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a b s t r a c t

Spherical flame initiation and propagation with thermally sensitive intermediate kinetics are studied
analytically within the framework of large activation energy and quasi-steady assumptions. A correlation
describing different flame regimes and transitions among the ignition kernels, flame balls, propagating
spherical flames, and planar flames is derived. Based on this correlation, spherical flame propagation
and initiation are then investigated. The flame propagation speed, Markstein length, and critical ignition
power and radius are found to strongly depend on the Lewis numbers of fuel and radical and the heat of
reaction. For spherical flame propagation, the trajectory is shown to change significantly with the fuel
Lewis number and a C-shaped solution curve of flame propagation speed as a function of flame radius
is observed for large fuel Lewis numbers. The Markstein length is shown to increase/decrease monoton-
ically with the fuel/radical Lewis number. The influence of stretch on flame propagation (i.e. the absolute
value of Markstein length) is found to decrease with the heat of reaction. For spherical flame initiation,
the critical ignition power and radius are shown to increase with the fuel Lewis number and to decrease
with the radical Lewis number and heat of reaction. Three different flame initiation regimes are observed
and discussed. Furthermore, the validity of theoretical prediction is confirmed by transient numerical
simulations including thermal expansion and detailed chemistry.

� 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

Flame initiation and propagation are the most fundamental
problems in combustion research. Understanding flame initiation
and propagation are important for fire safety control and for the
development of high-efficiency, low-emission combustion engines.
Since spherical flame has the simplest geometry, spherical flame
initiation and propagation have been extensively studied via theo-
retical analysis [1–21].

Spherical flame initiation was first investigated based on the
thermal theory [1–3]. The quenching distance or flame thickness
was considered to be the critical length controlling spherical flame
initiation. However, fuel consumption and thus mass diffusion
were not considered in the thermal theory [1–3]. A more accurate
description of flame initiation was proposed later by Zel’dovich
based on studies of adiabatic flame balls [3]. Since the adiabatic
flame balls were found to be inherently unstable: a small perturba-
tion will cause the flame either to propagate inward and eventually
extinguish or to propagate outward and evolve into a planar flame
ion Institute. Published by Elsevier
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[4], the flame ball radius was considered to be the critical length
controlling spherical flame initiation [3–5]. Recently, He [8] found
that flame initiation for mixtures with large Lewis numbers was
controlled not by the radius of stationary flame ball but by a min-
imum flame radius for the existence of self-sustained propagating
spherical flames. Chen and coworkers [10,11] showed that spheri-
cal flame initiation was strongly affected by the fuel Lewis number
as well as the radiative loss.

Spherical flame propagation has also been extensively studied
by using asymptotic techniques. For examples, Frankel and
Sivashinsky [12] examined the thermal expansion effect and Lewis
number effect on propagating spherical flames; Chung and Law
[13] conducted integral analysis for propagating spherical flames;
Bechtold and coworkers [14–17] studied the hydrodynamic and
thermal-diffusion instabilities and effects of radiative loss in self-
extinguishing and self-wrinkling flames; Ronney and Sivashisky
[18] studied the expanding spherical flames within the framework
of a slowly varying flame (SVF) theory; Sung et al. [19] found that
positive stretch of expanding flames promotes the onset of flame
pulsation; Chen et al. [21] examined the radiative effects on spher-
ical flame propagation speed and Markstein length.

In all the studies [4–21] mentioned above, one-step, irrevers-
ible, global reaction model was employed. The popularity of this
Inc. All rights reserved.
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model is partly due to its inherent simplicity. Nevertheless, the
one-step model has led to many useful and qualitatively correct
predictions for spherical flame initiation and propagation [4–21].
However, in such a one-step model the fuel is converted directly
into products and heat, and thus the role of energetic active radi-
cals is not considered [22]. In practical combustion of hydrocarbon
fuels, numerous elementary reactions related to fuel and reactive
intermediate species appear [23]. As such, flame initiation and
propagation are not only affected by properties of fuel, but also
by those of intermediate species (especially radicals involved in
chain branching reactions). In order to achieve more essential
understanding of flame initiation and propagation, chain branching
kinetics of intermediate species should also be considered. How-
ever, inclusion of complicated chemistry requires numerical calcu-
lations and the results are lack of generality.

A relative simple generalization of the one-step model is pro-
vided by the Zel’dovich–Liñán model [3,24]. The model comprises
a chain branching reaction F + Z ? 2Z, and a chain-breaking (or
recombination) reaction Z + Z ? 2P, where F, Z, and P represent
fuel, radical, and product, respectively. This model was used by dif-
ferent researchers in their studies on laminar flames [25–31]. Re-
cently, in seeking simple analytical descriptions, Dold and
coworkers [22,32–34] proposed the following simplified version
of the Zel’dovich–Liñán model

F þ Z ! 2Z : kB ¼ AB expð�TB=TÞ ð1aÞ
Z þM ! P þM : kC ¼ AC ð1bÞ

This model involves a thermally sensitive chain branching reac-
tion (1a) with a rate constant kB in Arrhenius form (AB and TB are
the frequency factor and activation temperature, respectively)
and a completion reaction (1b) with a rate constant kC which is
equal to the frequency factor AC and is independent of temperature
T. Based on this model, the structure and stability of non-adiabatic
flame balls and propagating planar flames were investigated
[22,32–34]. The simplified Zel’dovich–Liñán model was also uti-
lized by Gubernov and coworkers [35,36] in their studies on the ki-
netic characteristics of flame extinction.

