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Efficient high-order radial basis-function-based differential quadrature–finite volume method
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This paper presents an efficient high-order radial basis-function-based differential quadrature–finite volume
method for incompressible flows on unstructured grids. In this method, a high-order polynomial based on the
Taylor series expansion is applied within each control cell to approximate the solution. The derivatives in the
Taylor series expansion are approximated by the mesh-free radial basis-function-based differential quadrature
method. The recently proposed lattice Boltzmann flux solver is applied to simultaneously evaluate the inviscid
and viscous fluxes at the cell interface by the local solution of the lattice Boltzmann equation. In the present
high-order method, a premultiplied coefficient matrix appears in the time-dependent term, reflecting the implicit
nature. The implicit time-marching techniques, i.e., the lower-upper symmetric Gauss-Seidel and the explicit
first stage, singly diagonally implicit Runge-Kutta schemes, are incorporated to efficiently solve the resultant
ordinary differential equations. Several numerical examples are tested to validate the accuracy, efficiency, and
robustness of the present method on unstructured grids. Compared with the k-exact method, the present method
enjoys higher accuracy and better computational efficiency.
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I. INTRODUCTION

High-order numerical methods have drawn increasing
attention in the computational fluid dynamics (CFD) com-
munity due to their high-order accuracy, low dissipation and
dispersion, and high computational efficiency. They have
shown better performance in predicting turbulence, aeroa-
coustics, and vortex-dominant flows than the conventional
second-order methods [1–5]. Over the past three decades, var-
ious high-order methods have been developed. Among them,
the high-order methods on the unstructured grids or overset
meshes are active research topics since they can handle both
complex physics and configurations. Typical examples in the
literature include finite volume (FV) methods [1,2,4,6–14],
finite difference methods using overset meshes [5,15,16], dis-
continuous Galerkin (DG) methods [17–21], spectral volume
(SV) [22–24] methods, spectral difference (SD) [25,26] meth-
ods, correction procedure via reconstruction (CPR) method
[27,28], etc.

This paper proposes a high-order FV method on unstruc-
tured grids for incompressible flows that addresses several
challenging issues of the high-order FV methods, i.e., the
high-order approximation of solution, viscous discretization,
and time-marching approach. For the high-order spatial dis-
cretization, the essence lies in the high-order representation
of flow variables within the control cell. One pioneering work
is the k-exact method which was first proposed by Barth
and Frederickson [10] and later was extensively applied in
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computational fluid dynamics on unstructured grids [11,12].
The k-exact method is based on a modified Taylor series
expansion which is determined by the mean values of the
solution function at neighboring cells. In the process, the mod-
ified Taylor series expansion needs to be integrated over the
current cell and its neighboring cells, respectively, resulting in
an overdetermined equation system to compute the unknown
coefficients by the least-squares technique. Apart from such
an approximation approach based on the high-order polyno-
mial, some mesh-free spatial approximation methods such as
the moving least-squares (MLS) method [13] and radial basis
function (RBF) method [14] have been applied to advance the
development of unstructured high-order FV methods.

In this paper, a high-order approximation technique based
on the mesh-free radial basis-function-based differential
quadrature (RBFDQ) method [29] is introduced. We directly
apply a Taylor series expansion within each control cell to
approximate the solution with high-order accuracy. The un-
known coefficients in the approximation polynomial, i.e., the
spatial derivatives, are determined by the RBFDQ method
using the solutions at centers of the current cell and its neigh-
boring cells. The RBFDQ method [29] is a mesh-free method
for derivative approximation at scattered points. It has been
applied to various flow problems [30–32] owing to its merits
such as high efficiency and good convergence. However, the
existing applications of the RBFDQ method are limited to
the finite difference (FD) framework whose numerical dis-
cretization cannot be guaranteed to be conservative. The FV
discretization, unlike the FD method, can remain conservative
at the cell and the global level. The foregoing facts suggest
the incorporation of the RBFDQ method into the framework
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of the FV method, which provides a simple and effective
high-order solver on unstructured grids, i.e., the RBFDQ-
FV method. Compared with the k-exact method, the direct
adoption of the Taylor series expansion as the approximation
function in the RBFDQ-FV method is more straightforward
and it is easier for the boundary treatment since no integral is
involved. In addition, such a polynomial approximation based
on the Taylor series expansion allows easier control of the
order of accuracy than some function approximation methods.

The development of a high-order FV method on unstruc-
tured grids also involves the evaluation of numerical fluxes
across the interface. In fact, it is a critical issue which
significantly affects not only the accuracy and stability of
the numerical method but also its computational efficiency.
Normally, the inviscid and viscous fluxes are, respectively,
evaluated by the Riemann solver and average approach. This
seems to be simple and easy to implement. However, the
average approach just takes a simple arithmetic average of the
gradients from the left and right cells of the interface without
considering a possible solution jump. Thus, this treatment
is inconsistent and may result in an incorrect solution [33].
Some studies have been conducted to evaluate the viscous
fluxes properly, such as the interior penalty approach [34],
the local DG approach [35], and the second Bassi-Rebay
scheme [3,36]. Nevertheless, continuous efforts are required
to further reduce the computational cost and improve the
convergence. This work adopts a physical way to evaluate
the inviscid and viscous fluxes simultaneously by the lattice
Boltzmann flux solver (LBFS) [37]. The LBFS utilizes the
local reconstruction of the lattice Boltzmann solution to con-
struct the numerical flux at the cell interface. Through the
Chapman-Enskog (CE) expansion analysis, the lattice Boltz-
mann solution satisfies the Navier-Stokes (NS) equations.
This means that the fluxes computed by the LBFS can satisfy
the NS equations automatically. Furthermore, we apply the
LBFS locally at the cell interface and thus the whole high-
order FV method can be implemented easily on unstructured
grids.

Another key ingredient of the high-order FV method is
the time integration approach. Since the high-order methods
are generally more complicated and stiffer than the conven-
tional second-order methods, more attention should be paid
to the time-marching strategy [38–41]. In this work, when the
approximation polynomial is substituted into the volume in-
tegral over the control cell, a premultiplied coefficient matrix
appears in the time-dependent term. This matrix implies the
connection between the functional values at cell centers of
the current cell and its neighboring cells, which reflects the
implicit nature of the RBFDQ-FV method. In fact, the point
iterative method could be used to obtain the steady-state solu-
tion and the dual time-stepping method can be incorporated
for computing the time-accurate solution. Such an explicit
time-marching strategy is simple but not efficient. In order
to take full advantage of the implicit nature, we combine the
coefficient matrix with the implicit lower-upper symmetric
Gauss-Seidel (LU-SGS) scheme [38,42–44] and the explicit
first stage, singly diagonally implicit Runge-Kutta (ESDIRK)
method [39] as the time-marching strategy. As a result, the
computational efficiency of the present high-order method is
greatly improved. In order to validate the accuracy, computa-

tional efficiency, and robustness of the current high-order FV
method, a set of numerical cases for incompressible flows is
studied.

