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High-order least-square-based finite-difference–finite-volume method for simulation of
incompressible thermal flows on arbitrary grids
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In this work, a high-order (HO) least-square-based finite difference-finite volume (LSFD-FV) method together
with thermal lattice Boltzmann flux solver (TLBFS) is presented for simulation of two-dimensional (2D)
incompressible thermal flows on arbitrary grids. In the present method, a HO polynomial based on Taylor series
expansion is applied within each control cell, where the unknown spatial derivatives at each cell center are
approximated by least-square-based finite difference (LSFD) scheme. Then the recently developed TLBFS is
applied to evaluate the convective and diffusive fluxes simultaneously at the cell interface by local reconstruction
of thermal lattice Boltzmann solutions of the density and internal energy distribution functions. The present
HO LSFD-FV method is verified and validated by 2D incompressible heat transfer problems. Numerical results
indicate that the present method can be effectively and flexibly applied to solve thermal flow problems with
curved boundaries on arbitrary grids. Compared with the conventional low-order finite volume method, higher
efficiency and lower memory cost make the present HO method more promising for practical thermal flow
problems.
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I. INTRODUCTION

In the computational fluid dynamics community, how to
solve heat transfer problems accurately and efficiently is
always an attractive research topic. Over the past few decades,
considerable advances have been made in developing numer-
ical methods for simulation of thermal flows. The representa-
tive ones are finite difference (FD), finite volume (FV), finite
element (FE) methods, and the lattice Boltzmann method
(LBM) [1–7]. Furthermore, based on these algorithms, var-
ious high-order (HO) methods such as the HO FV, FD,
discontinuous Galerkin (DG) methods and LBM [8–20] have
been proposed and widely used due to their better accuracy
and efficiency. Among them, FV methods draw the most
attention because of its various advantages. First, compared
with FD methods and LBM, FV methods have flexibility in
dealing with problems with complex geometries since the
unstructured mesh can be used. Besides, FV methods obey the
conservative laws fully at the cell as well as global level and
they can give more accurate results on the same mesh scale
than FD methods and LBM. For example, Rouboa and Mon-
terio [21] studied the heat transfer phenomenon in complex
geometry using the FD and FV methods. The results from
both methods agree well with experimental measurements
while slightly better results for FV method were obtained.
Moreover, Goodarzi et al. [22] investigated the laminar natural
convection heat transfer of air inside a square enclosure using
both FV method and LBM. Their results confirm that the
FV method requires less CPU time and yields more accurate
results compared to the LBM. When it comes to FE methods
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and DG methods, FE methods may be intricate for solving
conservative equations and DG methods usually suffer from
low computational efficiency. Therefore, FV discretization
method seems to be a promising and competitive choice for
solving thermal flow problems among these methods. Based
on this consideration, this paper proposes a HO FV method
to enrich the studies of FV methods for simulation of incom-
pressible thermal flows.

In this study, to obtain the HO accurate numerical solution,
a HO Taylor series expansion is applied within each con-
trol cell as the approximation polynomial straightforwardly,
which is then substituted into the discrete form of governing
equations given by FV method. The Taylor series expan-
sion polynomial involves the solution value and its spatial
derivatives at the cell center. Accordingly, the discrete form
of governing equations for each control cell would involve
more than one unknown (solution value and the spatial deriva-
tives). However, there is only one discrete equation for each
control cell. To resolve this not well-posed problem, the
least-square-based finite difference (LSFD) scheme is used to
approximate all the spatial derivatives by the solution values
at the centers of the current cell and its neighboring cells.
The LSFD method was proposed by Shu and his colleagues
[23], which is a mesh-free method to approximate derivatives
at randomly distributed points. It is an ideal approach to
approximate derivatives on unstructured meshes. LSFD has
been successfully applied to simulate various flow problems
[24–27] with a HO of accuracy. However, due to the nature
of FD discretization, there is no guarantee for its numerical
discretization to be conservative if it is applied alone. Dif-
ferent from FD discretization, FV discretization can remain
conservative at the cell and the global level. Given this, LSFD
scheme is applied as a mesh-free derivative approximation
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approach in the framework of FV method in this work. As
a result, the combination of LSFD scheme and FV method
can provide a simple and effective HO solver on unstructured
mesh. This has been validated in the recent work of Liu et al.
[28], which reported that the HO LSFD-FV can outperform
the HO k-exact FV method [29] in terms of accuracy and
efficiency. On the other hand, different from the conventional
second-order (2O) FV method, the trade-off of the developed
HO FV method is that the time-dependent term resulting from
volume integral of solution function over the control cell
involves a premultiplied coefficient matrix. As shown in the
paper, the resultant linear system can be solved by a point
iterative method.