In this study, we will use the simplified Zel’dovich–Liñán model
given in Eq. (1) to investigate spherical flame initiation and propa-
gation. The objectives of the present study are twofold. First, we
find a general theoretical description of different flame regimes
and transitions among the ignition kernels, flame balls, propagat-
ing spherical flames, and planar flames. Second, we assess the ef-
fects of fuel and radical Lewis numbers and heat of reaction on
flame propagation speed, Markstein length, minimum ignition en-
ergy, and critical length controlling spherical flame initiation. Com-
pared to the works of Dold and coworkers [22,32–34], the new
development of this study is that the simplified Zel’dovich–Liñán
model is used to investigate the critical ignition conditions and
propagating spherical flames with positive stretch rate. The rest
of the paper is organized as follows. The mathematical model is
introduced in the next section. In Section 3, analytical solutions
for spherical flame initiation and propagation with thermally sen-
sitive intermediate kinetics are presented and validated in limiting
cases. Moreover, the effects of fuel and radical Lewis numbers and
heat of reaction on spherical flame initiation and propagation are
studied. In order to confirm the validity of theoretical prediction,
detailed numerical simulations are conducted in Section 4. Finally,
the conclusions are presented in Section 5.
2. Mathematical model

Spherical flame initiation and propagation are studied using the
classical reactive–diffusive model (constant values for density q,
specific heat CP, diffusion coefficients of fuel DF and radical DZ,
thermal conductivity k, and heat of reaction Q) [37,38]. Based on
the chain branching kinetics, Eq. (1), the one-dimensional conser-
vation equations for temperature, T, and mass fractions of fuel,
YF, and radical, YZ, in a spherical coordinate are
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where t and r are time and radial coordinate respectively. The reac-
tion rates are [32,33]
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where WF and WZ are the molecular weights of fuel and radical,
respectively, and W represents the mean molecular weight.

Since the constant-density model neglects thermal expansion,
there is no convective flux in the governing equations. Moreover,
the effects of radiative loss on spherical flame initiation and prop-
agation [10,21] are not considered in this study. Different from pre-
vious studies considering one-step chemistry [8,10,17], we have
the additional equation, Eq. (2b), depicting the radical’s production
by the chain branching reaction (1a), and consumption by the
recombination reaction (1b) as well as the diffusion process.

Following Dold et al. [33], we introduce the non-dimensional
variables:

t0 ¼ t
ts
; r0 ¼ r
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ð4Þ

along with the definitions
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CPTsWF
;

b ¼ TBTs

ðT0 þ TsÞ2
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where T0 and YF0 are, respectively, the temperature and fuel mass
fraction in the fresh mixture. The Zel’dovich number, b, defined in
Eq. (5) is based on the reference temperature T0 + Ts instead of the
adiabatic flame temperature [22,33]. Following Refs. [22,33], the
scaling temperature, Ts, is chosen so that xB = b2xC at the temper-
ature of T0 + Ts, i.e.

ABW
ACWF

YF0 ¼ b2 exp
TB

T0 þ Ts

� �
ð6Þ

It is noted that unlike the non-dimensional process in Ref. [33],
the mass diffusivities of fuel and radical are not used for scaling in
Eq. (5). Therefore, the Lewis numbers of fuel, LeF = k/(qCPDF), and
radical, LeZ = k/(qCPDZ), are present in the non-dimensional govern-
ing equations, and thus the effects of LeF and LeZ on spherical flame
initiation and propagation can be assessed in this study.

In the coordinate attached to the moving flame front, R = R(t),
the non-dimensional conservation equations take the following
form (after dropping the primes) [8,10]
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in which U = dR(t)/dt is the flame propagation speed (which is nor-
malized by rs/ts with rs and ts defined in Eq. (5). Since rs/ts is propor-
tional to the square root of thermal diffusivity when density is
assumed to be constant, the equivalent dimensional flame propaga-
tion speed does depend on the thermal diffusivity and the Lewis
numbers). The non-dimensional reaction rate is [33]

x ¼ b2YFYZ exp b
T � 1

1þ rðT � 1Þ

� �
ð8Þ

In this study, the impact of external energy deposition on spher-
ical flame initiation and propagation is investigated and the igni-
tion energy is provided as a heat flux at the center. Steady-state
energy deposition is employed in order to achieve an analytical
solution. As demonstrated by the numerical results in Ref. [11]
and also Section 4 of this study, this simplification is adequate to
gain qualitative understanding of spherical flame initiation and
propagation. Therefore, the boundary conditions are:

r ! 0; r2 @T
@r
¼ �q;

@YF

@r
¼ 0;

