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Abstract

Motivated by recent interests in plasma assisted combustion (PAC), theoretical investigation on the
ignition of pre-mixture by radical deposition is performed. Thermally sensitive intermediate kinetics are
considered and the governing equations for temperature and mass fractions of fuel and radical are solved
analytically. The correlation depicting the evolution of flame kernel resulted from radical and/or heat
deposition is derived. Based on this correlation, we study the flame bifurcation and critical condition
for the ignition caused by radical as well as heat deposition. The emphasis is placed on investigating the
effects of fuel and radical Lewis numbers. For ignition by radical deposition only, it is demonstrated that
the fuel Lewis number has a pronounced influence on the flame propagation and flame bifurcation. With
the increase of the fuel Lewis number, new flame branches and bifurcations are observed. It is found that
there are two regimes in the change of the minimum chemical ignition power with the fuel Lewis number.
Unlike the fuel Lewis number, the radical Lewis number only has a quantitative influence on the flame
bifurcation and critical ignition condition. For ignition by radical and thermal deposition, the flame tra-
jectory and flame bifurcation are found to be strongly affected by additional heat deposition. The minimum
chemical and thermal ignition powers are compared, and the ignition efficiency of pure chemical ignition
and pure thermal ignition is shown to strongly depend on the fuel and radical Lewis numbers. Moreover,
the validity of theoretical results describing the effects of fuel and radical Lewis numbers on the minimum
ignition energy is confirmed qualitatively by transient numerical simulations including thermal expansion
and detailed chemistry.
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1. Introduction

Ignition is the process whereby a medium capa-
ble of reacting exothermically is brought to a state
of rapid combustion and it is one of the most
important problems in combustion. Understand-
ing of the ignition process and critical ignition con-
dition is important not only for fundamental
combustion research but also for developing high
ute. Published by Elsevier Inc. All rights reserved.
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performance combustion engines. It is well known
that successful ignition depends on the amount of
energy in the form of heat and/or radicals depos-
ited into a combustible mixture. If the energy is
smaller than the so-called minimum ignition energy
(MIE), the resulting flame kernel decays rapidly
because heat/radicals conducts/diffuse away from
the kernel and the dissociated species recombine
faster than they are generated by chemical
reactions within the ignition kernel [1].

In the literature, there are many theoretical
studies on the ignition process [1–9]. However,
all these studies only consider ignition caused by
heat deposition, and there is no theoretical study
on the ignition by radical deposition. In practical
ignition process, radicals as well as heat are gener-
ated by the spark and these radicals also support
flame kernel propagation. In fact, in recent studies
on plasma assisted combustion (PAC) [10–12], the
chemical effect of radical generated by non-
equilibrium plasma is found to be much stronger
than the thermal effect on ignition and flame
stabilization. Therefore, it is of great significance
to understand the ignition by radical deposition.

Some numerical studies on the ignition by rad-
ical have been conducted. For examples, Dixon-
Lewis and Shepherd [13] studied the influence of
radicals appeared in the initial ignition stage on
the ignition process, Wiriyawit and Dabora [14]
investigated the combined effects of chemical and
thermal ignition in hydrogen/air mixtures, Sloane
et al. [15,16] studied the influence of chemical
and thermal ignition on the MIE and ignition
delay, and Beduneau et al. [17] examined the effects
of radicals generated in different stages of spark
ignition on the flame kernel evolution. However,
since chemical ignition and thermal ignition exist
simultaneously in all these studies [13–17], an indi-
vidual investigation on chemical ignition could not
be performed. Furthermore, numerical simulation
is limited to specific fuel/air mixture, and the effects
of Lewis number remain unclear. Therefore, to
gain a general understanding of chemical ignition,
it is necessary to perform an analytical study.

The objectives of this study are to theoretically
analyze the ignition by radical deposition and to
examine the critical ignition condition. In the fol-
lowing, the mathematical model and theoretical
analysis are first presented. Then, results and dis-
cussions on flame bifurcation and critical ignition
condition are shown in Section 3. In order to
validate theoretical results, detailed numerical
simulations are conducted in Section 4. Finally,
the conclusions are presented in Section 5.
2. Theoretical analysis

In order to study the ignition by radical depo-
sition, chain-branching kinetics of intermediate
species (radicals) should be considered. Similar
to our previous work on ignition by heat deposi-
tion [9], we employ the simplified Zel’dovich-
Liñán model proposed by Dold and coworkers
[18,19]. This model comprises a chain branching
reaction F + Z! 2Z, and a recombination reac-
tion Z + M! P + M, where F, Z, and P repre-
sent fuel, radical, and product, respectively, and
M denotes any type of molecule. The branching
reaction is thermally sensitive and has a rate con-
stant depending on the temperature in the Arrhe-
nius form, while the rate of the recombination
reaction is independent of the temperature
[18,19]. This model was used in previous studies
on the ignition, propagation, extinction, and sta-
bility of premixed flames [9,18–21].

