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ABSTRACT
The least square-based finite difference-finite volume (LSFD-FV) method has been developed and successfully applied to solve vari-
ous two-dimensional flow problems with a high-order of accuracy. In this paper, the extension of the LSFD-FV method to the three-
dimensional (3D) case on unstructured grids is presented. Different from other existing high-order methods, the LSFD-FV method
combines the good features of the least square-based finite difference (LSFD) scheme for derivative approximation and the finite vol-
ume (FV) discretization for conservation of physical laws. Within each control cell, a high-order polynomial resultant from a Tay-
lor series expansion is used to approximate the solution in the FV discretization of governing equations, where the derivatives are
approximated by the LSFD scheme. As a result, the mesh-free nature of the LSFD scheme endows the LSFD-FV method with the
flexibility on unstructured grids. Additionally, the straightforward algorithm of the LSFD scheme and the direct utilization of the Tay-
lor series polynomial make the LSFD-FV method user-friendly and easy to implement. Furthermore, the inviscid and viscous fluxes
are simultaneously evaluated by lattice Boltzmann and gas kinetic flux solvers in this work, which avoids additional and compli-
cated treatment for the viscous discretization. Accuracy studies on unstructured hexahedral and tetrahedral grids validate the third-
order of accuracy of the 3D LSFD-FV method. Various 3D incompressible and compressible numerical experiments are also pre-
sented. The results show that the proposed method enjoys the higher accuracy than the conventional second-order method on the same
mesh. When the same accuracy is achieved, the present high-order method has superior computational efficiency to the second-order
counterpart.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032089., s

I. INTRODUCTION

The past decades have witnessed the tremendous advances of
computational fluid dynamics (CFD). Plenteous numerical methods
have been developed for solving various flow problems in industrial
applications. Among them, the high-order methods enjoy increas-
ing popularity due to their higher accuracy and lower dissipa-
tion than the conventional second-order methods. Their superior
performance is especially demonstrated in studying aeroacoustics,
vortex-dominant flows, and turbulent flows. Generally, it is eas-
ier to develop a high-order numerical method on structured grids
than on unstructured grids. The high-order finite difference (FD),1–4

essentially non-oscillatory (ENO),5 and weighted essentially non-
oscillatory (WENO)6 methods are good examples developed on
structured grids. However, the structured grid-based methods alone
are not easy for engineering applications and some techniques would
be required for complex geometry problems. For example, Ref. 7
applied the immersed boundary method with the Runge–Kutta dis-
continuous Galerkin method to solve two-dimensional flows with
complex geometry on structured grids. For complex configurations
in the three-dimensional (3D) case, it is usually difficult and time-
consuming to generate structured grids, whereas unstructured grids
can be generated with ease. As a result, great flexibility of the
unstructured grids in handling complex geometries stimulates the
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development of unstructured high-order methods. In this work, we
also focus on developing a 3D high-order method on unstructured
grids.

Over the last two decades, intensive efforts have been made
to develop unstructured high-order methods. Typical examples in
the literature include finite volume (FV) methods,8–17 discontinu-
ous Galerkin (DG) methods,18–22 spectral volume (SV)23–25 meth-
ods, spectral difference (SD)26,27 methods, etc. These methods differ
in terms of the high-order spatial discretization and thus possess
distinct characteristics. A detailed review of them can be found in
Ref. 28. Among the high-order methods mentioned above, the high-
order FV methods draw much attention. Due to the popularization
of the FV discretization and the well-developed numerical tech-
niques (e.g., shock capturing technique and time marching strategy)
on unstructured grids, the present high-order method is developed
in the FV framework.

When considering a numerical method for the practical 3D
engineering problems, the complexity of the high-order spatial dis-
cretization is significantly important. It determines whether the
newly developed high-order method would be widely used or not.
Recently, Liu and his co-workers proposed a straightforward and
user-friendly high-order FV method on unstructured grids in two
dimensions, called least square-based finite difference-finite volume
(LSFD-FV) method.29 The LSFD-FV method directly applies a Tay-
lor series expansion within each control cell to approximate the
solution with the high-order accuracy. The unknown coefficients
in the approximation polynomial, i.e., the spatial derivatives, are
determined by the mesh-free least square-based finite difference
(LSFD) scheme using the solutions at centers of the current cell and
its neighboring cells. The LSFD method31,32 is a simple and mesh-
free method for derivative approximation at randomly distributed
points. Thus, it is an ideal approach to approximate derivatives on
unstructured grids. However, due to the nature of the FD discretiza-
tion, its numerical discretization cannot be guaranteed to be con-
servative. The FV discretization, unlike the FD method, can remain
conservative at the cell and the global level. The LSFD-FV method
embeds the LSFD scheme into the framework of the FV method,
which provides a simple and effective high-order solver on unstruc-
tured mesh. Various two-dimensional applications29,30 of the LSFD-
FV method, such as the incompressible isothermal and thermal
flows, and the compressible inviscid and viscous flows, have been
made. It is shown that the high-order LSFD-FV method achieves
superior accuracy and computational efficiency compared with the
k-exact method of the same accuracy order and the second-order
method. Therefore, in the present study, the LSFD-FV method is
further extended to solve the 3D incompressible and compressible
flow problems on unstructured grids.

Apart from the spatial discretization, the flux evaluation also
plays a vital role in the high-order solver. In the literature, many
high-order methods use the Riemann solver and average approach
to evaluate the inviscid and viscous fluxes, respectively. However, for
viscous fluxes, the average approach, which takes a simple arithmetic
mean of the gradients from the left and right cells of the interface, is
inconsistent. It does not consider a possible jump of solutions and
may result in a wrong solution.33 Numerous studies have been con-
ducted for the proper treatment of viscous fluxes, such as the interior
penalty approach,34 the local DG approach,35 and the second Bassi–
Rebay scheme.36,37 Nevertheless, how to reduce the computational

cost or achieve the good convergence is still an open problem. In
this work, for viscous flow problems, the viscous and inviscid fluxes
are evaluated simultaneously, and different flux solvers are used for
the incompressible flow and compressible flow to achieve better effi-
ciency. Particularly, the lattice Boltzmann flux solver (LBFS)38 is
adopted for incompressible isothermal and thermal flows, and the
discrete gas-kinetic flux solver (DGKFS)41 is applied for simulation
of compressible viscous flows. These two flux solvers, respectively,
use the local solution of the lattice Boltzmann equation and contin-
uous Boltzmann equation to construct the numerical flux at the cell
interface. By using such a physical treatment for the evaluation of
the numerical flux, the present 3D LSFD-FV method seems to be
competitive for simulating viscous flow problems.