The rest of this paper is organized as follows. In Sec. II,
the high-order RBFDQ-FV method with LBFS for incom-
pressible flows is described in detail. Then a series of
incompressible benchmark tests is carried out in Sec. III to as-
sess the performance of the proposed method on unstructured
grids. We end this paper with some conclusions in Sec. IV.

II. HIGH-ORDER RADIAL BASIS-FUNCTION-BASED
DIFFERENTIAL QUADRATURE–FINITE VOLUME

(RBFDQ-FV) METHOD

A. Governing equations and high-order finite
volume discretization

As stated in the Introduction, the LBFS [37] would be
utilized to simultaneously evaluate the viscous and inviscid
fluxes at the cell interface. In such a weakly compressible
model, the incompressible flows can be simulated via the
compressible NS equations under a low Mach number limit
(Ma < 0.3) with explicit evaluation of pressure from den-
sity. For two-dimensional (2D) cases, the governing equations
recovered by the lattice Boltzmann equation (LBE) in the
continuum flow regime through the multiscale CE expansion
analysis can be cast in the Cartesian coordinate system as

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂ρu
∂t

+ ∇ · (ρuu + pI) = ν∇ · [∇ρu + (∇ρu)T ], (2)

where ρ denotes the density; u = (u, v) is the velocity vector;
p and ν are, respectively, the pressure and kinematic viscosity
of the fluid flow. I is the unit tensor. Eqs. (1) and (2) can be
rewritten in a conservative form as

∂U
∂t

+ ∇ · F = 0, (3)

where U is the vector of conservative variables and F rep-
resents the vector of fluxes. By incorporating the divergence
theorem and Gaussian quadrature, the integral form of Eq. (3)
over a control cell �i is semidiscretized as

d

dt

(∫
�i

Ud�

)
= −

n f∑
j=1

nGQp∑
k=1

(F n,kA) jwk, (4)

where n f is the number of cell edges of the cell �i, nGQp is
the number of Gaussian quadrature points on each edge, and
nGQp = 2 in this work. A is the interface area and w denotes a
quadrature weight. Fn = F · n and n represents the outward
unit vector normal to the cell edge.

In this work, the following high-order polynomial based
on the Taylor series expansion to the cell center of the con-
trol cell �i is used to approximate the functional value with
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fourth-order accuracy.

U (x, y) = U i + ∂U
∂x

∣∣∣∣
i

(x − xi ) + ∂U
∂y

∣∣∣∣
i

(y − yi ) + ∂2U
∂x2

∣∣∣∣
i

(x − xi )2

2
+ ∂2U

∂y2

∣∣∣∣
i

(y − yi )2

2
+ ∂2U

∂x∂y

∣∣∣∣
i

(x − xi )(y − yi )

+ ∂3U
∂x3

∣∣∣∣
i

(x − xi )3

6
+ ∂3U

∂y3

∣∣∣∣
i

(y − yi )3

6
+ ∂3U

∂x2∂y

∣∣∣∣
i

(x − xi )2(y − yi )

2
+ ∂3U

∂y2∂x

∣∣∣∣
i

(y − yi )2(x − xi )

2
, (5)

where (xi, yi ) is the location of the cell center of �i and U i is the corresponding function value. Integrating Eq. (5) over the
control cell �i gives ∫

�i

U (x, y)d� = �iU i + dUT
i Ci, (6)

with

dUT
i =

[
∂U
∂x

∣∣∣∣
i
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∂U
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∂3U

∂x2∂y
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∂3U

∂y2∂x
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]
,

CT
i =

⎡
⎣x1y0

i , x0y1
i ,

x2y0
i

2
,

x0y2
i

2
, x1y1

i ,
x3y0

i

6
,

x0y3
i

6
,

x2y1
i

2
,

x1y2
i

2

⎤
⎦, (7)

where xnym
i = ∫

�i
(x − xi )n(y − yi )md�. The coefficients Ci

represent the volume integrals of the distance relations with
respect to the cell center; they could vary for different cells
in the whole flow domain. Clearly, Eq. (6) involves nine
unknown spatial derivatives. They are approximated by the
mesh-free RBFDQ method based on the functional values at
the centers of the N neighboring cells as follows:

dU i
k =

N∑
j=1

W i
k, jU i j, k = 1, . . . , 9, (8)

where W i
k denote the corresponding weighting coefficients for

the kth spatial derivative dU i
k and U i j is the function value at

the cell center of the jth neighboring cell to the reference cell
�i. The details of determining W i

k by the RBFDQ approach
are presented in Sec. II B.

With Eqs. (6) and (8), we can rewrite Eq. (4) as follows:

�i
∂U i

∂t
+

(
9∑

k=1

Ci
k

N∑
j=1

W i
k, j

)
∂U i j

∂t
= −Ri, (9)

where −Ri is the discrete form of the right-hand side of
Eq. (4). In this work, the numerical fluxes in Ri are evaluated
by the LBFS, which is described in Sec. II C. When Eq. (9) is
applied to all the control cells in the flow domain, we obtain
the following matrix form,

M
dU
dt

= −R, (10)

where U represents the solution vector composed by all
control cells. M is a sparse coefficient matrix formed by coef-
ficients on the left-hand side of Eq. (9). By solving Eq. (10),
the cell-centered solution would be obtained. The detailed
time-marching strategy is described in Sec. II D.

B. Derivative approximation by radial basis-function-based
differential quadrature (RBFDQ) scheme

In this subsection, the details of derivative approximation
by the RBFDQ scheme are presented. In fact, the RBFDQ

method stems from the combination of the function ap-
proximation by RBF and derivative approximation by the
differential quadrature (DQ) technique [45–47]. Basically,
the DQ method approximates the partial derivative by a lin-
ear weighted sum of functional values at all discrete points
in the supporting domain. Although DQ enjoys appealing
merits such as a simple algorithm and high accuracy, its one-
dimensional essence restricts its application to problems with
complex geometries. The RBFDQ method resolves this diffi-
culty by using the RBF instead of the high-order polynomial
as the base function. As a result, the RBFDQ method inherits
the advantages of the RBF such as the mesh-free property and
multidimensional nature and remains a simple algorithm of
the DQ scheme. In the development of the RBFDQ method,
the multiquadric (MQ) RBF is commonly used since it outper-
forms the other RBFs in terms of accuracy and convergence.
The expression of the MQ RBF is

ϕ(r) =
√

r2 + c2, c > 0, (11)

where r is the Euclidean distance and the positive constant c
denotes the shape parameter. Hereinafter, we will briefly in-
troduce the derivative approximation by the RBFDQ method
with MQ in the 2D case and for the detailed derivation, refer
to Ref. [29]. Note that other RBFs can be implemented in the
same manner.