One-dimensional spherical flame initiation is
considered and the mathematical model is similar
to that in Ref. [9]. The constant density and quasi-
steady assumptions [6–9] are employed. In the
coordinate attached to the propagating flame
front and under the assumption of large activation
energy, the non-dimensional governing equations
for temperature, T, and mass fractions of fuel,
YF, and radical, YZ, in the unburned and burned
zones are [9]
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where r is the non-dimensional radial coordinate.
LeF and LeZ are the Lewis numbers of the fuel
and radical, respectively. U is propagation speed
of the flame front, and Q the specific heat release
of the recombination reaction.

Spherical flame initiation can be achieved by
heat and/or radical deposition. In the quasi-
steady model, the ignition energy is provided as
a heat or radical flux at the center. Therefore,
the boundary conditions are

r! 0 : r2 dY F

dr
¼ 0; r2 dY Z

dr
¼ � LeZ

Q
qc;

r2 dT
dr
¼ �qt ð2aÞ

r!1 : Y F ¼ 1; Y Z ¼ 0; T ¼ 0 ð2bÞ

where qc and qt are referred to as the chemical and
thermal ignition powers, respectively. They are
equal to the dimensional ignition power normal-
ized by the same scaling quantity, 4pr2

s kT s, and
thus can be directly compared. Physically, qt is
the non-dimensional thermal flux while qc is the
enthalpy flux corresponding to the mass diffusion
of radical.
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Fig. 1. Flame propagation speed as a function of flame
radius at different chemical ignition powers.
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The jump conditions across or at the flame
front (r = R) [18,19] are

½Y F � ¼ ½Y Z � ¼ ½T � ¼
dT
dr

� �
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¼ 0 ð3Þ

The analytical solutions to Eqs. (1–3) are
directly presented here with the detailed deriva-
tions shown in the Supplementary data. The dis-
tribution for the fuel mass fraction is obtained as
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0 for 0� r�R
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The solution for the radical mass fraction is
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In Eq. (5), the radical mass fraction at the
flame front, YZf, is determined according to the
jump condition ½Le�1

F dY F =dr þ Le�1
Z dY Z=dr ¼ 0�

at r = R in Eq. (3) and has the following form
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The temperature distribution is
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where Iðs; nÞ ¼ ðn=sÞ2e�Uðs�nÞQY ZðnÞ.
Substituting the above temperature distribu-

tion into the condition [dT/dr] = 0 at r = R in
Eq. (3), we obtain the following correlation
depicting the change of the flame propagation
speed U with the flame radius RZ 1

R

Z s

0

Iðs; nÞdndsþ qt

Z 1

R
s�2e�Usds ¼ 1 ð9Þ

which includes chemical and thermal ignition
powers (qc and qt), Lewis numbers of fuel and
radical (LeF and LeZ), and heat release (Q).

By numerically solving Eq. (9), the flame bifur-
cations and regimes at different Lewis numbers
and/or ignition powers can be obtained, and
thereby the critical ignition condition and mini-
mum ignition power can be determined. Since this
study is mainly focused on the effects of fuel and
radical Lewis numbers on ignition, in the follow-
ing we present results obtained from Eq. (9) at dif-
ferent values of (LeF,LeZ) and the non-
dimensional heat release is fixed to be Q = 2.0, a
value that corresponds to a typical hydrocarbon
mixture with initial temperature at 300–500 K
[19].
3. Results and discussion