A series of incompressible and compressible numerical tests are
conducted on unstructured grids to assess the accuracy, efficiency,
and robustness of the present 3D high-order LSFD-FV method.
Numerical results demonstrate that this high-order method has
the third-order of accuracy and it outperforms the conventional
low-order methods in terms of the accuracy and computational
efficiency.

II. THREE-DIMENSIONAL HIGH-ORDER LEAST
SQUARE-BASED FINITE DIFFERENCE-FINITE VOLUME
(LSFD-FV) METHOD
A. Governing equations and high-order finite volume
discretization

N–S equations are considered for a general case and discretized
by the FV method, where the conservative variables are defined
at cell centers. In the 3D case, the semi-discrete form of the N–S
equations discretized by the cell-centered FV method can be cast as

d
dt
(∫

Ωi

UdΩ) = −
Nf

∑

j=1

nGQp

∑

GQp=1
(F n,GQpA)jwGQp + ∫

Ωi

QdΩ, (1)

with

U = [ρ, ρux, ρuy, ρuz , ρE]T , (2)

where U is the vector of conservative variables and Fn represents
the flux vector in the Cartesian coordinate system. Note that the
Gaussian quadrature has been applied for the high-order accurate
computation of the integral of fluxes at the cell interface. Nf is the
number of cell faces of the control volume Ωi. nGQp, A, and wGQP
are the same as those in Ref. 29. ρ, u = (ux, uy, uz), and E are,
respectively, the density, velocity, and total energy of the fluid flow.
E = e+(u2

x + u2
y + u2

z)/2, where e = p/[(γ − 1)ρ] is the internal energy
of the mean flow. p is the pressure, and γ is the specific heat ratio.
The source term Q, which comprises all volume sources due to body
sources and volumetric heating, can be calculated directly from the
conservative variables at cell centers.

In order to obtain higher-order numerical solutions of flow
variables, the present high-order LSFD-FV method applies a Tay-
lor series expansion at the cell center with the designed order of
accuracy. For instance, the following polynomial approximates the
solution variable at the location (x, y, z) with the third-order of
accuracy,
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U(x, y, z) = U i +
∂U
∂x
∣i (x − xi) +

∂U
∂y
∣i (y − yi) +

∂U
∂z
∣i (z − zi)

+
∂2U
∂x2 ∣i

(x − xi)2

2
+
∂2U
∂y2 ∣i

(y − yi)2

2
+
∂2U
∂z2 ∣i

(z − zi)2

2

+
∂2U
∂x∂y

∣i (x − xi)(y − yi) +
∂2U
∂x∂z

∣i (x − xi)(z − zi)

+
∂2U
∂y∂z

∣i (y − yi)(z − zi), (3)

where the reference point (xi, yi, zi) is the cell centroid of Ωi. Based
on this high-order Taylor polynomial, the solution at the quadrature
points along the cell interface is interpolated with the third-order
of accuracy. This provides the basis for high-order accurate evalua-
tion of numerical fluxes. When Eq. (3) is substituted into the volume
integral in Eq. (1), the following equation can be obtained,

∫
Ωi

U(x, y)dΩ = ΩiU i + dUT
i Ci = ΩiU i +

Ni

∑

k=1
Ck
i dU

k
i , (4)

with

dUT
i = [

∂U
∂x
∣i,
∂U
∂y
∣i,
∂U
∂z
∣i,
∂2U
∂x2 ∣i,

∂2U
∂y2 ∣i,

∂2U
∂z2 ∣i,

∂2U
∂x∂y

∣i,
∂2U
∂x∂z

∣i,
∂2U
∂y∂z

∣i ],

CT
i =

⎡
⎢
⎢
⎢
⎢
⎣

x1y0z0
i, x0y1z0

i, x0y0z1
i,
x2y0z0

i

2
,
x0y2z0

i

2
,
x0y0z2

i

2
, x1y1z0

i, x1y0z1
i, x0y1z1

i

⎤
⎥
⎥
⎥
⎥
⎦

.

(5)

where xnymzl i = ∫Ωi
(x − xi)n(y − yi)m(z − zi)ldΩ. The coefficients

Ci represent the volume integral of the distance relations with
respect to the cell center and they could be diverse for different cells
in the whole flow domain. Note that Eq. (4) involves the solution
U i at the cell center and its N i unknown spatial derivatives dU i.
As shown in Eq. (5), N i is 9 when the third-order of accuracy is
expected. In this work, dU i are approximated by the mesh-free LSFD
method31,32 by using the solutions at the centers of current cell i and
its N neighboring cells, i.e.,

dUk
i =

N

∑

j=1
W i

k,j(U ij −U i), k = 1, . . . , 9, (6)

where U ij denotes the solution value at the center of the jth neigh-
boring cell to the current cell i. The details of how to determine the
coefficients W i

k,j will be presented in Sec. II B. With Eqs. (4) and (6),
Eq. (1) is rewritten as

⎛

⎝

Ωi −
9

∑

k=1
Ck
i

N

∑

j=1
W i

k,j
⎞

⎠

∂U i

∂t
+
⎛

⎝

9

∑

k=1
Ck
i

N

∑

j=1
W i

k,j
⎞

⎠

∂U ij

∂t
= −Ri, (7)

where Ri denotes the discrete form of the right-hand side of Eq. (1).
In this work, the numerical fluxes in Ri are evaluated by the specific

flux solver for different flow problems, which will be described in
Sec. II C. After applying Eq. (7) to all control cells in the flow domain,
the following matrix form can be obtained,

M
dU
dt
= −R, (8)

where U represents the solution vector composed by all control cells
and M is a sparse coefficient matrix formed by coefficients on the
left-hand side of Eq. (7). To solve the resultant ordinary differen-
tial equations efficiently, the implicit time marching techniques are
adopted.