For illustrative purposes, the approximation of the mth-
order derivative of U (x, y) with respect to x at (xi, yi ) by the
DQ method is introduced here, i.e.,

∂mU (x, y)

∂xm

∣∣∣∣
(xi,yi )

=
N∑

j=1

W (m)
j U i j, (12)

where W (m)
j denotes the corresponding weighting coefficients

for the mth-order derivative. Clearly, the key issue of approx-
imating the derivative lies in the calculation of W (m)

j . Suppose
that U (x, y) is approximated by a set of MQ RBFs locally, i.e.,

U (x, y) ∼=
N∑

j=1

λ jϕ(‖x − x j‖2) =
N∑

j=1

λ j

√
r2

j + c2, (13)
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where r j = ‖x − x j‖2 and λ j is the weight coefficient of each
RBF. As analyzed in Ref. [46], if all the MQ base functions
ϕ(‖x − x j‖2) satisfy the linear equation (12), so does U (x, y).
Therefore, W (m)

j in Eq. (12) can be directly computed by
substituting these MQ base functions into Eq. (12), i.e.,

∂mϕk (xi, yi )

∂xm
=

N∑
j=1

W (m)
j ϕk (x j, y j ), k = 1, 2, . . . , N, (14)

where ϕk (x j, y j ) is the value of the kth MQ RBF at the jth
supporting point of (xi, yi ). The above equations can be further
written in the matrix form as⎡
⎢⎢⎢⎢⎣

∂mϕ1(xi,yi )
∂xm

∂mϕ2(xi,yi )
∂xm

...
∂mϕN (xi,yi )

∂xm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ϕ1(x1, y1) ϕ1(x2, y2) · · · ϕ1(xN , yN )

ϕ2(x1, y1) ϕ2(x2, y2) · · · ϕ2(xN , yN )
...

...
...

...

ϕN (x1, y1) ϕN (x2, y2) · · · ϕN (xN , yN )

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

W (m)
1

W (m)
2
...

W (m)
N

⎤
⎥⎥⎥⎦, (15)

or in the vector form,

gxm = gW m. (16)

If the collocation matrix g is nonsingular, a unique solution
of Eq. (16) can be obtained. As indicated in Ref. [48], the
collocation matrix g is conditionally positive-definite when
the MQ RBFs are used. Hence, the coefficient vector W m can
be computed by

W m = g−1gxm . (17)

In the RBFDQ method described above, the shape param-
eter c is a free parameter which should be specified by the
user. This shape parameter significantly affects the accuracy
of the derivative approximation. Ding et al. [49] studied the
relationship between the shape parameter c and the accu-
racy of the RBFDQ method by numerical experiments. The
normalization of the shape parameter was suggested and it
worked well in removing the difficulty of a different number
of supporting points for each reference point. The specific
procedure in the 2D case is to transform the local support to a
unit circle, which gives

ϕ =
√(

x − xi

Di

)2

+
(

y − yi

Di

)2

+ c2, i = 1, . . . , N,

(18)

where (x, y) = (x/Di, y/Di ); c = c/Di; Di denotes the diame-
ter of the minimal circle enclosing all (N) supporting points in
the support region for the point (xi, yi ). Note that the transfor-
mation in Eq. (18) changes the formulation of the weighting
coefficients in the RBFDQ method as well. Correspondingly,
the derivatives are approximated by the final expression as
follows,

∂mU (x, y)

∂xm

∣∣∣∣
(xi,yi )

=
N∑

j=1

W
(m)
j

Di
U i j, (19)

where W
(m)
j are the weighting coefficients computed by the

RBFDQ method after the normalization.
Up to this point, we have described how to approximate the

mth-order derivative with respect to x at (xi, yi ) by the RBFDQ
method. Similarly, other derivatives in Eq. (6) can be com-
puted by calculating the corresponding weighting coefficients.
Note that W m in Eq. (17) would form a 9 × N dimensional
weighting coefficient matrix W for the nine spatial derivatives
in Eq. (6) and W is uniquely determined by the coordinates
of the mesh points (centers of neighboring cells of the current
cell). In practical implementation, W is calculated once and
stored when the computational mesh is fixed to save compu-
tational effort.

C. Evaluation of numerical fluxes by lattice
Boltzmann flux solver

This subsection is dedicated to the illustration of the ac-
curate evaluation of numerical fluxes at the cell interface in
the high-order RBFDQ-FV method. As discussed in the Intro-
duction, the LBFS [37] is adopted to evaluate the inviscid and
viscous fluxes simultaneously. In practical application, a local
coordinate system is introduced at the cell interface which
provides the present RBFDQ-FV method with flexibility on
unstructured grids. The outward normal direction and tangen-
tial direction of the cell interface—which are, respectively,
denoted by the subscripts “1” and “2”—are used in the local
coordinate system. Some details of the LBFS in the local coor-
dinate system are discussed below. For the development of the
LBFS and its difference from the conventional NS solvers and
the lattice Boltzmann method (LBM) see Refs. [37,50,51].

Following the work of Wang et al. [37], Eqs. (1) and (2)
can be recovered through multiscale CE expansion analysis,
which gives the expression of the fluxes as follows,

F1 =
Nd∑

α=0

(eα )1 f eq
α ,

F2 =
Nd∑

α=0

(eα )1(eα )1

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

]
, (20)

F3 =
Nd∑

α=0

(eα )1(eα )2

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

]
,

where eα is the lattice velocity vector and τν is the single
relaxation parameter. f eq

α and f neq
α , respectively, denote the

equilibrium and nonequilibrium density distribution functions
along the α direction. Nd + 1 is the number of discrete par-
ticle velocities in the lattice velocity model. In the present
study, the commonly used D2Q9 lattice velocity model
(Nd + 1 = 9) is applied and for the corresponding expression
of f eq

α refer to Ref. [37]. τν in Eq. (20) is determined from the
kinematic viscosity ν via

ν = (τν − 1/2)c2
s δt , (21)

where δt is the streaming time step. cs is the sound speed
and cs = 1/

√
3 if the D2Q9 model is used [37]. The pressure

can be calculated from the equation of state p = ρc2
s .
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The nonequilibrium distribution function f eq
α is approximated by

f neq
α (r, t ) = −τν

[
f eq
α (r, t ) − f eq

α (r − eαδt , t − δt )
] + O

(
δ2

t

)
, (22)

where r is the physical location of the Gaussian quadrature point along the cell interface and t is the time. f eq
α (r, t ) and

f eq
α (r − eαδt , t − δt ) are the equilibrium density distribution functions at r and its surrounding nodes r − eαδt , respectively.