3.1. Ignition by radical deposition only

We first consider ignition caused by radical
deposition only and thereby the heat flux from
the center is set to be zero (qt = 0). Figure 1 shows
the change of the flame propagation speed with
the flame radius for LeF = LeZ = 1.0. The inter-
section points of the curves with the horizontal
axis in Fig. 1 represent flame ball solutions
(U! 0). It is seen that at qc = 0, the spherical
flame can propagate outwardly only when its
radius is larger than the flame ball radius
RZ � 0.8. At qc = 0.4 or 0.8, the U–R curve is
shown to be shifted toward the left side and thus
the flame ball radius becomes smaller. However
successful ignition is not achieved. By further
increasing qc to 1.0, the U–R curve critically
crosses the origin point at R = U = 0 (see the inset
in Fig. 1), indicating that the spherical flame ker-
nel can successfully propagate outwardly along
the U–R curve to eventually become a planar
flame (R!1). Therefore, the minimum chemical
ignition power for LeF = LeZ = 1.0 is qc,min = 1.0.
When qc = 1.2 > qc,min, Fig. 1 shows that the flame
propagation is promoted at small flame radius. At
large flame radius (R > 5), the radical ignition is
shown to have no influence on the flame propaga-
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tion speed. This is consistent with numerical and
experimental results in Refs. [22,23].

To assess fuel Lewis number effects, some typ-
ical results are presented in Fig. 2, which shows
different flame bifurcations from those for
LeF < 2.0. For LeF = 2.5, Fig. 2(a) shows that at
zero and low chemical ignition powers (qc = 0,
0.4 and 0.8), the U–R curves are C-shaped and
there is no flame ball solution. When qc is
increased to 0.94 or 0.98, bedsides the C-shaped
flame branch, a new bell-shaped flame branch
(with two flame ball solutions) appears. At
qc = 1.0, the bell-shaped flame branch starts from
the origin point U = R = 0, which is similar to
results in Fig. 1. However, the spherical flame can-
not be successfully initiated at qc = 1.0 since the
flame extinguishes with finite flame propagation
speed at R � 2.7 along the bell-shaped U–R curve.
This extinguishment is caused by the fact that less
radical (due to larger flame radius) and less fuel
(due to relatively large LeF) can diffuse into the
reaction zone from the center and thereby the
flame cannot propagate outwardly in a self-
sustained manner. Further increasing qc to 1.06,
flame bifurcation occurs: the C-shaped and bell-
shaped curves merge and generate the upper
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Fig. 2. Flame propagating speed as a function of flame
radius for (a) LeF = 2.5; (b) LeF = 4.0.
stable flame propagation branch and the lower
unstable one. A spherical flame can thereby prop-
agate outwardly along the upper branch and suc-
cessful ignition can be achieved now. Therefore,
we have qc,min = 1.06 for LeF = 2.5. Figure 2(b)
presents the results for a much larger fuel Lewis
number of LeF = 4.0. When qc is less than unity
(qc = 0 and 0.8), only the C-shaped U–R curve
exists. As the ignition power is increased to be
above unity (qc = 1.2 and 1.6), a new left flame
kernel branch occurs. However, the ignition
power is still not high enough to achieve success-
ful ignition. Only when the minimum chemical
ignition power, qc,min = 3.288, is reached, does
the flame bifurcation occur and is the flame suc-
cessfully initialized.

In above results, the radical Lewis number is
fixed to be unity (LeZ = 1). Actually, it is found
from the results not presented here that LeZ only
has a quantitative influence on the ignition by rad-
ical deposition. According to results shown in
Figs. 1 and 2, we find that qc = 1.0 is critical for
ignition by radical deposition and that both flame
bifurcation and critical ignition condition change
significantly with the fuel Lewis number. To inter-
pret these observations, we derive the following
correlation (which implicitly describes the change
of the flame ball radius, RZ, with the ignition pow-
ers, qc and qt) from Eq. (9) in the limit of U = 0:

qc
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¼RZ
ffiffiffiffiffiffiffiffi
LeZ
p
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F fRZ

ffiffiffiffiffiffiffiffi
LeZ
p

þ½expð�2RZ
ffiffiffiffiffiffiffiffi
LeZ
p

Þ�1�=2Þg�qt

ffiffiffiffiffiffiffiffi
LeZ
p

1�expð�RZ
ffiffiffiffiffiffiffiffi
LeZ
p

Þ
ð10Þ

Using Eq. (10), RZ is plotted as a function of qc

at qt = 0 in Fig. 3. According to Eq. (10),
ffiffiffiffiffiffiffi
LeZ
p

can be scaled into RZ and qc (see Fig. 3), which
explains why LeZ does not qualitatively affect
the flame bifurcation and critical ignition condi-
tion. Figure 3 shows that for LeF < 2.0, RZ mono-
tonically decreases with qc and there always exists
one flame ball solution for 0 � qcLe0:5

