CONTACT
- Assistant Professor
- Department of Statistics and Applied Probability
- National University of Singapore
- Email: statsll@nus.edu.sg
- Office: S16-07-112
- Tel: 65168473
RESEARCH INTERESTS
- Bayesian inference
- Variational approximation
- Hierarchical models
- Mixture models
- Stochastic optimization
- Network modeling
PUBLICATIONS
- Nott, D. J., Tan, S. L., Villani, M. and Kohn, R. (2012). Regression density estimation with variational methods and stochastic approximation. Journal of Computational and Graphical Statistics, 21, 797–820 (Journal link)
- Tan, L. S. L. and Nott, D. J. (2013). Variational inference for generalized linear mixed models using partially non-centered parametrizations. Statistical Science, 28, 168–188 (Journal link, arXiv)
- Tan, S. L. and Nott, D. J. (2014). Variational approximation for mixtures of linear mixed models. Journal of Computational and Graphical Statistics, 23, 564–585 (Journal link, arXiv)
- Tan, L. S. L. and Nott, D. J. (2014). A stochastic variational framework for fitting and diagnosing generalized linear mixed models. Bayesian Analysis, 9, 963–1004 (Journal link, arXiv)
- Tan, L. S. L., Ong, V. M. H., Nott, D. J. and Jasra, A. (2016). Variational inference for sparse spectrum Gaussian process regression. Statistics and Computing, 26, 1243–1261. (journal link, arXiv)
- Tan, L. S. L., Chan, A. H. and Zheng, T. (2016). Topic-adjusted visibility metric for scientific articles. Annals of Applied Statistics, 10, 1–31 (Journal link, arXiv)
- Mensah, D. K., Nott, D. J., Tan, L. S. L. and Marshall, L. (2016). Functional longitudinal modeling with covariate dependent smoothness. Electronic Journal of Statistics, 10, 527–549 (Journal link)
- Tan, L. S. L. (2017). Stochastic variational inference for large-scale discrete choice models with adaptive batch sizes. Statistics and Computing, 27, 237–257. (Journal link, arXiv)
- Tan, L. S. L., Jasra, A., De Iorio, M. and Ebbels, T. M. D. (2017). Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks. Annals of Applied Statistics, 11, 2222–2251. (arXiv, journal link, pdf)
- Tan, L. S. L. and Nott, D. J. (2018). Gaussian variational approximation with sparse precision matrices. Statistics and Computing, 28, 259-275. (journal link, arXiv:1605.05622)
- Tan, L. S. L. and De Iorio, M. (2019). Dynamic degree-corrected blockmodels for social networks: a nonparametric approach. Statistical Modelling, 19, 386-411. (journal link, arXiv:1705.09088)
- Tan, L. S. L. (2019). Explicit inverse of tridiagonal matrix with applications in autoregressive modeling. IMA Journal of Applied Mathematics, 84, 679-695. (journal link, arXiv:1803.04516)
- Tan, L. S. L., Bhaskaran, A. and Nott, D. J. (2020). Conditionally structured Gaussian variational approximation with importance weights. Statistics and Computing, 30, 1255–1272. (journal link, arXiv:1904.09591)
- Tan, L. S. L. and Friel, N. (2020). Bayesian variational inference for exponential random graph models. Journal of Computational and Graphical Statistics, 29, 910-928. (journal link, arXiv:1811.04249)
- Tan, L. S. L. (2021). Use of model reparametrization to improve variational Bayes. Journal of the Royal Statistical Society: Series B (Statistical Methodology, 83, 30-57. (journal link, arXiv:1805.07267)
MANUSCRIPTS
- Tan, L. S. L. (2021). Efficient data augmentation techniques for state space models. (arXiv:1712.08887)
- Tan, L. S. L. (2021). Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation. (arXiv:2109.00375, pdf)