The calculation of f eq
α (r − eαδt , t − δt ) requires the flow variables at the location r − eαδt . In this work, they are interpolated

by Eq. (5) from the functional values at cell centroids ri and r j with fourth-order accuracy, i.e.,

U (r − eαδt ) =
{

U (ri ) + ∇U (ri )�X i + 1
2�X T

i H (X i )�X i + 1
6�2X T

i G(X i )�X i + O(�X 4), (r − eαδt ) ∈ �i

U (r j ) + ∇U (r j )�X j + 1
2�X T

j H (X j )�X j + 1
6�2X T

j G(X j )�X j + O(�X 4), (r − eαδt ) ∈ � j
, (23)

with

�X k = [(r − eαδt − rk )x, (r − eαδt − rk )y]T , k = i or j.
(24)

∇U , H , and G are given by

∇U =
(

∂U
∂x

,
∂U
∂y

)
,

H =
[

∂2U
∂x2

∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y2

]
, (25)

G =
⎡
⎣ ∂3U

∂x3 3 ∂3U
∂x2∂y

3 ∂3U
∂y2∂x

∂3U
∂y3

⎤
⎦,

where the derivatives are approximated by the RBFDQ
method as introduced in Sec. II B. Once the required flow
variables are available, f eq

α (r − eαδt , t − δt ) in Eq. (22) can
be obtained by the definition of the equilibrium distri-
bution function. In addition, following the derivations in
Ref. [37], the density and velocities at r can be computed by
f eq
α (r − eαδt , t − δt ) and then we can calculate f eq

α (r, t ). After
getting f neq

α (r, t ), the flux vector F = (F1, F2, F3)T in Eq. (20)
can be obtained.

Note that, as stated previously, the whole flux F is com-
puted in the local coordinate system by the LBFS, while the
flux F n in Eq. (4) is defined in the global coordinate system. In
the practical calculation, the following transformation should
be adopted.

Fn = (F1, F2n1x + F3n2x, F2n1y + F3n2y)T , (26)

where n1 = (n1x, n1y ) is the unit vector in direction 1 of the
local coordinate system. n2 = (n2x, n2y) is the unit vector in
direction 2.

Up to this point, the LBFS and its implementation in the
present high-order RBFDQ-FV method have been presented.
Generally, the LBFS is applied to the incompressible viscous
flows with second-order accuracy. One may naturally doubt
that the second-order accuracy of the LBFS may spoil the
accuracy of the present high-order method. To resolve this
question, we should note that, in the LBFS, the second-order
accuracy is with regards to δt locally, as shown in Eq. (22),
rather than the mesh spacing h which is used to determine
the accuracy of a numerical method [52]. If the physical
streaming time step δt is much smaller than h, the overall
accuracy of the present RBFDQ-FV method would not be
affected significantly. This analysis will be further verified in

Sec. III A with the corresponding accuracy test. Furthermore,
since the reconstruction in the LBFS is conducted physically
and locally at every Gaussian quadrature point along each cell
interface, different δt could be chosen for different interfaces,
which provides great flexibility for application on unstruc-
tured grids. Meanwhile, due to the independence between the
time-marching step �t and the streaming time step δt (δt is
only used in the solution reconstruction), the choice of small
δt would not affect the genuine time evolution process in the
present method. Basically, to avoid extrapolation, the discrete
particles and points in the physical space constructed around
the Gaussian quadrature point must be within the right and left
cells of the interface. Given this limitation, in the 2D case, δt

is locally determined by

δt �
(

1

2
− 1

2
√

3

)
hmin, (27)

where hmin is the minimum edge length of the left and right
cells of the interface for a quadrilateral mesh or the radius of
the inscribed circle in the left and right cells of the interface
for a triangular mesh.

D. Efficient implicit time-marching strategy

As discussed in Sec. II A, there exists a premultiplied ma-
trix in the time-dependent term in Eq. (10), which reflects the
implicit essence of the present high-order method. To solve
Eq. (10) efficiently and entirely consider the implicit nature;
the time-marching strategy coupled with the implicit LU-SGS
[38,42–44] and ESDIRK [39] schemes is presented in this
subsection.

For the steady case, due to the unimportant time accuracy,
the widely used implicit LU-SGS is applied and then Eq. (10)
is rewritten as

M
Un+1 − Un

�t
= −Rn+1(U), (28)

where �t is the time step determined by the CFL condition.
The superscripts “n” and “n + 1” represent the current time
level at time t and the new time level at time t + �t , re-
spectively. In the calculation, the residual Rn+1 is linearized
by applying a linearized implicit technique [42,53] about the
current time level n as

Rn+1 ≈ Rn +
(

∂R
∂U

)n

�Un, (29)
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where �Un = Un+1 − Un and ∂R/∂U denotes the flux
Jacobian. With Eq. (29), Eq. (28) is rewritten as[

M
�t

+
(

∂R
∂U

)n]
�Un = −Rn(U). (30)

Apparently, the term in the square bracket on the left-hand
side of Eq. (30), i.e., the implicit operator, consists of two
parts: the coefficient matrix M and the flux Jacobian ∂R/∂U.
In this way, the implicit nature of the present high-order FV
method is combined into the implicit operator conveniently.
In general, the implicit operator is a large, sparse, and non-
symmetric system matrix with dimensions equal to the total
number of cells. In the LU-SGS method, to efficiently solve
Eq. (30), the implicit operator is factorized into the diagonal
and off-diagonal terms as follows,[

M
�t

+
(

∂R
∂U

)n]
�Un = (D + L)D−1(D + P)�Un, (31)

where L, P, and D, respectively, denote the matrices of strictly
lower triangular, upper triangular, and diagonal terms. In prac-
tical implementation, the coefficient matrix M in Eq. (31) can
be simplified by the diagonal matrix which shares the diagonal
elements Mi,i with M. Moreover, due to the unconcerned
temporal accuracy, ∂R/∂U is not evaluated analytically but
approximated by a simplified formulation with the spectral ra-
dius to reduce the numerical complexity. Finally, the operators
L, P, and D for the reference cell �i are given as

L =
∑
j∈L(i)

1

2

[
�Fc, j

�U j
· ni j − (�i j + �̂i j )I

]
Ai j,

P =
∑
j∈P(i)