B. Derivative approximation by least square-based
finite difference (LSFD) scheme

In this work, we apply the LSFD method31,32 to approximate the
spatial derivatives in Eq. (3). Since the number of unknowns is 9, the
same number of equations is required to construct a well-posed sys-
tem. Therefore, Eq. (3) is applied to 9 neighboring cells and a linear
system can be obtained as follows:

ŜdU = ΔÛ , (9)

with Ŝ and ΔÛ given by

Ŝ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

Δx1 Δy1 Δz1
Δx1

2

2
Δy1

2

2
Δz1

2

2 Δx1Δy1 Δx1Δz1 Δy1Δz1

Δx2 Δy2 Δz2
Δx2

2

2
Δy2

2

2
Δz2

2

2 Δx2Δy2 Δx2Δz2 Δy2Δz2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Δx9 Δy9 Δz9
Δx9

2

2
Δy9

2

2
Δz9

2

2 Δx9Δy9 Δx9Δz9 Δy9Δz9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

ΔÛT
= [U i1 −U i,U i2 −U i, . . . ,U i9 −U i],

(10)

where (Δxj, Δyj, Δzj) = (xj − xi, yj − yi, zj − zi). Through the equation
system (9), the derivative vector dU can be solved in terms of ΔÛ . In
practice, the equation system may be ill-conditioned or even singular

due to unstructured cell distribution for a general case. To overcome
this difficulty, the least square optimization and local scaling tech-
nique are used. In addition, the distance-related weighting function
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is also introduced to reduce the influence of data farther from the
reference point. Since the basic idea and procedures of such tech-
niques have been given in Refs. 29 and 30, the details are omitted
here. Finally, the derivative vector dU can be calculated by

dU =WΔU , (11)

where W is a 9 × N dimensional weighting coefficient matrix
and it is uniquely determined by the coordinates of mesh points
(centers of the current cell and its neighboring cells). In practi-
cal implementation, W is calculated once and stored for prob-
lems with the fixed computational mesh. This saves computational
effort.

C. Evaluation of numerical flux
Subsection II B addresses the derivative approximation in the

high-order LSFD-FV method. After obtaining the various deriva-
tives in Eq. (3), the flow variables at the cell interface can be inter-
polated with the third-order of accuracy. Based on this, accurate
evaluation of the numerical flux at the cell interface is discussed in
this subsection. In this work, three kinds of flux solvers are applied
to compute the flux physically. For incompressible isothermal and
thermal flows, the LBFS38 is adopted and it can evaluate the inviscid
and viscous fluxes simultaneously by local reconstruction of lattice
Boltzmann solution. For compressible inviscid flows, the compress-
ible LBFS39,40 based on the non-free parameter D1Q4 model is used
to compute the inviscid flux at the cell interface. In the simulation
of compressible viscous flows, the DGKFS41 is applied for simul-
taneous evaluation of the inviscid and viscous fluxes by the local
solution of the continuous Boltzmann equation. These flux solvers
have been applied in many problems42–44 and have shown good
features, such as excellent computational efficiency and easy imple-
mentation. Therefore, with applying them for specific flow prob-
lems, the present high-order solver would present a competitive
performance in simulating various incompressible and compressible
flows.

For simplicity, the development and derivation of the above
flux solvers are briefly reviewed. Special attention is paid to their
implementation in the present solver and effect on the overall accu-
racy. To apply these flux solvers in the present 3D unstructured
LSFD-FV method with ease, a local coordinate system is introduced
at the cell interface. In such a local coordinate system, the direc-
tions are the outward normal direction and two tangential directions
of the cell interface, which are, respectively, denoted by the sub-
scripts “1,” “2,” and “3.” Details of these three flux solvers in the local
coordinate system are shown below.

First, the LBFS for both isothermal and thermal incompress-
ible flows is introduced. Following the work of Wang et al.,38 the
N–S equations can be recovered through multiscale Chapman–
Enskog expansion analysis to the thermal lattice Boltzmann equa-
tion in the low Mach number limit, which gives the interface flux

F = (F1, F2, F3, F4, F5)T in the local coordinate system as follows:

F1 =
Nd

∑

α=0
(eα)1f

eq
α ,

F2 =
Nd

∑

α=0
(eα)1(eα)1[f

eq
α + (1 − 1/2τν)f neqα ],

F3 =
Nd

∑

α=0
(eα)1(eα)2[f

eq
α + (1 − 1/2τν)f neqα ],

F4 =
Nd

∑

α=0
(eα)1(eα)3[f

eq
α + (1 − 1/2τν)f neqα ],

F5 =
Nd

∑

α=0
(eα)1[g

eq
α + (1 − 1/2τκ)gneqα ],

(12)

where eα is the lattice velocity vector, and the single relaxation
parameters τν and τκ are, respectively, related to the dynamic viscos-
ity and thermal diffusivity. f eqα denotes the equilibrium density distri-
bution function along the α direction, and f neqα is the corresponding
non-equilibrium distribution function. geqα denotes the equilibrium
internal energy distribution function along the α direction, and gneqα
is the corresponding non-equilibrium distribution function. Nd + 1
is the number of discrete particle velocities in the lattice Boltzmann
model. In the present study, the commonly used D3Q15 lattice
model (Nd + 1 = 15) is applied and the corresponding f eqα and geqα
are referred to Ref. 38. τν and τκ in Eq. (12) are determined from the
kinematic viscosity ν and thermal diffusivity κ by

ν = (τν − 1/2)c2
s δt , (13)

κ = [5(τκ − 1/2)cs2δt]/3, (14)

where δt denotes the streaming time step, which equals the lattice
spacing, and cs is the sound speed. The non-equilibrium distribution
functions f neqα and gneqα are approximated by

f neqα (r, t) = −τν[f eqα (r, t) − f eqα (r − eαδt , t − δt)] + O(δ2
t ), (15)

gneqα (r, t) = −τκ[geqα (r, t) − geqα (r − eαδt , t − δt)] + O(δ2
t ), (16)

where r is the physical location of the Gaussian quadrature
point along the cell interface and t is the time. f eqα (r, t) and
f eqα (r − eαδt , t − δt) are the equilibrium density distribution func-
tions at r and its surrounding nodes r − eαδt , respectively. geqα (r, t)
and geqα (r − eαδt , t − δt) are the equilibrium internal energy distribu-
tion functions at the corresponding locations.