Z � 1:0. For
LeF = 2.0, there is no flame ball solution at
0 � qcLe0:5

Z � 0:5 and finite value of RZ exits only
for 0:5 < qcLe0:5

Z < 1:0. For LeF = 2.5, there are
two flame ball solutions for 0:86 � qcLe0:5

Z � 1:0,
which correspond to the two intersection points
of the bell-shaped curve with the horizontal axis
shown in Fig. 2(a). At qcLe0:5

Z > 1:0, there is only
one flame ball solution and RZ increases mono-
tonically with qc. For LeF = 4.0, the only flame
ball solution exists when qcLe0:5

Z P 1:0, which is
consistent with the results shown in Fig. 2(b).
Therefore, the change of the number of flame ball
solutions determines the flame bifurcation. Fur-
thermore, Fig. 3 as well as Eq. (10) demonstrates
that all the curves converge to RZ = 0 and
qcLe0:5

Z ¼ 1. This explains why at LeZ = 1 the solu-
tion of U = R = 0 always exits for qc = 1, as
shown in Figs. 1 and 2. Besides, from Figs. 1–3
it is seen that for LeF below some critical value
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around 2.5, the critical ignition condition corre-
sponds to RZ! 0, while for larger LeF, the critical
ignition occurs when the left and right U–R
branches merge (flame bifurcation happens). The
latter is also observed in our previous work on
ignition by heat deposition [9].

According to the above analysis, the minimum
chemical ignition power, qc,min, can be obtained
for different fuel and/or radical Lewis numbers.
The results are summarized in Fig. 4. When the
radical Lewis number is fixed, Fig. 4(a) shows that
there are two regimes in the change of qc,min with
LeF. In the first regime with LeF < Le�F ð	 2:5Þ,
qc;min ¼ Le�0:5

Z is a constant; while in the second
regime with LeF > Le�F , qc,min increases monotoni-
cally with LeF. The constant value of
qc;min ¼ Le�0:5

Z in the first regime is caused by the
fact that for qc ¼ Le�0:5

Z , there is always a U–R
curve from R = 0 to R!1 along which success-
ful ignition can be achieved (see Figs. 1 and 3).
The increase of the qc,min with LeF in the second
regime is mainly due to the coupling between the
positive stretch rate and the preferential diffusion
between heat and fuel (i.e. LeF) [8,9].

Compared to the influence of LeF, Fig. 4(b)
shows that the influence of LeZ on qc,min is less
pronounced. It is seen that qc,min monotonically
decreases with LeZ. This is due to the fact that
weaker mass diffusivity of radicals (thus larger
LeZ) can render them less incline to diffuse away
from the ignition kernel and consequently the rad-
ical accumulation induces explosive chain branch-
ing reaction which promotes ignition. Besides,
since the Markstein length decreases with LeZ [9]
and the flame kernel is highly positively stretched,
the spherical flame can be more easily ignited for
larger LeZ.

3.2. Ignition by radical and heat deposition

In the above subsection and our previous work
[9], ignition by radical deposition only and heat
deposition only are investigated, respectively.
However, in practical ignition process, radical
and heat deposition occurs simultaneously. In
the following, ignition caused by heat and radical
is studied based on Eq. (9).

Figure 5 presents the results at different chem-
ical ignition powers but fixed thermal ignition
power, qt = 0.05. For LeF = LeZ = 1.0, compari-
son between Figs. 5(a) and 1 indicates that there
is significant change in the flame trajectory (U–R
curves) caused by additional heat deposition. A
new flame kernel branch starting from R = 0
appears when qc is below the critical value. When
qc > qc,min = 0.448, the left and right flame
branches merge with each other and successful
ignition can be achieved. Unlike the pure radical
ignition shown in Fig. 1 for which the critical igni-
tion happens when the flame trajectory starts from
U = R = 0, here the critical ignition is reached
when the two ball solutions on these two branches
becomes the same.

To examine the fuel Lewis number effects, the
flame trajectories for LeF = 2.2 is shown in
Fig. 5(b). It is seen that for qc < 0.67, there are
two flame branches: the left flame kernel one
and the right C-shaped one, and there is only
one flame ball solution. When qc is increased to
0.675, a new bell-shaped branch appears in the
middle and there are three flame ball solutions
now. Further increasing qc to 0.7 makes the bell-
and C-shaped branches merge and the first flame
bifurcation occurs, which is similar to the pure
radical ignition shown in Fig. 2(a). However,
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successful ignition is still not achieved. Figure 5(b)
shows that at qc = 0.73, the left and bell-shaped
branches merge and the second bifurcation hap-
pens. Now the spherical flame kernel can success-
fully propagate outwardly. It is observed that the
number of the flame ball solutions is reduced from
three to one when the critical ignition condition is
reached.