@YZ

@r
¼ 0 ð9aÞ

r !1; T ¼ 0; YF ¼ 1; YZ ¼ 0 ð9bÞ

where q is the ignition power normalized by 4pkrsTs.
In the limit of large activation energy (b ? +1), chemical reac-

tions are confined at an infinitesimally thin flame sheet (r = R).
According to the asymptotic analysis conducted by Dold and
coworkers [22,33], the following conditions must hold across or
at the flame front (r = R)
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where the square brackets denote the difference between the vari-
ables on the unburned and burned sides, i.e. [f] = f(r = R+) � f(r = R�).
Eq. (10) indicates the continuity of temperature, mass fractions of
fuel and radical, and heat flux across the flame front [22,33]. More-
over, Eq. (10) shows that the balance of radical and fuel mass flux
across the flame front is required [22,33]. Extra attention should
be paid to the condition T(r = R) = 1. This condition corresponds to
the leading order asymptotic representation of the crossover tem-
perature in a system with radical diffusion if b ? +1 above which
the chain branching reaction rate increases exponentially when
the temperature rises, up to the point where the fuel species F is de-
pleted completely and the chain branching is damped drastically
[22,33]. Besides, the last condition in Eq. (10) indicates two possibil-
ities regarding whether peak temperature occurs near T = 1 or not:
if the local maximum temperature is reached at r = R, then fuel does
not have to be depleted entirely at r = R and thus fuel leakage occurs
in the burned domain (this corresponds to the case YF jr¼R – 0 if oT/
@r|r=R = 0); alternatively, there is no fuel leakage across the flame
front (YF|r=R = 0 if @T=@rjr¼R – 0) [22,33]. In this study, we only con-
sider the case without fuel leakage.

3. Theoretical analysis

The unsteady problem given by Eqs. (7–9) cannot be solved
analytically. As demonstrated by transient numerical simulations
considering one-step chemistry [10], it is reasonable to assume
that in the coordinate attached to the flame front, the flame can
be considered to propagate in a quasi-steady manner (o/@t = 0).
The quasi-steady assumption was also used in previous studies
[4,8,10,12]. After combining the quasi-steady assumption and the
large activation energy assumption, the governing equations
become
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3.1. Analytical Solutions

Eq. (11) together with conditions given by Eqs. (9) and (10) can
be solved analytically in the unburned (r P R) and burned
(0 6 r 6 R) zones, respectively. The solutions are presented directly
in the following and the detailed derivation can be found in the on-
line supplemental material. The exact solution for the mass frac-
tion of fuel is

YFðrÞ ¼
0 for 0 6 r 6 R

1�
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R1
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(

ð12Þ

The distribution of the radical mass fraction is given by
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Using the condition T(r = R) = 1 in Eq. (10) and the boundary
conditions in Eq. (9), the analytical solution of the temperature dis-
tribution can be obtained as
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where

Iðs; nÞ ¼ ðn=sÞ2e�Uðs�nÞQYZðnÞ ð16Þ

Substituting the above temperature distribution into the
requirement of heat flux continuity ([@T/@r] = 0 at r = R in Eq.
(10)), we obtain the following expression describing the flame
propagation speed U as a function of flame radius RZ 1

R

Z s

0
Iðs; nÞdndsþ q

Z 1

R
s�2e�Usds ¼ 1 ð17Þ

The integrals in Eq. (17) can be numerically evaluated, and
accordingly the effects of fuel Lewis number (LeF), radical Lewis
number (LeZ), and heat of reaction (Q) on spherical flame ignition
and propagation can be assessed.
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3.2. Validation in limiting cases

Before further analysis based on the numerical solution of Eq.
(17), it is necessary to examine, in different limiting cases, whether
the current model can recover results for flame balls, outwardly
propagating spherical flames, and planar flames.

3.2.1. Flame ball
Adiabatic and non-adiabatic flame balls with thermally sensi-

tive intermediate kinetics, Eq. (1), were studied by Dold et al.
[33]. For the adiabatic case, the following expression for the flame
ball radius, RZ, as a function of heat of reaction, Q, and Lewis num-
bers of fuel, LeF, was obtained by Dold et al. [33] (modified accord-
ing to the different scaling, Eq. (5), employed in this study)

RZ ¼
Q

LeF
RZ �

1� expð�2RZ
ffiffiffiffiffiffiffi
LeZ
p

Þ
2
ffiffiffiffiffiffiffi
LeZ
p

� �
ð18Þ

It can be shown that the above expression can be derived from
Eq. (17) in the limit of U = 0 and q = 0 (without ignition power
deposition). Therefore, the adiabatic flame ball solution [33] is a
limiting case of the present result given by Eq. (17).

3.2.2. Outwardly propagating spherical flame
Outwardly propagating spherical flame with large flame radius

was analyzed under the quasi-planar flame assumption (R� 1) for
one-step chemistry [12,21,39]. Similarly, solutions considering
thermally sensitive intermediate kinetics can be obtained as
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where c1;2 ¼ ½�ðULeZ þ 2=RÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULeZ þ 2=RÞ2 þ 4LeZ

q
�=2. In the on-

line supplemental material, it is shown that the above expression
gives the same results as those from Eq. (17) in the limit of R� 1
and q = 0. As such, the present model is valid in both limits of adi-
abatic flame balls and traveling spherical flames and thus can pro-
vide the relationship and transition mechanism between these two
flames during the flame kernel growth.

3.2.3. Planar flame
In limit of R ?1, Eq. (19) can be further simplified as

QLe2
Z

½LeZ þ U 1� LeZð Þk1�½LeZ þ Uð1� LeZÞk2�

¼ 1þ QLeZU=ðk1 � k2Þ
LeZ þ U 1� LeZð Þk2

ð20Þ

where k1;2 ¼ ½�ULeZ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULeZÞ2 þ 4LeZ

q
�=2. Eq. (20) gives the planar

flame speed, U, as a function of radical Lewis number, LeZ, and heat
of reaction, Q. It is exactly the same as that derived by Dold in the
limit of zero radiative loss [22].