To calculate f neqα (r, t) and gneqα (r, t), the flow variables at the
location r − eαδt are interpolated first by using Eq. (3) with the third-
order of accuracy based on the information at cell centroids ri and
rj, i.e.,

U(r − eαδt) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

U(ri) +∇U(ri)ΔXi +
1
2
ΔXT

i H(Xi)ΔXi + O(ΔX3
), (r − eαδt) ∈ Ωi,

U(rj) +∇U(rj)ΔXj +
1
2
ΔXT

j H(Xj)ΔXj + O(ΔX3
), (r − eαδt) ∈ Ωj,

(17)
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with

ΔXk = [(r − eαδt − rk)x, (r − eαδt − rk)y, (r − eαδt − rk)z]
T

,

k = i or j.
(18)

∇U and H are given by

∇U = (
∂U
∂x

,
∂U
∂y

,
∂U
∂z
),H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (19)

where the derivatives are approximated by the LSFD method as
introduced in Subsection II B. Once the required flow variables are
available, all the equilibrium density and internal energy distribu-
tion functions in Eqs. (15) and (16) can be computed following the
derivations in Ref. 38. In this way, f neqα (r, t) and gneqα (r, t) can be,
respectively, calculated, and then, the flux vector F = (F1, F2, F3, F4,
F5)T in Eq. (12) can be obtained.

As stated previously, the whole flux F is computed in the local
coordinate system by the LBFS. However, in the practical calcula-
tion, the flux F n in Eq. (1) is defined in the global coordinate system.
Thus, the transformation as the following form should be adopted,

Fn = (F1,F2n1x + F3n2x + F4n3x,F2n1y + F3n2y + F4n3y,

F2n1z + F3n2z + F4n3z ,F5)
T , (20)

where n1 = (n1x, n1y, n1z) is the unit vector in direction “1” of the
local coordinate system. n2 = (n2x, n2y, n2z) and n3 = (n3x, n3y, n3z)
are, respectively, the unit vectors in directions “2” and “3.”

Second, the non-free parameter D1Q4 compressible LBFS39,40

is introduced to simulate inviscid compressible flows in the present
high-order method. For simplicity, it is hereinafter referred to as the
D1Q4 model. In this model, the discrete lattice velocities contain 4
equilibrium distribution functions gi, i = 1–4, and 2 lattice velocities
d1 and d2. gi are determined from the moment relationships corre-
sponding to Euler equations, and the lattice velocities are computed
from two appended high-order moment relationships. The expres-
sions of gi, d1, and d2 can refer to Refs. 39 and 40. Following the work
of Yang et al.,40 the inviscid flux at the cell interface can be expressed
as

F =
4

∑

i=1
ξiϕagi(r, t) + τ0[

4

∑

i=1
ξiϕagi(r − ξiδt , t − δt) −

4

∑

i=1
ξiϕagi(r, t)]

= FI
c + τ0[FII

c − F
I
c], (21)

where τ0 is the dimensionless relaxation time and ξi is the lattice
velocity in the i direction. Generally, τ0 = tanh[10(|pL − pR|)/(pL
+ pR)], where tanh(x) is the hyperbolic tangent function, and pL
and pR are the pressure at the left and right sides of the cell inter-
face. When strong shock waves are considered, a switch function is
introduced and the details can be found in Ref. 40. ϕa represents the
moment vector, which can be written as

ϕa = (1, ξin1x + uτx, ξin1y + uτy, ξin1z + uτz , (ξ2
i + ∣uτ ∣2)/2 + ep)

T
,

(22)

where ep = [1 − (γ − 1)/2]e refers to the potential energy of par-
ticles and the tangential velocity vector is uτ = (uτx, uτy, uτz) = u
− u1n1. It is clear in Eq. (21) that the total inviscid flux consists of the
fluxes attributed to the equilibrium distribution functions at the cell
interface gi(r, t) and at the surrounding points of the cell interface
gi(r − ξiδt , t − δt). We can calculate gi(r − ξiδt , t − δt) according to
the location of r − ξiδt as follows:

gi(r − ξiδt , t − δt) =
⎧
⎪⎪
⎨
⎪⎪
⎩

gLi , i = 1, 3,

gRi , i = 2, 4,
(23)

where gLi and gRi denote the equilibrium distribution functions at the
left and right sides of the cell interface, which are calculated from the
corresponding conservative variables based on the expressions of gi.
In the present high-order method, these conservative variables are
interpolated by the way like Eq. (17) with the third-order of accu-
racy. If there exists the discontinuity, the shock-capturing technique
would be used during the interpolation process. The conservative
variables at the cell interface are then computed by

U(r, t) = ∑
i=1,3

ϕag
L
i + ∑

i=2,4
ϕag

R
i . (24)

With Eq. (24), the primitive variables ρ, u1, uτ , p at the cell interface
used to compute gi(r, t) can be obtained. Once gi(r, t) and gi(r −
ξiδt , t − δt) are both available, the flux FI

c and FII
c can be computed

explicitly via the following equations:

Fc
I
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu1

(ρu1u1 + p)n1x + ρu1uτx

(ρu1u1 + p)n1y + ρu1uτy

(ρu1u1 + p)n1z + ρu1uτz

(ρ(u1u1/2 + e) + p)u1 + ρu1∣uτ ∣2/2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

Fc
II
= ∑

i=1,3
ξiϕag

L
i + ∑

i=2,4
ξiϕag

R
i . (26)

The whole flux F in the local coordinate system is finally com-
puted by Eq. (21). As stated previously, the flux F n in Eq. (1),
which is defined in the global coordinate system, can be obtained via
Eq. (20).

Finally, the DGKFS41 adopted in this high-order LSFD-FV
method for compressible viscous flows is presented. In the DGKFS,
the D3Q8 discrete velocity model is applied. It defines eight discrete
points on a spherical surface with the radius c and center u = (u1,
u2, u3). Since the moment integrations to recover N–S equations by
the continuum Boltzmann equation can be accurately replaced with
the integral quadrature, the conservative variables and numerical
fluxes can be computed by the weighted summation of distribution
functions with the D3Q8 model. The formulations of the equilib-
rium distribution functions gq and discrete velocities ξq are given in
Ref. 41. With the D3Q8 model, the fluxes at the cell interface can be
computed by the DGKFS as the following numerical integrations:

F = (F1,F2,F3,F4,F5 )
T
=

8

∑

q=1
ξq,1ϕqfqΔS, (27)
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where ΔS = π/2 and ϕq stands for the moment vector given by

ϕq = (1, ξq,1, ξq,2, ξq,3,
1
2
∥ξq∥

2 + ep,q)
T

. (28)