Apart from solution approximation within each cell, the
discrete form of governing equations also involves evaluation
of numerical fluxes at the cell interface. The inviscid and
viscous fluxes are usually evaluated separately in the conven-
tional methods by using smooth function interpolation or dif-
ference approximation, which is a mathematical way. For HO
methods, the evaluation of viscous flux becomes more critical
and the conventional approaches may increase complexity
and computational effort. Compared with the mathematical
reconstruction, physical reconstruction of numerical fluxes at
the cell interface is more desirable as it can guarantee that
the solution at the cell interface also satisfies the governing
equation. The therrmal lattice Boltzmann flux solver (TLBFS)
[30] is implemented based on such a physical way. In TLBFS,
inviscid and viscous fluxes at the cell interface are computed
simultaneously using local reconstruction of solutions of the
density and internal energy distribution functions from ther-
mal lattice Boltzmann method. Through multiscale Chapman-
Enskog (C-E) expansion analysis [30], it can be shown that the
thermal lattice Boltzmann equation (TLBE) solution can sat-
isfy Navier-Stokes (N-S) equations. This means that the flow
variables and fluxes at the cell interface given from TLBFS
also satisfy N-S equations. So far, the accuracy, robustness
and efficiency of TLBFS have been proven to be good for
simulation of various incompressible thermal flows [30,31].
In this work, TLBFS is adopted to evaluate numerical fluxes
at the cell interface in the HO LSFD-FV method. However,
the original TLBFS in the work of Wang et al. [30] only has a
2O of accuracy. To keep the HO accuracy of flux evaluation,
the streaming distance should be limited within a proper
range. The details can be found in Sec. III A. Additionally,
the local-coordinate system at the cell interface is introduced
for convenient implementation of TLBFS on the unstructured
grids.

In summary, the present HO LSFD-FV method inherits
the excellently conservative property and well-developed al-
gorithm of FV discretization method. The mesh-free LSFD
derivative approximation approach and the combination of
TLBFS provide the present HO method with flexibility to
handle the complex problems with curved boundaries. Ad-
ditionally, TLBFS avoids the complicated viscous flux eval-
uation with a physical and simple technique. All the charac-
teristics mentioned above make the present method become
a straightforward and powerful tool for solving thermal flow
problems. To validate the developed HO solver, a series
of incompressible thermal flow benchmark tests at various
Rayleigh numbers and/or with curved boundary are provided.

II. HIGH-ORDER LEAST SQUARE-BASED FINITE
DIFFERENCE-FINITE VOLUME (LSFD-FV) METHOD FOR

2D INCOMPRESSIBLE THERMAL FLOWS

A. Macroscopic governing equations and HO finite volume
discretization

For two-dimensional (2D) incompressible thermal flows,
when the density variation is small and the Mach number is
low, the equations of mass, momentum and energy conserva-
tions read

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu + pI) = ν∇ · [∇ρu + (∇ρu)T ] + fE , (2)

∂T

∂t
+ ∇ · (T u) = κ∇2T, (3)

where ρ, p, ν, κ, and T are, respectively, the density, pressure,
kinematic viscosity, thermal diffusivity and temperature of
fluid flow. u = (u, v) is the velocity vector expressed in the
global Cartesian coordinate system. I is the unit tensor and
the external force fE represents the buoyancy force due to
the nonuniform distribution of temperature field. According
to the Boussinesq approximation, fE can be modelled in the
following form:

fE = −ρgβ(T − Tm)j, (4)

where g denotes the gravity acceleration, j is the unit vector in
the y direction, Tm is the average temperature of the flow field,
and β is the thermal expansion coefficient. Equations (1)–(3)
can be written in a unified way as

∂U
∂t

+ ∇ · F = Q, (5)

where the source term Q, the vectors of conservative variables
U and flux F are given by

U =

⎡⎢⎣ ρ

ρu
ρv

T

⎤⎥⎦, F =

⎡⎢⎣ Fρ

Fρu

Fρv

FT

⎤⎥⎦, Q =

⎡⎢⎣ 0
0

−ρgβ(T − Tm)
0

⎤⎥⎦.

(6)
In this work, the governing equations are discretized by

FV method, where the conservative variables are defined at
cell centers. The following equation can be obtained by the
integral of Eq. (5) over a control cell �i with application of
the divergence theorem,

∂

∂t

∫
�i

Ud� = −
∫

�i

F · nd� +
∫

�i

Qd�, (7)

where �i denotes the boundary of �i and n = (nx, ny ) is
the unit normal vector of the cell interface in the Cartesian
coordinate system.