1

2

[
�Fc, j

�U j
· ni j − (�i j + �̂i j )I

]
Ai j, (32)

D =
[

Mi,i

�t
+ 1

2

∑
j∈N (i)

(�i j + �̂i j )Ai j

]
I,

where L(i) and P(i), respectively, denote the nearest neighbors
of the control cell �i which belong to the lower and upper
matrices. N (i) is the set of direct neighbor cells of the cell �i.
�Fc, j = Fc(U j + �U j ) − Fc(U j ) and Fc is the convective
flux. �i j is the maximal eigenvalue of the convective flux
Jacobian and the subscript i j denotes the interface between
the control cells �i and � j . The factor �̂i j denotes the maxi-
mum viscous eigenvalue. Equation (32) can be solved by the
following forward and backward sweep procedures,

�U∗
i = D−1

{
−Rn

i −
∑
j∈L(i)

1

2
[�F∗

c, j · ni j

− (�i j + �̂i j )I�U∗
j ]Ai j

}
,

�Un
i = �U∗

i − D−1

{ ∑
j∈P(i)

1

2

[
�Fn

c, j · ni j

− (�i j + �̂i j )I�Un
j

]
Ai j

}
, (33)

TABLE I. Butcher tableau for the third-order four-stage ESDIRK
scheme.

J 1 2 3 4

a1 j 0 0 0 0
a2 j

1767732205903
4055673282236

1767732205903
4055673282236 0 0

a3 j
2746238789719
10658868560708

−640167445237
6845629431997

1767732205903
4055673282236 0

a4 j
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

bj a41 a42 a43 a44

with

�F∗
c, j = Fc

(
Un

j + �U∗
j

) − Fc
(
Un

j

)
,

�Fn
c, j = Fc

(
Un

j + �Un
j

) − Fc
(
Un

j

)
, (34)

where �U∗ is the intermediate solution in the forward sweep.
The macroscopic flow variables can be updated by Un+1 =
�Un + Un after obtaining the solution correction �Un.

When an unsteady flow problem is considered, the tempo-
ral accuracy also plays a vital role. In this work, the third-order
four-stage ESDIRK method with dual time-stepping (DTS)
approach is incorporated to efficiently obtain the time-
accurate solution. After applying the ESDIRK method to
Eq. (10), we have

Uk = Un − �t
k∑

j=1

ak jM−1R(U j ), k = 1, 2, . . . , α, (35)

Un+1 = Un − �t
α∑

j=1

b jM−1R(U j ), (36)

where α denotes the number of stages; ak j and b j are the
weights (cf. Table I). The vectors Uk , Un, and Un+1 are,
respectively, the solutions at stage k, the previous time level
n and the final time level n + 1. Note that since the last stage
in Eq. (35) gives the solution at the new time level, i.e.,
Un+1 = Uα , it is unnecessary to compute Eq. (36). To advance
Uk from the time level n to n + 1, the sequential set of α−1
nonlinear algebraic equations defined in Eq. (35) would be
solved. For simplicity, the DTS approach is applied by adding
a term ∂Uk/∂τ ∗ to Eq. (10), which yields

M
dU
dτ ∗ + M

dU
dt

= −R(U). (37)

Then, at each stage k of the ESDIRK method in Eq. (35),
we can get

M
Uk,s+1 − Uk,s

�τ ∗

= −M
Uk,s+1 − Un

�t
− akkR(Uk,s+1) −

k−1∑
j=1

ak jR(U j )

= −R∗(Uk,s+1), k = 1, . . . , α, (38)

where �τ ∗ denotes the pseudotime step, s is the step of the
pseudotime, and R∗(Uk,s+1) represents the unsteady residual.
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TABLE II. Accuracy test for isotropic vortex problem on regular triangular grids.

Scheme Grid size L∞ errors Order L1 errors Order

1/2 3.54 × 10−2 1.31 ×10−3

1/4 3.16 ×10−3 3.482 1.11 ×10−4 3.557
Fourth-order k-exact FV

1/6 6.11 ×10−4 4.055 1.97 ×10−5 4.264
1/8 1.78 ×10−4 4.286 5.63 ×10−6 4.352
1/2 2.26 ×10−2 1.08 ×10−3

1/4 9.62 ×10−4 4.555 4.26 ×10−5 4.662
Fourth-order RBFDQ FV

1/6 1.52 ×10−4 4.548 6.56 ×10−6 4.615
1/8 5.61 ×10−5 3.470 2.29 ×10−6 3.659

It is worth noting that the subscript “i” has been omitted for
simplicity in Eqs. (37) and (38). In fact, Eq. (38) can be treated
as a steady-state problem and the solution at each stage of the
ESDIRK method can be obtained efficiently.

Furthermore, the unsteady residual R∗(Uk,s+1) given in
Eq. (38) is linearized with respect to the known pseudotime
level s at stage k as

R∗(Uk,s+1) ≈ R∗(Uk,s) +
(

∂R∗

∂U

)k,s

�Uk,s

= R∗(Uk,s) +
[

M
�t

+ akk

(
∂R
∂U

)k,s]
�Uk,s,

(39)

where �Uk,s = Uk,s+1 − Uk,s. Then the implicit integration in
the pseudotime with the ESDIRK method is obtained in an
unfactorized form as follows,[

M
�τ ∗ + M

�t
+ akk

(
∂R
∂U

)k,s]
�Uk,s

= −R∗(Uk,s), k = 1, . . . , α, (40)

where

R∗(Uk,s) = M
Uk,s

�t
+ akkR(Uk,s)

+
[
−M

Un

�t
+

k−1∑
j=1

ak jR(U j )

]
. (41)

Note that the matrix M in R∗(Uk,s) cannot be simplified to
preserve the accuracy while M in the implicit operator on the
left-hand side of Eq. (40) can be simplified to combine with
the LU-SGS method. As a result, the operators L, P, and D at
the kth stage of the ESDIRK method are cast as

L =
∑
j∈L(i)

1

2

[
�Fc, j

�U j
· ni j − (�i j + �̂i j )I

]
Ai j,

P =
∑
j∈P(i)

1

2

[
�Fc, j

�U j
· ni j − (�i j + �̂i j )I

]
Ai j, (42)

D =
[

Mi,i

�τ ∗ + Mi,i

�t
+ akk

2

∑
j∈N (i)

(�i j + �̂i j )Ai j

]
I.