Similar to Fig. 3 for pure radical ignition
(qt = 0), Fig. 6 demonstrates the effects of LeF

and LeZ on RZ when both radical deposition
and heat deposition exist. The flame bifurcations
and critical ignition conditions shown in Fig. 5
can be explained by Fig. 6. For LeF < 2.0 (the case
shown in Fig. 5(a)), there are two flame ball solu-
tions when qc < qc,min. The turning point corre-
sponds to the critical ignition condition at which
the two ball solutions disappear. For 2.0 < LeF <
2.43, Fig. 6 shows that the C-shaped curve
becomes S-shaped and there are two turning
points. According to the discussions on
Fig. 5(b), the critical ignition condition (the sec-
ond flame bifurcation) corresponds to the right
turning point of the S-shaped curve. Increasing
LeF to 2.5, 3.0 or 4.0, no turning point appears
and the only flame ball solution always exists.
Therefore, at large fuel Lewis number, the critical
ignition condition cannot be obtained according
to flame ball solutions. The same conclusion was
drawn for ignition by heat deposition only [8,9].

Comparison between Figs. 5(a) and 1 also indi-
cates that the minimum ignition power is reduced
roughly by 50% when there are both heat and
radical deposition. The critical power for ignition
caused by heat and radical deposition are studied
and the results are shown in Fig. 7. In Fig. 7, suc-
cessful ignition occurs only when the ignition
power (qt,qc) is on the upper right side of the
curve. It is seen that at fixed value of chemical
(thermal) ignition power, the critical thermal
(chemical) ignition power for successful ignition
increases with LeF while decreases with LeZ. This
is consistent with results from pure radical-
induced ignition shown in Fig. 4 and results from
pure heat-induced ignition in Ref. [9]. Figures 7(a)
and (b) indicates that LeZ only quantitatively
affects the critical ignition powers. However,
Fig. 7(c) shows that the critical ignition curve is
greatly shifted to the right side when the LeF

increases. For pure radical ignition (qt = 0), the
critical chemical ignition energy, qc, is only
slightly affected by LeF while the for pure thermal
ignition (qc = 0), the critical qt increases signifi-
cantly with LeF. This is also consistent with results
shown in Fig. 4 and Ref. [9].

Furthermore, Fig. 7 also indicates that the crit-
ical thermal ignition power is usually lower than
the critical chemical ignition power. The compar-
ison between qc,min and qt,min for pure chemical
ignition (qt = 0) and pure thermal ignition
(qc = 0), respectively, is shown in Fig. 8. It is dem-
onstrated that for most cases, heat deposition is
more efficient than radical addition (i.e. qc,min >
qt,min), and that qc,min < qt,min happens only for
mixtures with large LeF and small LeZ. Due to
the facts that the rate of the branching reaction
depends on temperature in the Arrhenius form
and that the rate of the recombination reaction
is a constant independent of the temperature,
the enhancement on the reactivity by heat deposi-
tion (which results in very high temperature near
the center) is much stronger than that by radical
addition. Consequently, ignition by heat deposi-
tion is more easily achieved than by radical
deposition (i.e. qc,min > qt,min). However, for
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mixtures with large LeF and small LeZ (the gray
region in Fig. 8), the fuel has small mass diffusivity
and thus cannot be effectively transported to the
flame front, while the radical can quickly diffuse
LeF

Le
Z

1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

qc,min > q t,min

qc,min < q t,min

Fig. 8. The comparison between the minimum chemical
and thermal ignition powers.
to the flame front from radical source at the cen-
ter. Therefore, in this case, ignition by radical
deposition is more easily achieved than by heat
addition (i.e. qc,min < qt,min).

It is noted that homogenous ignition is mainly
controlled by chemical kinetics so that the ignition
delay can be significantly reduced by radical and
activated species generated by plasma in PAC.
However, in the flame initiation process, the flame
kernel is highly stretched and the ignition is
mainly controlled by transport properties [8].
Therefore, the critical ignition energy cannot be
drastically reduced in PAC.
4. Numerical validation

The above theoretical analysis is based on
some assumptions (e.g. constant density, quasi-
steady flame propagation, and large activation
energy). To qualitatively validate the above theo-
retical results, transient numerical simulations are
conducted by using the in-house code A-SURF to
simulate the ignition caused by radical deposition.
A-SURF solves the conservation equations of
one-dimensional, compressible, multi-component,
reactive flow in a spherical coordinate using the
finite volume method and it has been successfully
used in our previous studies [8,22,24–26]. The
details on the governing equations, numerical
schemes, and code validation can be found in
Refs. [22,24] and thus are not repeated here.