Equation (7) involves the volume integral and the surface
integral. In the conventional FV method, the mean theorem
that assumes the flow variables being linearly distributed in
the control cell is applied and the mean value is defined at the
cell/surface center, which only has a second order of accuracy.
In order to represent the distribution of flow variables in the
control cell more precisely, the solution variable U should
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be approximated by a high order polynomial, which is also
used to interpolate solution value at the demanded position
for evaluation of numerical fluxes. In this way, a high order of

accuracy can be achieved. In this work, the solution variable
U is approximated by the following polynomial given from
Taylor series expansion:

U (x, y) = U i + dUT
i C̃i, (8)

with

dUT
i =

[
∂U
∂x

∣∣∣∣i,
∂U
∂y

∣∣∣∣i,
∂2U
∂x2

∣∣∣∣i,
∂2U
∂y2

∣∣∣∣i,
∂2U
∂x∂y

∣∣∣∣i,
∂3U
∂x3

∣∣∣∣i,
∂3U
∂y3

∣∣∣∣i,
∂3U

∂x2∂y

∣∣∣∣i,
∂3U

∂y2∂x

∣∣∣∣i

]
,

C̃T
i =

[
x1y0

i, x0y1
i,

x2y0
i

2
,

x0y2
i

2
, x1y1

i,
x3y0

i

6
,

x0y3
i

6
,

x2y1
i

2
,

x1y2
i

2

]
, (9)

where the reference point (xi, yi ) is the cell centroid of �i and xnym
i = (x − xi )n(y − yi )m. Note that the truncation error of

Eq. (8) is in the order of O(	x4,	y4) from Taylor series expansion, which means that the fourth order of accuracy can be
achieved. By integrating Eq. (8) over the control cell �i, we have∫

�i

U (x, y)d� = �iU i + dUT
i Ci, (10)

with

CT
i =

[
x1y0

i, x0y1
i,

x2y0
i

2
,

x0y2
i

2
, x1y1

i,
x3y0

i

6
,

x0y3
i

6
,

x2y1
i

2
,

x1y2
i

2

]
, (11)

where xnym
i = ∫

�i
(x − xi )n(y − yi )md�. Clearly, Eq. (10) has ten unknowns at the cell center (one solution value, two first-order

derivatives, three 2O derivatives, and four third-order derivatives) but Eq. (7) only provides one equation for each cell. Thus, the
problem is not well-posed. To resolve this problem, the unknown derivatives in Eq. (8) will be approximated by the mesh-free
LSFD method, which will be described in Sec. II B. The volume integral term involving the source term Q in Eq. (7) can also
be computed using Eq. (10) straightforwardly. Apart from the volume integral, the surface integral in Eq. (7) also requires HO
approximation. In this work, Gaussian quadrature is applied to approximate the surface integral with the fourth-order of accuracy
by two Gaussian quadrature points. In this way, the surface integral in Eq. (7) can be approximated by∫

�i

F · nd� =
nedge∑

edge=1

nGQp∑
GQp=1

(Fedge,GQp · nedge)AedgewGQp, (12)

where nedge is the number of surfaces for the control cell �i, nGQp denotes the number of Gaussian quadrature points on each
control surface, w is a quadrature weight, and A is the surface area. Section II B describes how to evaluate numerical flux F in
Eq. (12). With Eqs. (10) and (12), Eq. (7) is reduced to a set of ordinary differential equations, whose solution will be discussed
in Sec. II D.

B. Least square-based finite difference (LSFD) scheme for derivative approximation

In fact, LSFD is also based on 2D Taylor series expansion as shown in Eq. (8). The derivatives are considered as unknowns
and thus the number of unknowns is 9. To construct the same amount of equations as that of unknowns, Eq. (8) is applied at nine
neighboring points as follows:

ŜdU=	Û , (13)

with the matrix Ŝ and 	Û given by

Ŝ =

⎛⎜⎜⎜⎜⎜⎝
	x1 	y1

	x1
2

2
	y1

2

2 	x1	y1
	x1

3

6
	y1

3

6
	x1

2	y1

2
	y1

2	x1

2

	x2 	y2
	x2

2

2
	y2

2

2 	x2	y2
	x2

3

6
	y2

3

6
	x2

2	y2

2
	y2

2	x2

2

...
...

...
...

...
...

...
...