The distribution function fq at the cell interface, i.e., fq(r, t), can be
expressed as

fq(r, t) = gq(r, t) + τ0[gq(r − ξqδt , t − δt) − gq(r, t)] + O(δ2
t ), (29)

where gq(r, t) and gq(r − ξqδt , t − δt) are, respectively, the equilib-
rium distribution functions at the cell interface and at the discrete
points on the sphere. For convenience, “(r, t)” and “(r − ξqδt , t − δt)”
are, respectively, noted by superscripts “face” and “sph.” Substituting
Eq. (29) into Eq. (27), the flux vector F can be obtained by

F =
8

∑

q=1
ξfaceq,1 ϕface

q gfaceq ΔS + τ0

⎡
⎢
⎢
⎢
⎢
⎣

8

∑

q=1
ξsphq,1 ϕ

sph
q gsphq ΔS −

8

∑

q=1
ξfaceq,1 ϕface

q gfaceq ΔS
⎤
⎥
⎥
⎥
⎥
⎦

= FI + τ0[FII
− FI
]. (30)

Clearly, the flux F contains two parts: one is the flux FI

attributed to the equilibrium distribution functions and moments
at the cell interface and the other is the flux FII attributed to the
equilibrium distribution functions and moments on the spherical
surface. The conservative variables at the discrete points on the
spherical surface U sph

q are computed like the way in Eq. (17) with
ΔXi = ( (r − ξ+

qδt − ri)x, (r − ξ+
qδt − ri)y, (r − ξ+

qδt − ri)z )
T . ξ+

q is
the predicted particle velocity at the cell interface, and it can be
approximated based on the Roe-average.41 When the flow field is
not smooth, the slope limiter would be applied in the interpola-
tion process to suppress the numerical oscillation in the vicinity of
discontinuities. Based on U sph

q , the particle velocities ξsphq , particle
potential energy esphp,q , and equilibrium distribution function gsphq can
be computed. Then, the flux FII is obtained by

FII
=

8

∑

q=1
ξsphq,1 ϕ

sph
q gsphq ΔS =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8
∑

q=1
ξsphq,1 g

sph
q ΔS

8
∑

q=1
ξsphq,1 ξ

sph
q,1 g

sph
q ΔS

8
∑

q=1
ξsphq,1 ξ

sph
q,2 g

sph
q ΔS

8
∑

q=1
ξsphq,1 ξ

sph
q,3 g

sph
q ΔS

8
∑

q=1
ξsphq,1 [∥ξ

sph
q,1 ∥

2
/2 + esphp,q ]g

sph
q ΔS

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31)

According to the compatibility condition, the conservative
variables at the cell interface can be computed by

U face
=

8

∑

q=1
ϕsph
q gsphq ΔS. (32)

FI can then be calculated by substituting the conservative variables
U face directly into the expression of inviscid flux, i.e.,

FI
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu1
ρu1u1 + p
ρu1u2
ρu1u3

(ρE + p)u1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

face

. (33)

Finally, the whole flux F in the local coordinate system is obtained
by Eq. (30), and the flux F n in the global coordinate system can be
computed by Eq. (20).

Up to this point, the three flux solvers and their implementation
in the present high-order LSFD-FV method have been introduced.
In the flux solvers discussed above, the solution is reconstructed
physically and locally at every Gaussian quadrature point along the
cell interface. This means that different δt could be chosen for dif-
ferent interfaces, which provides great flexibility for application on
unstructured grids. Meanwhile, due to the independence between
the time marching step ∆t and the streaming time step δt (δt is only
used in the solution reconstruction), the choice of small δt would not
affect the time evolution process in the present method. Basically, in
the 3D case, the limitation of δt implies that discrete particles/points
in the physical space constructed around the Gaussian quadrature
point must be within the right and left cells of the interface to avoid
extrapolation. In this work, δt is determined by

δt =
⎧
⎪⎪
⎨
⎪⎪
⎩

(
1
2 −

1
2
√

3
)hmin, LBFS

[(
1
2 −

1
2
√

3
)hmin]/(max{u+

1 ,u+
2 ,u+

3} + c+
), DGKFS,

(34)

where hmin is the minimum edge length of the left and right cells of
the interface for a hexahedral mesh or the radius of the inscribed
sphere in the left and right cells of the interface for a tetrahedral
mesh.

III. NUMERICAL RESULTS AND DISCUSSIONS
In this section, the accuracy, computational efficiency, and

robustness of the developed high-order LSFD-FV method are
assessed by simulating a series of 3D incompressible and com-
pressible benchmark cases. All simulations are done on a PC with
2.30 GHz CPU.

A. Advection of density perturbation problem
for accuracy test

First, the advection of density perturbation45 for the 3D flow is
presented to validate the order of accuracy. The initial condition of
this problem is set as follows:

ρ(x, y, z) = 1 + 0.2 sin(π(x + y + z)),
u(x, y, z) = 1, v(x, y, z) = 1,w(x, y, z) = 1, p(x, y, z) = 1.

(35)

The exact solution under periodic boundary conditions is

ρ(x, y, z, t) = 1 + 0.2 sin(π(x + y + z − t)),
u(x, y, z, t) = 1, v(x, y, z, t) = 1,w(x, y, z, t) = 1, p(x, y, z, t) = 1.

(36)

Numerical tests are conducted on the computational domain
of [0, 2] × [0, 2] × [0, 2]. The uniform hexahedral grids with the
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FIG. 1. Density contours obtained by the high-order LSFD-
FV method (left) and the exact solutions (right) for the 3D
advection of density perturbation on uniform hexahedral
meshes with h = 1/10.

FIG. 2. Density contours obtained by the high-order LSFD-
FV method (left) and the exact solutions (right) for the 3D
advection of density perturbation on tetrahedral mesh with
h = 1/10.

mesh size from h = 1/10 to 1/30 and the unstructured tetrahedral
grids with almost equivalent mesh size from h = 1/5 to 1/15 are used.
Results at t = 2 are extracted. The density contours computed by the
high-order LSFD-FV method on uniform hexahedral and tetrahe-
dral grids with h = 1/10 are, respectively, presented in Figs. 1 and 2,
in which good agreements with the analytical solutions are observed.
For quantitative comparison, the L2 errors and convergence orders

TABLE I. Accuracy test of the LSFD-FV method on hexahedral grids for the 3D
advection of density perturbation.