We conduct simulations for premixed H2/O2/
He mixture with the mole ratio of H2:O2:He =
1:1:8 at normal temperature and pressure (300 K,
1 atm). The detailed mechanism for hydrogen
oxidation [27] is employed. The computational
domain is 0 6 r 6 50 cm and a multi-level, dynam-
ically adaptive mesh with the finest mesh size of
8 lm is used. Different from the theoretical analy-
sis, radical deposition as an initial condition is used
in the simulation. The initial distribution of the
mass fraction of H radical is assumed to be Gauss-
ian and its full width at half maximum (FWHM) is
1.6 mm. The chemical ignition energy is calculated
by integrating the formation enthalpy of H radical
over the whole computational domain. The peak
mass fraction of H radical at the center is modified
to obtain the minimum ignition energy using the
method of trial-and-error with relative error below
1%. To examine the influence of fuel and radical
Lewis numbers, the mass diffusivities of H2 and
H are artificially changed in the simulation [9].
For example, the radical Lewis number is modified
to half of the original values (denoted by the super-
script 0), i.e. LeH ¼ 0:5Le0

H , through changing the
mass diffusivity of H from DH to 2DH. Based on
the thermodynamic and transport data at 298 K,
we have Le0

H2 ¼ 0:902 and Le0
H ¼ 0:587.

Figure 9 presents the change of minimum
chemical ignition energy with the fuel and radical
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Lewis numbers. It is seen that in each curve
corresponding to the fixed fuel Lewis number
(LeH2=Le0

H2 ¼ 1:0, 1.5, or 2.0), the minimum
chemical ignition energy, qc,min, monotonically
decreases with the radical Lewis number,
LeH=Le0

H . This agrees qualitatively with the
theoretical results in Fig. 4(b). At fixed radical
Lewis number (e.g. LeH=Le0

H ¼ 1:0), qc,min is
shown to increase with LeH2. Besides, qc,min for
LeH2=Le0

H2 ¼ 1:0 is very close to that for
LeH2=Le0

H2 ¼ 1:5, indicating that the fuel Lewis
number does not have pronounced effects on qc,min

when it is relatively small. However, qc,min for
LeH2=Le0

H2 ¼ 2:0 is shown to be much larger than
that for LeH2=Le0

H2 ¼ 1:5. Again these observa-
tions qualitatively confirm the theoretical results
in Fig. 4(b). Therefore, the detailed numerical
simulations qualitatively validate the results from
theoretical analysis.
5. Conclusions

Ignition by radical and/or heat deposition is
studied theoretically using the simplified Zel’do-
vich-Liñán model proposed by Dold and cowork-
ers [18,19]. The correlation describing spherical
flame propagation is derived, based on which
flame bifurcation and critical ignition condition
are investigated.

For ignition by radical deposition only, the
flame bifurcation and critical ignition condition
are strongly affected by the fuel Lewis number
while the radical Lewis number only has a quanti-
tative influence. The change of the number of
flame ball solutions with the chemical ignition
power is found to determine the flame bifurcation
and critical ignition condition. Two regimes are
observed in the change of the minimum chemical
ignition power with the fuel Lewis number. With
the increase of the fuel/radical Lewis number,
the minimum chemical ignition power is shown
to monotonically increase/decrease.

For ignition by radical and heat deposition,
great change in the flame trajectory and flame
bifurcation is caused by additional heat deposi-
tion. Moreover, compared to pure radical igni-
tion, the minimum ignition power is shown to be
greatly reduced. The minimum chemical and ther-
mal ignition powers are compared and it is found
that for most cases, heat deposition is more effi-
cient in ignition than radical addition. Only for
mixtures with large fuel Lewis number and small
radical Lewis number is the chemical ignition
more efficient than the thermal ignition.

Transient numerical simulations on the igni-
tion by radical deposition for H2/O2/He mixture
are conducted. The results qualitatively confirm
the effects of fuel and radical Lewis numbers on
ignition observed in theoretical analysis.
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