplace approximation did much worse than the rest
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Project on faculty appointments

Subset of data from The Project on Faculty Appointments

Study at Harvard Graduate School of Education to examine
importance of different factors in job decisions (Trower 2002)

Survey respondents (H = 1274 faculty and doctoral candidates)
each presented with Th = 16 pairs of job positions

Select one of the two positions or neither, for each pair (J = 3)

Positions varied along factors: balance of work, chance of tenure or
contract renewal, geographic location, department rating, salary,
institution rating, tenure or non-tenure track and length of
contract for non-tenured track

K = 10 covariates (effect coded indicator variables for factors
described above, with two to four levels)
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Project on faculty appointments

Methods Algorithm 1 Algorithm 2 (κ = 2) Reduction

Laplace 707 325 (57) 54%

NCVMP 113 51 (5) 55%

SLR 714 (12) 274 (39) 62%

MCMC 13719 (68) – –

Table : CPU times (seconds) for MCMC and Algorithms 1 and 2. Last
column indicates percentage reduction in CPU times from using Algorithm 2
instead of 1. Standard deviation over repeated runs in brackets.

MCMC: 50 000 iterations in each chain, thinning factor: 10
(Parameters for several variables took a long time to converge and there
was high correlation between draws)

Very good reductions of 54%–62% when using Algorithm 2 instead of 1

All variational methods faster than MCMC by factor of 20–270.

53



MMNL models Variational inference Stochastic variational inference Examples Conclusion

Project on faculty appointments
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Figure : Plot shows average number of iterations spent by Algorithm 2 at each
minibatch size |B|. Blue dashed lines correspond to Laplace, red lines to
NCVMP and black dotted lines to SLR.
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Project on faculty appointments

Methods Min. 1st Qu. Median Mean 3rd Qu. Max

Laplace vs. MCMC 0.45% 1.22% 1.80% 1.83% 2.21% 3.70%

NCVMP vs. MCMC 0.02% 0.13% 0.24% 0.24% 0.31% 0.57%

SLR vs. MCMC 0.02% 0.15% 0.22% 0.22% 0.28% 0.51%

Table : Summary of 1274 TV distances between predictive choice distribution
estimated using MCMC and Algorithm 1. TV distances computed at 1274
attribute matrices, obtained by randomly selecting one covariate matrix xht
from each respondent.

SLR produced results closest to that of MCMC with NCVMP close
behind

Results Laplace much further away from MCMC than NCVMP and
SLR
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Electricity data

H = 361 residential electricity customers were each presented with
12 choice experiments (8 ≤ Th ≤ 12)

Choose an electricity supplier out of J = 4 alternatives

Attributes of suppliers: price, contract length in years and whether
company was local or well-known

K=6 covariates

MCMC: 10000 iterations in each chain, thinning factor: 2
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Electricity data

Methods Algorithm 1 Algorithm 2 (κ = 2) Reduction

Laplace 159 69 (4) 57 %

NCVMP Diverge Diverge –

SLR 255 (6) 157 (8) 38 %

MCMC 756 (18) – –

Table : CPU times (seconds) for MCMC and Algorithms 1 and 2. Last column
indicates percentage reduction in CPU times from using Algorithm 2 instead of
1. Standard deviation over repeated runs in brackets.

NCVMP failed to converge because of delta method approximation

SLR can overcome convergence issues in NCVMP + delta method

As SLR is slower, one could run Algorithm 1 using NCVMP and
then switch to SLR when lower bound fails to increase.

Small dataset but speedups can still be obtained using Algorithm 2
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Electricity data
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Figure : Plot shows average number of iterations spent by Algorithm 2 at each
minibatch size |B|. Blue dashed lines correspond to Laplace and black dotted
lines to SLR.

58



MMNL models Variational inference Stochastic variational inference Examples Conclusion

Electricity data

Methods Min. 1st Qu. Median Mean 3rd Qu. Max

Laplace vs. MCMC 0.88% 1.98% 2.31% 2.42% 3.18% 4.16%

SLR vs. MCMC 0.15% 0.36% 0.41% 0.43% 0.50% 0.73%

Table : Summary of 1444 TV distances between predictive choice probabilities
computed using MCMC and Algorithm 1. TV distances computed at 1444
attribute matrices, obtained by randomly selecting four covariate matrices xht
from each respondent.

Very good agreement between SLR and MCMC

Discrepancy between Laplace and MCMC much more pronounced
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Conclusion

Developed and investigated performances of three variational
approaches for fitting MMNL models:

1 Laplace approximation (Laplace)
2 NCVMP + delta method
3 stochastic linear regression (SLR)

Accuracy: predictive inference from SLR closest to that of MCMC,
with NCVMP close behind. Discrepancy between Laplace and
MCMC much more pronounced

Stability: SLR and Laplace are very stable. NCVMP failed to
converge in one example due to the delta method

Speed: NCVMP is fastest (> 100 times speedup compared to
MCMC)
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Conclusion

Stochastic variational inference accelerates convergence for large
datasets

Proposed a novel adaptive batch size strategy

Algorithm 2 is almost automatic

Increase κ proportionately with number of agents H

Significant speedups from Algorithm 2 for datasets as small as a few
hundreds

Variational methods: an important alternative and complement to
MCMC methods for fitting MMNL models (high computational
efficiency with competitive accuracy)1

1Tan, L. S. L. Stochastic variational inference for large-scale discrete choice
models using adaptive batch sizes. arXiv:1405.5623
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