In view of the above discussions on three limiting cases, Eq. (17)
is a general solution to describe adiabatic flame balls, propagating
spherical flames, and planar flames with thermally sensitive inter-
mediate kinetics. As will be shown later, the dynamics of flame
kernel growth and the transition among different flame regimes
can be predicted by this correlation. Based on Eq. (17), spherical
flame propagation and initiation will be investigated in the follow-
ing two sub-sections, respectively.

3.3. Spherical flame propagation with chain branching reaction

We first study spherical flame propagation without ignition
power deposition at the center (q = 0). By solving Eq. (17) numeri-
cally at different values of LeF, LeZ, and Q, the effects of fuel Lewis
number, radical Lewis number, and heat of reaction on spherical
flame propagation can be assessed.

Figure 1a shows the results for mixtures with LeZ = 1.0, Q = 2.0,
and different fuel Lewis numbers. In Fig. 1a, solutions on the hori-
zontal axis with U = 0 denote flame balls, those on the right vertical
axis at R = 103 denote planar flames, and those between them rep-
resent the propagating spherical flames. It is seen that the flame
ball radius increases with LeF while the normalized planar flame
speed is independent of LeF. This is consistent with results reported
in previous studies considering one-step chemistry [8,10] and
chain branching kinetics [22,33]. For propagating spherical flames,
the propagation speed at the same flame radius is shown to de-
crease with LeF. This is due to the coupling between the flame
stretch, K = 2U/R, and the preferential diffusion of fuel and heat
[40], as demonstrated by Fig. 2b. Similar results were also reported
in Ref. [11] in which one-step chemistry was considered.

Figure 1a shows that, for LeF = 0.3 and LeF = 0.5, the flame prop-
agation speed first increases then slightly decreases with the flame
radius. The increase of U with R is due to the transition from the
purely diffusion-controlled flame ball to convection–diffusion-
controlled propagating spherical flame. The decrease of U with R
is due to the change of K with R and the small value of LeF at which
positive flame stretch will enhance the flame propagation (see
Fig. 1b) [40]. For LeF = 1, U is shown to monotonically increase with
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R. This is due to the facts shown in Fig. 1b that positive flame
stretch results in slower flame propagation speed for LeF = 1 and
the magnitude of the stretch rate decreases during the flame prop-
agation. At a larger Lewis number of LeF = 1.8, a C-shaped solution
curve is observed and it is seen that there exists a propagating
spherical flame with radius less than the flame ball radius. This
is important for spherical flame initiation discussed later since
the C-shaped solution curve indicates that flame initiation is con-
trolled by the minimum flame radius instead of the flame ball ra-
dius (which is commonly considered to be the minimum radius
below which a spherical flame cannot propagate outwards [4,5]).
Similar results were also found in studies considering one-step
chemistry [8,10,11]. By further increasing the fuel Lewis number,
the C-shaped solution curve is shifted toward the right side and
there is no flame ball solution for LeF P 2 and Q = 2.0 (according
to Eq. (18), no flame ball solution exists for LeF P Q). The non-exis-
tence of adiabatic flame ball at larger Lewis number is not pre-
dicted by traditional flame ball theory based on one-step
chemistry [3,10,11], in which the adiabatic flame ball solution al-
ways exists for all fuel Lewis numbers.

The parameter which characterizes the variation in the local
flame speed due to the influence of external stretching is the
Markstein length, L. For weakly stretched flames (K� 1 or
R� 1), there is a linear relationship between the stretched flame
speed, U, and stretch rate, K [38]

U ¼ U0 � L � K ð21Þ

where U0 is the flame speed at zero stretch rate. Therefore, the
Markstein length is equal to the slope of the U–K curve at K ? 0
in Fig. 1b. Figure 2 shows the dependence of the Markstein length,
L, on the fuel Lewis number, LeF, for LeZ = 1.0 and Q = 2.0. It is seen
that L increases monotonically with LeF. For a positively stretched
flame, the difference between the enthalpy gain (due to fuel diffu-
sion into the flame) and heat loss (due to thermal conduction away
from the flame) increases with LeF since LeF is the ratio between fuel
mass diffusivity and thermal diffusivity. Therefore, the larger the
fuel Lewis number, the stronger the influence of stretch on spherical
flame propagation, and thus the larger the Markstein length [38,40].

In the above analysis, the radical Lewis number is fixed to be
unity. The effects of radical Lewis number on spherical flame prop-
agation are demonstrated in Fig. 3. Different flame regimes includ-
ing flame balls, propagating spherical flames, and planar flames are
shown in Fig. 3a. It is seen that both the flame ball radius and
planar flame speed decrease with LeZ. The same trend was also ob-
served in previous studies on flame balls [33] and planar flames
[22] considering the same chain branching kinetics. Compared to
the effects of LeF shown in Fig. 1a, the effects of LeZ on spherical
flame propagation are shown to be much weaker since the U–R
curve in Fig. 3a changes slightly with LeZ. According to results
not shown due to space limitation, the C-shaped U–R curve for
LeF = 2.0 also slightly changes with LeZ.

The dependence of the Markstein length, L, on the radical Lewis
number, LeZ, are shown in Fig. 3b. Unlike the effects of LeF shown in
Fig. 2, L is shown to monotonically decrease with LeZ. This is due to
the fact that the radical diffuses out of the reaction zone while fuel
diffuses into it. For propagating spherical flames with positive
stretch, the larger the radical Lewis number, the smaller the mass
diffusivity of the radical, and the less the radical enthalpy diffused
away from the reaction zone. Consequently, at a given fuel Lewis
number, the positively stretched flame becomes stronger for a lar-
ger radical Lewis number. Therefore, according to Eq. (21), L de-
creases with LeZ. Comparison between Figs. 2 and 3b shows that
the effects of LeZ on L are also much weaker than those of LeF.