Schemes Grid size L2 errors Order

2nd order LSFD-FV

1/10 2.29× 10−2

1/15 9.94× 10−3 2.054
1/20 5.58× 10−3 2.006
1/30 2.49× 10−3 1.991

3rd order LSFD-FV

1/10 6.98× 10−3

1/15 2.06× 10−3 3.006
1/20 8.61× 10−4 3.041
1/30 2.51× 10−4 3.037

on the hexahedral and tetrahedral meshes are, respectively, given in
Tables I and II. These results show that the expected accuracy can be
achieved for the developed high-order LSFD-FV method in the 3D
case. Moreover, the high-order LSFD-FV method has smaller rel-
ative errors than the second-order one, which indicates the higher
accuracy of the high-order method on the same mesh. This con-
clusion can also be visualized through the change curves in Fig. 3.
The efficiency comparison shown in Fig. 4 offers evident proof that
the high-order LSFD-FV method possesses better computational

TABLE II. Accuracy test of the LSFD-FV method on tetrahedral grids for the 3D
advection of density perturbation.

Schemes Grid size L2 errors Order

2nd order LSFD-FV
1/5 1.79× 10−2

1/10 3.32× 10−3 2.430
1/15 1.41× 10−3 2.101

3rd order LSFD-FV
1/5 1.39× 10−2

1/10 1.95× 10−3 2.837
1/15 4.83× 10−4 3.443
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FIG. 3. L2 error of density on hexahedral mesh (left) and tetrahedral mesh (right) for different schemes.

FIG. 4. Efficiency comparison on hexahedral mesh (left) and tetrahedral mesh (right) for different schemes.

efficiency than the second-order one when the same accuracy of the
solution is pursued.

B. Lid-driven cavity flow
The lid-driven cavity flow in a cube is then simulated to demon-

strate the ability of the present high-order FV method with the LBFS
in modeling 3D incompressible viscous flow problems. The physi-
cal configuration of this problem is common and can be found in
many previous studies.15,46–48 In this case, the flow is dominated by
the Reynolds number defined as Re = ρu0L/μ, where u0 denotes the
velocity of the lid, L is the length of the cubic cavity, and μ refers to
the dynamic viscosity. The flow parameters applied in the simulation
are given as ρ = 1, u0 = 0.1, and L = 1. Initially, the dynamic viscosity
can be computed from the Reynolds number, and then, the single
relaxation parameter can be obtained. Three cases of Re = 100, 400,
and 1000 are considered here. The 40 × 40 × 40 non-uniform mesh
shown in Fig. 5 is used for the simulations at Re = 100 and 400. The
60 × 60 × 60 uniform mesh is used for the case at Re = 1000. FIG. 5. Mesh used for the three-dimensional lid-driven cavity flow.
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FIG. 6. Three-dimensional lid-driven cavity flow: comparison of the u-velocity (left) and w-velocity (right) profiles along vertical and horizontal central lines at the x–z plane
with y = 0 at (a) Re = 100, (b) Re = 400, and (c) Re = 1000.
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The results obtained by the third-order LSFD-FV method are
extracted, and the results of Shu et al.46 using the global method
of differential quadrature are taken as the benchmark data. In addi-
tion, for comparison purposes, the second-order method is also used
to simulate the three cases on the same mesh. Figure 6 shows the
computed w-velocity profiles along the horizontal centerline and u-
velocity profiles along the vertical centerline at the x–z plane with y

= 0.5 for different Reynolds numbers. Clearly, on the coarse grids,
the results obtained by the third-order LSFD-FV method match
well with the benchmark data and they are in better agreement
with the reference data than those of the second-order method.
Moreover, the streamlines calculated by the third-order LSFD-FV
method at the y–z plane with x = 0.5, x–z plane with y = 0.5, and
x–y plane with z = 0.5 at three different Reynolds numbers are

FIG. 7. Three-dimensional lid-driven cavity flow: the streamlines at the y–z plane with x = 0.5, x–z plane with y = 0.5, and x–y plane with z = 0.5 (from left to right) for (a) Re
= 100, (b) Re = 400, and (c) Re = 1000.

Phys. Fluids 32, 123604 (2020); doi: 10.1063/5.0032089 32, 123604-10

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

presented in Fig. 7. It is observed that the flow patterns agree fairly
well with those reported in Refs. 15 and 38. Thus, it can be con-
cluded that the present high-order LSFD-FV method can simulate
the 3D incompressible viscous flows reliably with the high-order
accuracy.

C. Natural convection in a cubic cavity
The natural convection in a cubic cavity serves as a classic

benchmark problem in validating the performance of numerical
methods for simulation of the 3D thermal flows. In this problem,
two vertical walls at x = 0 and x = L, respectively, have a cool
temperature of T0 = 0 and a hot temperature of T1 = 1. Other four

walls are adiabatic. The no-slip boundary conditions are applied
on all walls. The flow pattern of this test example is governed by
two dimensionless parameters, i.e., the Prandtl number Pr and the
Rayleigh number Ra. Here, the Rayleigh number Ra is defined as

Ra =
gβ(T1 − T0)L3

νκ
=
V2
c L2

νκ
, (37)

where Vc =
√

gβLΔT is the characteristic thermal velocity con-
strained by the low Mach number limit, ν denotes the kinematic
viscosity, g denotes the gravity acceleration, β is the thermal expan-
sion coefficient, and L is the characteristic length of the cubic

FIG. 8. Temperature contours on the y = 0.5 plane for natural convection in a cubic cavity by the high-order LSFD-FV method with LBFS at different Rayleigh numbers: (a)
Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.
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cavity. The effect of the temperature field on the flow field is con-
sidered by the buoyancy force, which is exerted on the momentum
equation as a source term Q = [0, 0, −ρgβ(T − Tm),0]T according to
the Boussinesq approximation. Tm is the average temperature of the
flow field. For this test case, we set Pr = 0.71 and Vc = 0.1. Four cases
of the Rayleigh number Ra = 103, 104, 105, and 106 are simulated.
All simulations are conducted on a hexahedral mesh with 40 × 30
× 30 cells by the high-order LSFD-FV method with the LBFS for
flux evaluation.

The computed isotherms on the y = 0.5 plane at various
Rayleigh numbers of 103–106 are visualized in Fig. 8. Denser
isotherms squeezed close to the isothermal walls are observed in

the case at high Rayleigh numbers, which agrees well with those
obtained by Wang et al.38 using the second-order FV method with
the LBFS on uniform 80 × 80 × 80 hexahedral grids and Chen et al.49

using the simplified lattice Boltzmann method on non-uniform 80
× 40 × 80 hexahedral grids. These successful predictions of abrupt
flow changes by coarse uniform meshes show that the developed
high-order LSFD-FV method enjoys higher accuracy than the con-
ventional second-order method. Furthermore, Fig. 9 compares the
obtained u—velocity along the vertical centerline and w—velocity
along the horizontal centerline on the y = 0.5 plane with the results of
Yang et al.50 computed by a second-order simple gas-kinetic scheme.
Clearly, good agreements are achieved.