The corresponding two-step solution procedure is given as

�U(1)
i = D−1

{
−R∗(Us

i

) −
∑
j∈L(i)

1

2
[�F (1)

c, j · ni j

− (�i j + �̂i j )I�U(1)
j ]Ai j

}
,

�Us
i = �U(1)

i − D−1

{ ∑
j∈P(i)

1

2
[�Fs

c, j · ni j

− (�i j + �̂i j )I�Us
j]Ai j

}
, (43)

FIG. 1. Accuracy comparison between the high-order RBFDQ-FV and k-exact FV methods for the isentropic vortex problem on regular
triangular grids: (a) L1 norm, (b) L∞ norm.
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TABLE III. Accuracy test for decaying vortex flow on regular triangular grids.

Scheme Grid size L1 errors Order L2 errors Order

2/10 2.22 × 10−2 2.51 ×10−2

2/20 2.30 ×10−3 3.272 2.57 ×10−3 3.287
Fourth-order k-exact FV 2/30 4.64 ×10−4 3.948 5.19 ×10−4 3.948

2/40 1.45 ×10−4 4.050 1.62 ×10−4 4.050
2/80 8.28 ×10−6 4.129 9.26 ×10−6 4.127
2/10 7.96 ×10−3 9.01 ×10−3

2/20 3.31 ×10−4 4.589 3.94 ×10−4 4.514
Fourth-order RBFDQ FV 2/30 6.48 ×10−5 4.020 8.00 ×10−5 3.935

2/40 2.06 ×10−5 3.981 2.59 ×10−5 3.926
2/80 1.85 ×10−6 3.475 2.28 ×10−6 3.501
2/30 6.78 ×10−3 6.09 ×10−3

2/40 3.95 ×10−3 1.881 3.55 ×10−3 1.876
Second-order FV 2/80 1.02 ×10−3 1.951 9.20 ×10−4 1.949

2/100 6.57 ×10−4 1.982 5.91 ×10−4 1.981
2/160 2.58 ×10−4 1.991 2.32 ×10−4 1.990
2/20 1.12 ×10−2 1.25 ×10−2

2/30 4.71 ×10−3 2.127 5.25 ×10−3 2.134
Second-order RBFDQ FV

2/40 2.72 ×10−3 1.911 3.02 ×10−3 1.917
2/80 7.12 ×10−4 1.933 8.24 ×10−4 1.875

with

�F (1)
c, j = Fc

(
Us

j + �U(1)
j

) − Fc
(
Us

j

)
,

�Fs
c, j = Fc

(
Us

j + �Us
j

) − Fc
(
Us

j

)
, (44)

where �U(1) is the intermediate solution correction. Note that
the subscript “k” in Eqs. (42)–(44) has been omitted for sim-
plicity. Once Us at the stage k meets the convergence tolerance
of the pseudosteady-state solution, Us will be set as the initial
value for the computation at the next stage k + 1.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, a series of benchmark cases is tested on
unstructured grids to validate the accuracy, efficiency, and sta-
bility of the present implicit high-order RBFDQ-FV method
with LBFS. In the unsteady simulation, the CFL number for
the local pseudotime step is 8. There is no limitation for
the number of iterations in every physical time step and the

convergence criterion for the pseudosteady state per physical
time step is a drop of five orders of magnitude of the unsteady
residual R∗ from the initial value. Although the optimal shape
parameter c may differ in different problems, in all simula-
tions, we experimentally propose to set the shape parameter
c to 300hmin before the normalization. All simulations are
conducted on a PC with 2.30 GHz CPU.

A. Accuracy tests

1. Accuracy test of high-order RBFDQ-FV method

To validate the accuracy of the present high-order RBFDQ-
FV method without LBFS, the isentropic vortex transport
problem [9,54] is tested. This benchmark case is commonly
used to assess the accuracy of our numerical method. It
involves convection of an isentropic vortex in an inviscid
flow, where the free-stream conditions are (ρ, u, v, p) =
(1, 1, 1, 1). In the flow field, the following perturbations are

FIG. 2. Convergence studies for decaying vortex flow at t = L/U : (a) L1 norm, (b) L2 norm. The numbers in the figures denote the slopes
of the linearly fitted lines.
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FIG. 3. Efficiency comparison between different FV methods for 2D decaying vortex flow at t = L/U : (a) L1 norm, (b) L2 norm.

added to the free stream without any entropy gradient,

(δu, δv) = ε

2π
e0.5(1−r2 )(−y, x), (45)

where (x, y) = (x−5, y−5), r2 = x2 + y2 and the vortex
strength ε = 5. The temperature T and entropy S are given
as

T = 1 − (γ − 1)ε2

8γπ2
e1−r2

, S = 1, (46)

where γ is the specific heat ratio. The density ρ and pressure
p are computed from T and S by

T = p

ρ
, S = p

ργ
. (47)

The computational domain is [0, 10] × [0, 10] and the
periodic boundary condition is applied to all boundaries. The
regular triangular grids are used and the grid spacing ranges
from 1/2 to 1/8. Since this case is dedicated to assess the accu-
racy of the RBFDQ-FV method without LBFS by simulating
an inviscid flow problem, the inviscid fluxes are calculated by
the widely used Roe scheme [55] and results at t = 2.0 are
extracted. For comparison purposes, the accuracy tests of the
k-exact FV method are performed as well.

Table II lists the errors of density in terms of L1 and L∞
norms as well as the convergence rates and Fig. 1 compares
the accuracy. Clearly, the fourth-order accuracy of both the
high-order RBFDQ-FV method and the k-exact FV method
can be verified. In addition, the slopes of linearly fitted lines
in Fig. 1 reveal the higher accuracy of the RBFDQ-FV method
than the k-exact FV method. From Table II, the fourth-
order RBFDQ-FV method gives lower relative errors than the
fourth-order k-exact FV method. These observations evidently
show that the present high-order RBFDQ-FV method outper-
forms the k-exact FV method in terms of accuracy.