Besides the effects of fuel and radical Lewis numbers, the effects
of heat of reaction on spherical flame propagation are shown in
Fig. 4. Similar to Fig. 3a, different flame regimes are shown in
Fig. 4a. It is seen that the flame ball radius decreases with Q while
the normalized planar flame speed increases with Q. The U–R curve
is shifted toward the left side when Q is increased. As expected, at
the same flame radius, the flame propagation speed increases with
the heat of reaction. Figure 4b shows that |L| always decreases with
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Q, indicating that the influence of stretch on flame propagation be-
comes weaker for a larger heat of reaction. This is because when a
larger amount of heat is produced in the reaction zone, the net en-
thalpy gain/loss caused by preferential diffusion of various species
and heat becomes relatively smaller. Accordingly, the impact of
flame stretch on flame propagation becomes smaller. Therefore,
weak flames are more easily affected by flame stretch than strong
flames.

Summarizing, different flame regimes (flame balls, propagating
spherical flames, and planar flames) and transitions among them
can be successfully predicted by the present model given by
Eq. (17) considering chain branching kinetics. It is shown that
the spherical flame propagation speed and Markstein length are
strongly affected by the Lewis numbers of fuel and radical as well
as the heat of reaction.

3.4. Spherical flame initiation with chain branching reaction

We now consider cases in which an external energy flux (q > 0)
is deposited in the center of a quiescent pre-mixture. The effects of
ignition power on flame regimes and transitions among them and
the critical conditions for spherical flame initiation will be exam-
ined in the following.

By solving Eq. (17) numerically, the flame propagation speed as
a function of flame radius at different ignition powers can be ob-
tained for mixtures with different values of LeF, LeZ, and Q. Figure
5a shows the results for LeF = LeZ = 1.0 and Q = 2.0. Without ignition
power deposition (q = 0), the result is the same as that in Fig. 1a. In
this case, the outwardly propagating spherical flame only exists
beyond a finite flame radius, which is the flame ball radius
RZ = 0.805. When an external energy is deposited, the flame prop-
agation trajectory is changed. At a low ignition power of q = 0.14,
there exist two branches of solutions: the original traveling flame
branch is shifted to the left side with the flame ball radius reduced
to RþZ ¼ 0:49; and a new branch (ignition kernel) at small radius is
formed with flame quenching occurring at the flame ball solution
of R�Z ¼ 0:229. Therefore, flame initiation fails for q = 0.14. With
the increase of ignition power, the difference between the radii
of these two flame balls, RþZ � R�Z , decreases. When RþZ ¼ R�Z , occur-
ring at q = 0.1565, the left ignition kernel branch merges with the
right traveling flame branch, indicating that an outwardly propa-
gating spherical flame can be successfully initiated via flame tran-
sition along the solid line shown in Fig. 5a. Therefore, for this
mixture (LeF = LeZ = 1.0 and Q = 2.0), the critical ignition power,
qc, for successful flame initiation is determined according to the
requirement of RþZ ¼ R�Z , and this flame ball radius is defined as
the critical ignition radius, Ric [4,5]. In the limit of U = 0, the general
solution given by Eq. (17) reduces to

RZ �
Q

LeF
RZ þ

exp �2RZ
ffiffiffiffiffiffiffi
LeZ
p� �

� 1
2
ffiffiffiffiffiffiffi
LeZ
p

" #
¼ q ð22Þ

According to Eq. (22), there are two flame ball solutions, RþZ and
R�Z , for each ignition power when LeF = LeZ = 1.0, Q = 2.0, and q < qc,
as shown in Fig. 6a. At q = qc, we have RþZ ¼ R�Z ¼ Ric and thus dq/
dRZ = 0. Using Eq. (22), the exact solutions for qc and Ric are obtained
as

qc ¼
1þ ðQ=LeF � 1Þ lnð1� LeF=QÞ

2
ffiffiffiffiffiffiffi
LeZ
p ; Ric ¼ �

lnð1� LeF=QÞ
2
ffiffiffiffiffiffiffi
LeZ
p ð23Þ

Based on the above discussions, the critical conditions for spher-
ical flame initiation, qc and Ric, can be determined by analysis on
flame ball with energy deposition. This method was proposed and
used by Joulin and coworkers [4,5] in their studies considering
one-step chemistry. According to Eq. (23), no solutions of qc and
Ric exist when LeF > Q. Therefore, this analysis does not hold for mix-
tures with large Lewis numbers [8,10,11]. In fact, as shown in Fig. 6,
there is only one flame ball solution for each ignition power when
LeF > Q.