FIG. 9. Comparison of the profiles of u—velocity along the vertical centerline and w—velocity along the horizontal centerline on the y = 0.5 plane for natural convection in a
cubic cavity by second- and high-order LSFD-FV methods with LBFS at different Rayleigh numbers: (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.
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For quantitative comparison, the mean Nusselt number on the
y = 0.5 plane at the hot wall and the overall Nusselt number at the
hot wall defined as follows are compared,

Numean(y) = ∫
1

0

∂T(y, z)
∂x

∣

x=1
dz, (38)

Nuoverall = ∫
1

0
Numean(y)dy. (39)

The detailed comparisons with the reference data reported in the
literature38,50,51 are shown in Table III, where the maximum rel-
ative error of the high-order method is found to be within 1.6%.
Such a good accordance validates the correctness of the high-order
LSFD-FV method in the 3D scenario. In addition, it can be seen

from Table III that the high-order LSFD-FV method outperforms
the second-order method in terms of the accuracy due to the
smaller relative error. Moreover, the comparisons of computational
efficiency and memory cost between the high- and second-order
methods are presented in Table IV. It can be observed that more
than 4 times CPU time and larger virtual memory are required
by the second-order method to achieve comparable results of the
high-order method. This observation indicates that the high-order
LSFD-FV method has better computational efficiency.

D. Flow around ONERA M6 wing
To further quantitatively assess the performance of the present

high-order LSFD-FV method in simulating the 3D compressible
flow problems with complex configurations, the case of transonic
flow around the ONERA M6 wing is tested. In this numerical

TABLE III. Comparison of representative field properties along the symmetric plane at y = 0.5 for 3D natural convection at four
different Rayleigh numbers: Ra = 103, 104, 105, and 106. Boldface values denote those computed by the LSFD-FV methods.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

umax

Wang et al.38 0.132 0.200 0.142 0.082
Yang et al.50 0.132 0.198 0.142 0.081
Fusegi et al.51 0.131 0.201 0.147 0.084
3rd order LSFD-FV 0.132 0.198 0.140 0.080
2nd order LSFD-FV 0.136 0.202 0.148 0.085

Z

Wang et al.38 0.187 0.176 0.147 0.146
Yang et al.50 0.179 0.179 0.142 0.142
Fusegi et al.51 0.200 0.183 0.145 0.144
3rd order LSFD-FV 0.179 0.174 0.147 0.141
2nd order LSFD-FV 0.167 0.174 0.133 0.141

wmax

Wang et al.38 0.133 0.221 0.244 0.253
Yang et al.50 0.133 0.221 0.245 0.255
Fusegi et al.51 0.132 0.225 0.247 0.259
3rd order LSFD-FV 0.133 0.221 0.244 0.261
2nd order LSFD-FV 0.138 0.228 0.266 0.280

x

Wang et al.38 0.829 0.885 0.932 0.968
Yang et al.50 0.821 0.883 0.932 0.957
Fusegi et al.51 0.833 0.883 0.935 0.967
3rd order LSFD-FV 0.821 0.882 0.940 0.960
2nd order LSFD-FV 0.821 0.882 0.940 0.960

Numean

Wang et al.38 1.092 2.289 4.622 8.921
Yang et al.50 1.088 2.251 4.606 8.771
Fusegi et al.51 1.105 2.302 4.646 9.012
3rd order LSFD-FV 1.088 2.251 4.585 8.639
2nd order LSFD-FV 1.099 2.359 5.076 10.163

Nuoverall

Wang et al.38 1.071 2.062 4.344 8.684
Yang et al.50 1.071 2.055 4.331 8.540
Fusegi et al.51 1.085 2.085 4.361 8.770
3rd order LSFD-FV 1.071 2.056 4.319 8.432
2nd order LSFD-FV 1.080 2.155 4.798 9.965
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TABLE IV. Comparison of computational cost of the third-order and second-order LSFD-FV methods for natural convection in a cubic cavity at Ra = 104.

Methods Third order LSFD-FV Second order LSFD-FV Second order LSFD-FV

Grids 40 × 30×30 40 × 30×30 100 × 100×100
Numean 2.251 2.359 2.289
Nuoverall 2.056 2.155 2.090
Virtual memory (Megabytes) 431.5 286.8 1 898.1
Iteration steps 8 544 8617 20 929
Computational time (s) 26 505.9 7697.9 115 629.5

simulation, the free-stream Mach number is 0.84 and the angle of
attack is 3.06

○

. The computational mesh contains 347 718 tetrahe-
dral cells, where 13 236 triangular cells are set on the surfaces of the
wing as shown in Fig. 10.

Figure 11 depicts the pressure contours obtained by the present
high-order LSFD-FV method. The “λ” shape shock wave on the
upper surface of the wing can be clearly seen, which agrees well
with the results reported by Yang et al.52 Figure 12 shows the
pressure coefficient distributions at selected spanwise locations
computed by the high-order LSFD-FV method. The experimen-
tal results53 are also presented in Fig. 12 for comparison. The
results of the high-order LSFD-FV method quantitatively agree
well with the experimental data. Overall, the above results con-
firm the capability of the present high-order FV method for sim-
ulation of non-smooth compressible inviscid flows with complex
geometry.

E. Steady subsonic viscous flow around a sphere
To test the performance of the developed high-order LSFD-

FV method in simulating the 3D compressible viscous flows with

FIG. 10. Unstructured mesh on the walls and symmetry boundary of the ONERA
M6 wing.

curved boundaries, the problem of the steady viscous flow around a
sphere54 is solved. The Reynolds number is set to be 118 based on
the spherical diameter, and the inlet Mach number is 0.2535, which
is in line with the experimental condition55 and the computational
condition.54,56 The spherical diameter is taken as 1, and the compu-
tational domain is a cylinder whose diameter is 10 and height is 25.
This computational domain is discretized by 576 631 tetrahedrons,
and there are 5574 triangular cells on the walls. The mesh near the
sphere is refined, and the corresponding mesh size is set as h = 0.04.
Figure 13 shows the computational mesh.