2. Accuracy test of high-order RBFDQ-FV method with LBFS

As discussed in Sec. II C, the present high-order RBFDQ-
FV method uses the LBFS to evaluate the inviscid and
viscous fluxes simultaneously for incompressible flows. The
first test has validated the fourth-order accuracy of the present
RBFDQ-FV method itself. This accuracy test would further
check whether the LBFS would spoil the high-order accu-
racy of the present method. In this test, the decaying vortex
flow problem which has the following analytical solution is

FIG. 4. Lid-driven cavity flow: (a) mesh and (b) streamlines obtained by the high-order RBFDQ-FV method at Re = 1000.
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FIG. 5. Comparison of u-velocity and v-velocity profiles along vertical and horizontal central lines between different FV methods with
LBFS: (a) u-velocity and (b) v-velocity profiles at Re = 1000; (c) u-velocity and (d) v-velocity profiles at Re = 3200; (e) u-velocity and
(f) v-velocity profiles at Re = 5000.

considered,

u(x, y, t ) = −U cos(πx/L) sin(πy/L)e−2π2Ut/(ReL),

v(x, y, t ) = U sin(πx/L) cos(πy/L)e−2π2Ut/(ReL),

ρ(x, y, t ) = ρ0 − ρ0U 2

4c2
s

[cos(2πx/L) + cos(2πy/L)]

× e−4π2Ut/(ReL), (48)

where the Reynolds number is Re = UL/ν = 10 and the
initial density ρ0 is taken as 1. The streaming distance δx

equivalent to δt is selected as 0.2hmin and the relaxation
parameter τν is set as 0.8. The computational domain is
[−L, L] × [−L, L]. The computations are run until t = L/U
and the relative errors of the computed velocity component
u are measured using the L1 norm and L2 norm, which are
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TABLE IV. Comparison of memory cost and computational time for lid-driven cavity flow.

Fourth-order RBFDQ-FV Second-order FV

Cells of mesh Re Memory (Mb) CPU time (s) Memory (Mb) CPU time (s)

1000 8.5 277.34 3.5 66.13
2734 3200 8.5 834.41 3.5 198.45

5000 8.5 1278.39 3.6 307.58
1000 9.9 459.41

11032 3200 9.9 1459.81
5000 9.9 2296.64

defined as

L1(u) = 1

Ncell

Ncell∑
i=1

(∣∣∣∣ui − ue
i

U

∣∣∣∣
)

,

L2(u) =
[

1

Ncell

Ncell∑
i=1

(
ui − ue

i

U

)2
] 1

2

, (49)

where ui and ue
i denote the numerical result and the exact

solution, respectively. Ncell is the number of cells in the flow
domain.

In the convergence study, the regular triangular grids with
the grid spacing of h = 2/10 to 2/160 are used. Table III
tabulates the L1 and L2 norms of the relative errors of the
velocity component u and the rates of convergence. In Fig. 2,
the accuracy of the high- and second-order FV methods is
compared. Clearly, all the FV methods, i.e., the k-exact FV
and RBFDQ-FV methods, achieve the theoretical accuracy
with LBFS, which is consistent with the discussion of ac-
curacy in Sec. II C. Additionally, the solutions obtained by
both high-order methods are much more accurate than those
computed by the second-order methods. Note that the relative
errors given by the RBFDQ-FV method are smaller than those
of the k-exact FV method, which confirms that the present
RBFDQ-FV method is more accurate than the k-exact FV
method with the same order of accuracy. Furthermore, Fig. 3
compares the efficiency of the four FV methods. It is observed
that the fourth-order RBFDQ-FV method with LBFS requires

less CPU time than the high-order k-exact FV and the second-
order FV methods to achieve the same accuracy. This verifies
the higher efficiency of the high-order RBFDQ-FV method
compared to the high-order k-exact FV and second-order FV
methods.

B. Lid-driven cavity flow

The accuracy, memory cost and computational efficiency
of the high-order RBFDQ-FV method with LBFS are compre-
hensively evaluated by the lid-driven flow in a square cavity
[56,57]. The conventional second-order FV and the high-order
k-exact FV methods with LBFS are also applied for compari-
son purposes. In this problem, the viscous flow in a 2D square
cavity is driven by the moving lid with a constant velocity U
to form a circulation flow while the other three solid walls
remain static with the nonslip boundary condition. Here, the
Reynolds number is defined as Re = UL/ν, where L denotes
the length of the square cavity. The velocity of the lid is taken
as U = 0.1. The computational domain of [0, 1] × [0, 1] dis-
cretized by the unstructured triangular cells is presented in
Fig. 4, where the nonuniform grid spacings are, respectively,
h = 1/20 for the cells in the middle and h = 1/45 for the cells
near the walls, having 2734 cells in total. The streamlines at
Re = 1000 obtained by the high-order RBFDQ-FV method
with LBFS are depicted in Fig. 4 as well. Figure 5 presents the
u-velocity and v-velocity profiles along the vertical and hori-
zontal central lines obtained by the conventional second-order

FIG. 6. Comparison of efficiency between the high-order RBFDQ-FV and k-exact FV methods at (a) Re = 3200 and (b) Re = 5000.
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FIG. 7. Streamlines and velocity distributions along radial and azimuthal directions obtained by the high-order RBFDQ-FV method with
LBFS: (a) streamlines and (b) velocity distributions on the unstructured quadrilateral mesh; (c) streamlines and (d) velocity distributions on
the unstructured triangular mesh.

FV and the high-order RBFDQ-FV and k-exact FV methods
with LBFS at three Reynolds numbers of Re = 1000, 3200,
and 5000. The benchmark data of Ghia et al. [57] are also
included. From the results, it is clear that, on the coarse mesh
of 2734 cells, the high-order RBFDQ-FV and k-exact FV
methods can give more accurate results than the second-order
one. Moreover, results of the high-order RBFDQ-FV method
achieve slightly better agreement with the benchmark data
than those of the k-exact FV method, which demonstrates the
higher accuracy of the present high-order method.

To compare the computational efficiency and memory cost
of the present high-order method and the conventional second-
order method, the mesh is refined for the second-order method
to obtain comparable results. For internal cells, the mesh spac-
ing is taken as h = 1/60, while for cells near the walls, h is

reduced to h = 1/100. The total number of cells is 11 032. As
can be seen from the comparison of the computational cost
in Table IV, when a similar accuracy is achieved on differ-
ent mesh resolutions, the high-order RBFDQ-FV method is
almost 1.8 times faster than the second-order method with
less memory cost. Such outcomes provide strong evidence
that the high-order RBFDQ-FV method performs better than
the conventional second-order method in terms of numerical
accuracy and computational efficiency.

Lastly, we compare the convergence and efficiency of
the high-order RBFDQ-FV and k-exact FV methods for this
steady case. Note that the LU-SGS scheme is also adopted
as the time-marching strategy for the high-order k-exact FV
method. As shown in Fig. 5, the results obtained by the high-
order RBFDQ-FV method show slightly better agreement
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FIG. 8. Mesh used for viscous flow past a circular cylinder at Re = 100. Sixty-five grid points on the cylinder and 11 626 cells in total.
(a) Computational domain and (b) zoomed mesh near cylinder.

with the benchmark data than the k-exact FV method on
the mesh of 2734 cells at Re = 3200 and 5000. The corre-
sponding convergence history and efficiency are compared in
Fig. 6. It can be seen that the high-order RBFDQ-FV method
converges faster than the k-exact FV method. Especially for
the case of Re = 5000, the high-order RBFDQ-FV method
uses only 74.5% of the CPU time spent by the high-order
k-exact FV method. These observations clearly prove the bet-
ter efficiency of the high-order RBFDQ-FV method than the
k-exact FV method with the same order of accuracy.