Figure 5b shows results for LeF = 2.0, LeZ = 1.0, and Q = 2.0. Sim-
ilar to results for LeF = 1.0, there is an ignition kernel branch at
small radius and a traveling flame branch at large radius for each
ignition power. However, unlike the results for LeF = 1.0, the travel-
ing flame branch is C-shaped and there is no flame ball solution on
it. (Though Fig. 5b shows that the traveling flame branch intersects
with the R-axis at U = 10�3, there is no intersection at U = 0.) There-
fore, instead of flame ball radius, we use the maximum flame ra-
dius, R�C , on the left branch and the minimum flame radius, RþC ,
on the right branch to determine the critical ignition conditions
[11]. Figure 5b shows that the points at R�C and RþC move toward
each other when the ignition power increases (as also shown in
Fig. 6). When RþC ¼ R�C , the left ignition kernel branch merges with
the right traveling flame branch and thus an outwardly propagat-
ing spherical flame can be successfully initiated. Therefore, the
critical power for successful flame initiation is determined accord-
ing to the requirement of RþC ¼ R�C , and the critical ignition radius is
defined as Ric ¼ RþC ¼ R�C . The changes of R�Z , R�C , and RþC with q are
shown in Fig. 6a, in which (Ric, qc) is the turning point on the
RC–q curve. Similar results were found in the previous study con-
sidering one-step chemistry [11].

Figure 5c–e show the results for other different values of LeF,
LeZ, and/or Q. Flame transitions similar to those in Fig. 5a or b
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are observed. The changes of the flame ball radii and the minimum
and maximum flame radii with the ignition power are summarized
in Fig. 6 (the upper branch represents RþC or RþZ and the lower one
represents R�C or R�Z ), in which the turning point of the RC–q curve
represents the critical ignition power and radius (Ric, qc). As men-
tioned before, Fig. 6 shows that the critical conditions (qc, Ric) for
spherical flame initiation cannot be determined by analysis on
flame ball when LeF > Q. Moreover, Fig. 6 also shows that qc and
Ric are affected by the Lewis numbers of fuel and radical and heat
of reaction, the details of which are presented in the following.

Figure 7 shows the effects of fuel Lewis number, LeF, on spher-
ical flame initiation. It is seen that the critical ignition power, qc,
and the critical ignition radius, Ric, both increase monotonically
with LeF. This is due to the fact that a large LeF causes the flame
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propagation speed to decrease at large stretch rate/small flame
radius (see Fig. 1) and thus hinders the ignition process. The critical
flame ball radius, Riz (which is equal to RþZ ¼ R�Z when q = qc), is also
shown in Fig. 7b for comparison. Three different regimes in terms
of the fuel Lewis number are observed. In regime I with LeF < LeFI,
we have Ric = Riz, and thus qc and Ric can be determined by
Eq. (23) from flame ball analysis. In regime II with LeFI < LeF < LeFZ =
Q, we have Ric < Riz, and thus the critical ignition power will be
over-predicted based on the flame ball radius. Similar results are
obtained in studies considering one-step chemistry [8,10,11]. In
regime III with LeF > LeFZ = Q, there is no critical flame ball solutions
according to Eq. (23) and thus qc and Ric cannot be obtained from
analysis on flame balls with energy deposition. In order to deter-
mine qc and Ric, analysis on flame propagation and transitions
(see, for example, Fig. 5b) must be conducted for LeF > LeFZ.

The effects of radical Lewis number, LeZ, on the critical ignition
power and radius are illustrated in Fig. 8. Unlike the effects of fuel
Lewis number, both qc and Ric are shown to decrease monotonically
with LeZ. This is because the Markstein length decreases with the
radical Lewis number (Fig. 3b) and a large radical Lewis number
causes the flame propagation speed to increase at large stretch
rate/small flame radius (Fig. 3a) and thus assists the ignition pro-
cess. Comparison between Figs. 7 and 8 shows that the effects of
LeZ on qc and Ric are weaker than those of LeF. Similar comparison
results are also obtained for spherical flame propagation discussed
in the previous sub-section.

Figure 9 reveals the effects of heat of reaction, Q, on the critical
ignition power and radius. Similar to the effects of radical Lewis
number, both qc and Ric are shown to decrease monotonically with
Q. It is reasonable since strong flames with larger values of Q are
much easier to be initiated than weak flames with smaller values
of Q. Figure 9 shows that it is extremely difficult to ignite a mixture
with a large fuel Lewis number and small heat of reaction. This was
confirmed by numerical simulation [11] and experiments [41,42],
in which helium was added to increase the Lewis number and de-
crease the heat of reaction.

Figure 10 shows the three flame initiation regimes discussed
above in terms of fuel Lewis number and heat of reaction. For most
mixtures with fuel Lewis number close to unity, the flame initia-
tion belongs to regime I and the critical ignition conditions, qc

and Ric, can be determined by Eq. (23) from flame ball analysis.
However, for mixtures with larger fuel Lewis number and/or small
heat of reaction, the critical ignition power will be over-predicted
based on the flame ball radius (regime II) or there is no critical
flame ball solutions (regime III). In order to determine qc and Ric,
analysis on flame propagation and transitions (see, for example,
Fig. 5b) must be conducted in regimes II and III. The effects of rad-
ical Lewis number on these regimes are found to be negligible.
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Nevertheless, the radical Lewis number does substantially affect
the critical ignition power and radius (see Fig. 8).