Since the flow field in this simulation is smooth, no shock-
capturing technique is required. The computations are conducted
using the second- and high-order methods with the DGKFS.
Figure 14 presents the computed Mach number contours and
streamlines near the wake region by the high-order LSFD-FV
method. It can be confirmed that the obtained Mach number con-
tours, streamlines, and the size of the separation zone are in good
agreement with both the experimental data and the numerical results
in the literature shown in Fig. 15. To quantitatively validate the cor-
rectness of the computed results, the computed drag coefficients,

FIG. 11. Pressure contours obtained by the high-order LSFD-FV method for flow
around the ONERA M6 wing.
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FIG. 12. Comparison of pressure coefficient distributions on the ONERA M6 wing at the (a) 20%, (b) 44%, (c) 65%, (d) 80%, (e) 90%, and (f) 95% spanwise stations.
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FIG. 13. Computational mesh for the subsonic viscous flow around a sphere. Top:
entire mesh; bottom: mesh around the sphere.

predicted separation angle θs, and wake length Ls by the second- and
high-order methods are compared with the data reported in Refs. 27,
54, 56, and 57. The details are tabulated in Table V, where the results
of the high-order scheme agree better with the reference data than
the second-order one. This observation validates the correctness and

FIG. 14. (a) Mach number contours and (b) streamlines near the wake region
obtained by the high-order LSFD-FV method for the steady subsonic viscous flow
around a sphere.

FIG. 15. (a) Mach number contours and (b) streamlines reported in Ref. 56, and
(c) streamlines reported in Ref. 55 near the wake region for the steady subsonic
viscous flow around a sphere.

robustness of the high-order LSFD-FV method in solving the 3D
compressible viscous flow with curved boundaries on unstructured
mesh.

F. Steady supersonic viscous flow around a sphere
The supersonic flow around a sphere is further tested to assess

the capacity of the current method for capturing the shock wave. In
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TABLE V. Comparison of separation angle θs, wake length Ls, and drag coefficient
Cd for the steady subsonic viscous flow around a sphere. Boldface values denote
those computed by the LSFD-FV methods.

Re Cd θs (deg) Ls/D

118

Haga et al.54 . . . 123.6 . . .
Cheng et al.56 1.0162 123.7 0.96
Castonguay57 1.0162 123.6 . . .
Sun et al.27 . . . 123.6 1.04
2nd order LSFD-FV 1.0245 129.3 0.94
3rd order LSFD-FV 1.0156 123.7 0.96

the simulation, the Reynolds number based on the spherical diame-
ter and the inlet Mach number are 300 and 2, respectively. Under
these conditions, as discussed in Ref. 58, the flow field becomes
steady and axisymmetric.

Figure 16 presents the flow domain used in the simulation.
It is centered around the sphere whose diameter D is 1. The far
field boundary is at 24.8D. There are 362 880 hexahedrons to dis-
cretize the flow domain. Near the sphere, the computational grid is
refined with a mesh size of h = 0.023. No-slip and far field bound-
ary conditions are, respectively, enforced on the sphere and the far
field boundaries. In Fig. 17, the streamlines and Mach number con-
tours near the wake region obtained by the high-order LSFD-FV
method are depicted. Clearly, stable and axisymmetric flow struc-
tures are obtained. To quantitatively assess the results, Table VI
compares some characteristic parameters computed by the present
high-order method, i.e., the drag coefficient Cd, shock stand-off dis-
tance Lssd, separation angle θs, and wake length Ls, with those in the
literature.58–60 It is observed that the results are in good agreement.
These outcomes well validate the capability of the current method
for capturing the shock waves in supersonic flow problems.

FIG. 16. Computational mesh for the supersonic viscous flow around a sphere.

FIG. 17. (a) Mach number contours and (b) streamlines near the wake region in the
x–y plane obtained by the high-order LSFD-FV method for the steady supersonic
viscous flow around a sphere.

TABLE VI. Comparison of drag coefficient Cd , shock stand-off distance Lssd , sepa-
ration angle θs, and wake length Ls for the steady supersonic viscous flow around a
sphere. Boldface values denote those computed by the LSFD-FV methods.

Re Cd Lssd θs (deg) Ls/D

300

Nagata et al.58 1.387 0.20 150.0 0.36
Riahi et al.59 1.41 0.20 . . . 0.5
Nagata et al.60 1.452 . . . 148.6 0.39
3rd order LSFD-FV 1.395 0.21 149.7 0.36
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IV. CONCLUSIONS
In this paper, a 3D high-order least square-based finite

difference-finite volume method on unstructured grids is pro-
posed for incompressible and compressible flows. This 3D LSFD-FV
method directly applies a Taylor series expansion within each con-
trol cell as the solution approximation polynomial. The unknown
derivatives are approximated by the mesh-free LSFD scheme. Due to
such straightforward and simple approaches of solution approxima-
tion and derivative approximation, the resultant LSFD-FV method
is user-friendly and easy to implement. Various flux solvers are
adopted to evaluate the fluxes at the cell interface. Especially for
simulations of incompressible and compressible viscous flows, the
LBFS and GKFS are, respectively, applied. In this process, the invis-
cid and viscous fluxes are simultaneously computed, which avoids
additional treatments for the viscous discretization. This makes the
LSFD-FV method be competitive in simulating viscous flow prob-
lems. Due to the application of the mesh-free LSFD method and
flux solvers at each cell interface, the LSFD-FV method is flexible for
solving problems with complex geometries on unstructured grids.

The performance of the 3D high-order LSFD-FV method is
examined systematically by representative incompressible and com-
pressible benchmark cases. First, the third-order of accuracy is vali-
dated on both hexahedral and tetrahedral grids. Second, the numer-
ical results of the high-order LSFD-FV method agree better with
the benchmark data than the conventional low-order method on
the same grids. Additionally, the present high-order method out-
performs the low-order one in terms of computational efficiency.
For instance, for natural convection in a cubic cavity at Ra = 104,
the high-order LSFD-FV method takes only about 22.9% computa-
tional time and 22.7% virtual memory of the low-order method to
get converged results. Furthermore, the present high-order method
successfully simulates the compressible flows with complex geome-
tries on relatively coarse tetrahedral grids, which demonstrates its
capability of handling unstructured mesh. Given the performance
stated above, this 3D high-order LSFD-FV method looks promising
in practical problems of engineering interest.
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