C. Polar cavity flow

To further assess the performance of the present high-order
method for simulating the incompressible flow problem with a
curved boundary, the lid-driven flow in a polar cavity is tested.
In this problem, a sector with the angle of 1 rad (θ = 1) is

FIG. 9. Evolution of the lift and drag coefficients computed by
the high-order RBFDQ-FV method for flow past a cylinder at Re =
100.

bounded by two straight walls and two curved walls at the
radii of Ri and Ro [50]. The dimensionless Reynolds number
defined as Re = Uθ (Ro − Ri )/ν is used to characterize the
flow pattern. Uθ is the azimuthal velocity on the inner curved
wall with the radius of Ri. This simulation sets Ri = 1.0,
Ro = 2.0, and Uθ = 0.1. For comparison purposes, two grids
are used for this problem with curved boundaries. One is the
quadrilateral mesh which has 51 × 51 grid points and the
other is the unstructured triangular mesh having 1790 triangle
cells and 35 points on each side of the flow domain. Note that
these two sets of grids are both coarser than the mesh used in
Ref. [50].

In this case, results of the high-order RBFDQ-FV method
with LBFS are presented. The obtained streamlines and

FIG. 10. Convergence history for the inner iteration at three
implicit stages in the ESDIRK method used by the high-order
RBFDQ-FV method for flow past a cylinder at Re = 100.
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TABLE V. Comparison of dynamic parameters for unsteady flow past a stationary circular cylinder at Re = 100.

Re References Cl Cd St

Braza et al. [59] ± 0.30 1.28 ± 0.02 0.16
Liu et al. [60] ± 0.339 1.350 ± 0.02 0.164
Shu et al. [37] ± 0.33 1.334 ± 0.02 0.164

100 Wang and Zhou [61] ± 0.315 1.30 ± 0.006 0.159
Pellerin et al. [51] ± 0.325 1.325 0.164

Second-order FV method ± 0.327 1.338 ± 0.011 0.158
Fourth-order RBFDQ-FV method ± 0.33 1.323 ± 0.012 0.164

velocity distributions along the radial and azimuthal directions
at Re = 350 on the unstructured quadrilateral and triangular
grids are depicted in Fig. 7. Clearly, they agree well with the
data from Wang et al. [50] and Tavakoli et al. [58], even on the
coarser mesh. This evidently demonstrates the high reliability
of the present RBFDQ-FV method with LBFS for solving the
problem with a curved boundary on unstructured grids.

D. Viscous flow past a stationary circular cylinder

To further examine the capability of the present high-order
method for unsteady flow problems, the viscous flow past a
stationary circular cylinder is simulated. The physical config-
uration of this case is that the incoming viscous fluid with
a constant free-stream velocity U0 flows over a fixed circu-
lar cylinder. To meet the incompressible limit, U0 = 0.1 is
adopted. The Reynolds number affecting the flow pattern is
defined as Re = U0L/ν, where L is the diameter of the circular
cylinder. In this test, Re = 100. The pressure coefficient Cp,
lift coefficient Cl , drag coefficient Cd , and Strouhal number St
are used to quantify the numerical results and they are defined
as follows,

Cp = pw − p0

ρ0U 2
0

/
2

, Cl = Fl

ρ0U 2
0

/
2
,

Cd = Fd

ρ0U 2
0

/
2
, St = fqL

U0
, (50)

where p0 and pw denote the pressure of the free stream and on
the cylinder surface, respectively. Fl and Fd are, respectively,
the lift force and the drag force. fq represents the vortex shed-
ding frequency. The nonslip boundary condition is applied on
the cylinder surface and the far-field free-stream condition is
enforced on the outer boundary. An unstructured mesh with
65 points on the cylinder surface and 11 626 cells in total
is used. The far-field boundary is set at 55L away from the
center of the cylinder. Figure 8 shows the flow domain and
the unstructured mesh. The calculations are performed until
t = 500 with a fixed physical time-step size of �t = 0.1. The
CFL number for the local pseudotime step is 8. Based on this
setting for the implicit temporal scheme, the convergence for
the pseudosteady state can be achieved within 100 iterations.

Results obtained by the high-order RBFDQ-FV and the
conventional second-order FV methods with LBFS are ex-
tracted and discussed. The evolution of the lift and drag
coefficients of the high-order RBFDQ-FV method is shown
in Fig. 9. Figure 10 shows one example for the inner iteration
in the pseudotime at one physical time step. The numbers of

iterations for three implicit stages are all 89. Table V tabu-
lates the computed dynamic parameters and the corresponding
reference data [37,51,59]. As can be seen, on the same un-
structured grids, the results of the RBFDQ-FV method are all
within the range of the reference data and they have better
agreement with the reference data than the ones of the second-
order method. This validates the capability and flexibility of
the present high-order method for simulating the unsteady
incompressible flow problem on unstructured grids.

IV. CONCLUSIONS

This paper presents an efficient high-order finite volume
method on unstructured grids for incompressible flows. In
this method, a Taylor series expansion within each control
cell is directly applied as the solution approximation function.
The unknown derivatives are approximated by the mesh-free
RBFDQ scheme. In this way, the high-order approximation of
the flow variables is constructed straightforwardly and simply.
The LBFS is applied to evaluate the inviscid and viscous
fluxes at the cell interface simultaneously in a physical way,
which avoids additional treatments for the viscous fluxes.
This makes the RBFDQ-FV method competitive in simulating
viscous flow problems. Different from other high-order FV
methods, in the present method, the time-dependent term in-
volves a coefficient matrix resultant from the volume integral
of the high-order approximation function. This reflects the im-
plicit nature of the present method and the coefficient matrix
is coupled into the implicit LU-SGS and ESDIRK schemes as
the efficient time-marching strategy.

To validate the accuracy and efficiency of the present
method and its capability on unstructured grids, several nu-
merical tests for incompressible flows are conducted. The
obtained numerical results validate the fourth-order accuracy
of the present high-order RBFDQ-FV method on unstruc-
tured grids. It is shown that the present high-order method
enjoys higher accuracy and better efficiency than the conven-
tional second-order method. As compared with the k-exact
FV method, the accuracy of the present high-order method
is slightly higher and its computational efficiency is better.
For instance, for lid-driven cavity flow at Re = 5000, the
high-order RBFDQ-FV method takes only about 74.5% of the
computational time of the k-exact method.
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