The above results show that spherical flame initiation and prop-
agation are strongly affected by the Lewis numbers of fuel and rad-
ical and the heat of reaction. These results are obtained from
theoretical analysis. One limitation of the theory is that the ignition
energy deposition is modeled as a boundary condition in the cen-
ter; whereas the ignition energy addition is resolved spatially and
temporally in realistic ignition systems. Moreover, the theoretical
analysis is constrained by constant-density, quasi-steady, and large
activation energy assumptions. In the next section, detailed
numerical simulations will be conducted to test the applicability
of the theoretical results under more realistic conditions. As will
be shown below, the simulations qualitatively confirm the results
obtained from theoretical analysis.
LeF

1.0 1.5 2.0 2.5

1.4

Fig. 10. Flame initiation regimes in terms of fuel Lewis number and heat of reaction
for LeZ = 1.0.
4. Numerical validation

A time-accurate and space-adaptive numerical solver for Adap-
tive Simulation of Unsteady Reactive Flow, A-SURF (1D), is used to
simulate spherical flame initiation and propagation. A-SURF has
been validated and used in a series of studies on spherical flame
initiation and propagation [11,20,43–47]. The details on governing
equations, numerical schemes, and code validation of A-SURF can
be found in Refs. [20,46] and hence are only briefly described
below.
The one-dimensional, unsteady, compressible Navier–Stokes
equations for multi-component reactive flow are solved in A-SURF.
The finite volume method is used to discretize the conservation
governing equations [20,46]. The convective flux, diffusive flux,
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and stiff chemistry are calculated by MUSCL-Hancock scheme, cen-
tral difference scheme, and VODE solver, respectively [20,46]. De-
tailed chemistry is considered and the reaction rates as well as
thermodynamic and transport properties are evaluated using the
CHEMKIN and TRANSPORT packages [48,49] interfaced with
A-SURF. The mixture-averaged formula [48] is employed to calcu-
late diffusion velocity, in which the thermal diffusion of H, H2, and
He is considered. Moreover, a correction velocity is included to en-
sure mass conservation [46,48].

In all the simulations, the computational domain is 0 6 r 6
50 cm and a multi-level, dynamically adaptive mesh with a mini-
mum mesh size of 8 lm is used. The flame radius, Rf, is defined
as the position of maximum heat release in the simulation. Since
only flames with radii less than 2.5 cm are considered, the pressure
rise (<0.01%) and compression-induced flow [45,46] are negligible.
Zero flow velocity and zero gradients of temperature and mass
fractions are enforced at both inner (r = 0) and outer (r = 50 cm)
boundaries. At the initial state, the homogeneous mixture is quies-
cent at 298 K and atmospheric pressure. Flame initiation is
achieved by spatial dependent energy deposition for a given igni-
tion time [11,50]

qignit ¼
Eig

4pr3
ig
sig=3

exp � p
4

r
rig

	 
6
� �

if t < sig

0 if t P sig

8<
: ð24Þ

where Eig is the total ignition energy, sig, the duration of the energy
source, and rig, the ignition kernel radius. It is noted that the dura-
tion of the source energy and the ignition kernel size both affect the
minimum ignition energy (MIE) [50]. In this study, since the
emphasis is focused on the Lewis number effects on spherical flame
initiation and propagation, both the ignition kernel size and time
are kept constant with sig = 200 ls and rig = 200 lm, respectively.

H2/O2/He mixture with molar ratio of 1:1:8 is studied and the
detailed chemistry developed by Li et al. [51] is employed. The fuel
lean mixture is chosen due to the fact that the asymptotic analysis
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Fig. 11. Spherical flame propagation speed as a function of flame radius for
H2:O2:He = 1:1:8 (vol.) mixture.
in Section 3 is conducted for the fuel lean case. Since the MIE of H2/
O2/He increase significantly with the helium concentration [11],
H2/O2 mixture highly diluted by helium instead of nitrogen is used
to ensure positive Markstein length and relatively large MIE [11].
In this way, the effects of fuel and radical Lewis numbers are rela-
tively strong according to the theoretical analysis in Section 3 and
thus can be easily demonstrated in the simulation. In order to as-
sess the effects of fuel and radical Lewis numbers on spherical
flame initiation and propagation, the mass diffusivities of H2 and
H are artificially modified in the simulation. By changing the binary
mass diffusion coefficient of H2 into N2 from DH2 to 2DH2 and
ð2=3ÞDH2 , the fuel Lewis number becomes half and one and a half
times of the original value (denoted by the superscript 0), i.e.
K/Sb
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Fig. 12. Normalized spherical flame propagation speed as a function of stretch rate
for H2:O2:He = 1:1:8 (vol.) mixture. The symbols stand for results with 1.5 6 Rf 6

2.5 cm and the lines are linear extrapolations.
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Table 1
The minimum ignition energies and critical ignition radii for H2/O2/He mixtures with different artificial Lewis numbers.

LeH2 ¼ 1:0Le0
H2

LeH2 ¼ 0:5Le0
H2

LeH2 ¼ 1:5Le0
H2

LeH2 ¼ 1:0Le0
H2

LeH2 ¼ 1:0Le0
H2

LeH ¼ 1:0Le0
H LeH ¼ 1:0Le0

H LeH ¼ 1:0Le0
H LeH ¼ 0:5Le0

H LeH ¼ 1:5Le0
H

Emin (mJ) 0.2875 0.2250 0.7375 0.3920 0.2475
Ric (mm) 0.7 0.6 1.2 0.85 0.6
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LeH2 ¼ 0:5Le0
H2

and LeH2 ¼ 1:5Le0
H2

, respectively. Similarly, the radi-
cal (H is chosen because it is the most important radical in the
chain branching reactions of H2 oxidation) Lewis number can also
be modified to LeH ¼ 0:5Le0

H and LeH ¼ 1:5Le0
H.

Figures 11 and 12 show the effects of the fuel and radical Lewis
numbers on spherical flame propagation. The propagation speed at
small radius is affected by ignition and unsteadiness [20,52]. When
the flame radius is large enough (say, Rf > 6 mm, suggested by
Bradley et al. [52]), the ignition effects are negligible and the flame
propagates in a quasi-steady manner. Therefore, the flame propa-
gation speed for Rf > 6 mm shown in Fig. 11 is only affected by
the fuel and radical Lewis numbers. When the radical Lewis num-
ber is fixed (LeH � Le0

H), Fig. 11a shows the flame propagation speed
is strongly affected by the fuel Lewis number. Similar to the theo-
retical prediction in Fig. 1a, the flame propagation speed is shown
to decrease/increase with the flame radius for small/large fuel Le-
wis number when the flame propagates in a quasi-steady state. It is
noted that the normalized planar flame speed (normalized by rs/ts.
According to Eq. (5), rs/ts is approximately proportional to the
square root of thermal diffusivity and thus depends the Lewis
number.) is independent of the Lewis number while equivalent
dimensional flame speed does increase with the fuel Lewis num-
ber. The effects of fuel Lewis number on the change of flame speed
with stretch rate and the Markstein length are shown in Fig. 12a.
The results are consistent with those from theoretical analysis in
Fig. 1b. Similar to theoretical prediction shown in Fig. 2, the Mark-
stein length, Lb, is found to increase with the fuel Lewis number.
When the fuel Lewis number is fixed (LeH2 � Le0

H2
), Fig. 11b shows

that the flame propagation speed is slightly changed by the radical
Lewis number, LeH. Moreover, the Markstein length is shown
(Fig. 12b) to slightly decrease with the radical Lewis number.
Again, these results are consistent with theoretical prediction pre-
sented in Section 3.3.

Figure 13 shows the flame radius evolutions at different ignition
energies. Neither the fuel Lewis number nor the radical Lewis num-
ber is artificially modified, i.e. LeH2 ¼ 1:0Le0

H2
and LeH ¼ 1:0Le0

H. The
MIE for this case, Emin = 0.2875 mJ, and for all other cases, as listed
in Table 1, was calculated by the method of trial-and-error with rel-
ative error below 1%. A self-sustained propagating flame is shown
to be successfully initiated only when the ignition energy is above
the MIE. By plotting the flame propagating speed, Sb = dRf/dt, as a
function of flame radius, results similar to the theoretical predic-
tions in Fig. 5a can be obtained. In simulation, the critical ignition
radius is defined as the radius corresponding to the minimum prop-
agating speed for MIE deposition [11,53]. According to the results in
Fig. 12, the critical ignition radius, Ric = 7 mm, occurs at the inflec-
tion point for E = Emin = 0.2875 mJ. The minimum ignition energies
and critical ignition radii at different fuel and/or radical Lewis num-
bers are summarized in Table 1. It is seen that Emin and Ric both in-
crease/decrease with the fuel/radical Lewis number. These results
agree qualitatively with the theoretical prediction about the effects
of fuel and radical Lewis numbers on spherical flame initiation.

5. Conclusions

Spherical flame initiation and propagation are studied theoret-
ically using the thermally sensitive intermediate kinetics, which
was introduced by Dold et al. [22,33]. A correlation, Eq. (17),
describing the flame propagation speed as a function of the flame
radius at different fuel and radical Lewis numbers, heats of reac-
tion, and ignition powers, is derived. It is shown to be able to de-
scribe different flame regimes and transitions among the ignition
kernels, flame balls, propagating spherical flames, and planar
flames. Based on this correlation, the effects of fuel and radical Le-
wis numbers and heat of reaction on spherical flame propagation
and initiation are assessed.

Spherical flame propagation is shown to be strongly affected by
the Lewis numbers of fuel and radical as well as the heat of reac-
tion. With the increase of the fuel Lewis number, the flame propa-
gation speed decreases due to the stretch effect. At a large fuel
Lewis number, a C-shaped U–R solution curve is observed and it
is found that no flame ball solution exists for LeF P Q. The Mark-
stein length is shown to increase monotonically with the fuel Lewis
number. However, it decreases monotonically with the radical
Lewis number since radical and fuel diffuse in the opposite direc-
tions. Compared to the effects of fuel Lewis number, these of rad-
ical Lewis number are found to be much weaker. The influence of
stretch on flame propagation decreases with the heat of reaction
and thus weak flames are more easily affected by flame stretch
than strong flames.

The critical ignition power, qc, and critical ignition radius, Ric, for
spherical flame initiation are also shown to be strongly affected by
the Lewis numbers of fuel and radical as well as the heat of reac-
tion. Both qc and Ric are shown to increase with the fuel Lewis num-
ber and to decrease with the radical Lewis number and heat of
reaction. Three different regimes are observed. It is found that qc

and Ric can be determined from flame ball analysis when the fuel
Lewis number is small (regime I). However for mixtures with large
fuel Lewis numbers or small heat of reaction (regimes II and III),
analysis on flame propagation and transitions must be conducted
to determine qc and Ric.

It is noted that the theory is constrained by constant-density,
quasi-steady, and large activation energy assumptions. In order
to confirm the validity of theoretical prediction, detailed numerical
simulations are conducted to investigate the effects of fuel and rad-
ical Lewis numbers on spherical flame initiation and propagation.
It is shown that the results from theoretical analysis agree qualita-
tively with those from numerical simulation.
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