...

	x9 	y9
	x9

2

2
	y9

2

2 	x9	y9
	x9

3

6
	y9

3

6
	x9

2	y9

2
	y9

2	x9

2

⎞⎟⎟⎟⎟⎟⎠,

	Û
T = [U i1 − U i,U i2 − U i, . . . ,U i9 − U i], (14)

where (	x j,	y j ) = (x j − xi, y j − yi ), U i j denotes the solution value at the center of the jth neighboring cell to the current
cell i. By solving linear system (13), the derivative vector dU can be obtained in terms of 	Û . However, due to unstructured
cell distribution for a general case, the linear system may be ill-conditioned or even singular. To overcome this difficulty, the
local scaling technique and least-square optimization were used. As reported in the work of Ding et al. [23], by applying
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Eq. (8) at N (N > 9) neighboring points, a least-square optimal approximation of the derivative vector in succinct matrix form is
obtained,

SdU=	U , (15)

where the N × 9 matrix S and 	U are

ST = [s1, s2, . . . , s j], j = 1, 2, . . . , N,

s j =
[
	x j,	y j,

	x2
j

2
,
	y2

j

2
,	x j	y j,

	x3
j

6
,
	y3

j

6
,
	x2

j 	y j

2
,
	y2

j	x j

2

]
,

	UT = [U1 − U i,U2 − U i, . . . ,U j − U i]. (16)

After introducing the local scaling technique by scaling the local distance (	x,	y) with the radius of the support domain d0,
Eq. (15) is then written as

SDD−1dU =SD−1dU = 	U , (17)

with

S
T = [s̄1, s̄2, . . . , s̄ j], j = 1, 2, . . . , N,

s̄ j =
[
	x j,	y j,

	x2
j

2
,
	y2

j

2
,	x j	y j,

	x3
j

6
,
	y3

j

6
,
	x2

j	y j

2
,
	y2

j	x j

2

]
, (18)

where (	x,	y) = (	x/d0,	y/d0) and the scaling matrix D
is given as

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d−1
0

d−1
0

d−2
0

d−2
0

d−2
0

d−3
0

d−3
0

d−3
0

d−3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

As a result, the condition number of the resultant scaled
coefficient matrix S̄ can be improved greatly. The solution of
Eq. (17) gives

dU = D(S
T

S)−1S
T
	U . (20)

In this work, the distance-related weighting function We j =
1/

√
	x j

2 + 	y j
2 is also introduced to reduce the influence

of data farther from the reference point. By applying the
weighting function at N supporting points, the N × N diag-
onal matrix W e is formed as

W e=

⎛⎜⎜⎜⎝
We1

.

.

.

WeN

⎞⎟⎟⎟⎠. (21)

Finally, the derivative vector dU can be calculated by

dU = D(S
T
W eS)−1S

T
W e	U = W	U , (22)

where W is the 9 × N dimensional weighting coefficient
matrix, whose components are uniquely determined by the
coordinates of mesh points (centers of current cell and its
neighboring cells). For illustrative purpose, the various spatial
derivatives at the cell center of current cell i are explicitly

written as

dU k =
N∑

j=1

Wk, j	U i j, k = 1, ..., 9, (23)

where dU k represents the kth element of the derivative vector
dU , i j is the global index of jth neighboring cell to cell i.
As indicated above, the weighting coefficient matrix W is
uniquely determined by the mesh point distribution. There-
fore, we only need to compute W once and store the data for
the following computation when the computational mesh is
fixed. This can save computational effort.

C. Thermal lattice Boltzmann flux solver for evaluation of
numerical fluxes

In this work, in order to implement TLBFS on arbitrary
grids, a local-coordinate system is introduced at the cell
interface, in which the two directions are the outward normal
direction and the tangential direction, respectively.

Through multiscale C-E expansion analysis [30], Eqs. (1)–
(3) can be recovered by expressing the fluxes as follows:

Fρ1 =
Nd∑
α=0

f eq
α (eα )1, (24)

Fρu1 =
Nd∑
α=0

(eα )1(eα )1

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

]
, (25)

Fρu2 =
Nd∑
α=0

(eα )1(eα )2

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

]
, (26)

FT1 =
Nd∑
α=0

(eα )1

[
geq

α +
(

1 − 1

2τκ

)
gneq

α

]
, (27)

where eα is the lattice velocity vector, the single relaxation
parameters τν and τκ are, respectively, related to the dynamic
viscosity and thermal diffusivity. The subscripts “1” and
“2”, respectively, denote the outward normal and tangential
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FIG. 1. Evaluation of fluxes at cell interface.

directions of the cell interface. f eq
α denotes the equilibrium

density distribution function along the α direction and f neq
α

is the corresponding nonequilibrium distribution function. geq
α

denotes the equilibrium internal energy distribution function
along the α direction and gneq

α is the corresponding nonequi-
librium distribution function. Nd is the number of discrete
particle velocities in the lattice Boltzmann method. In this
work, the D2Q9 model, i.e., Nd = 9, is applied for the density
and internal energy distribution functions.

The equilibrium density distribution function f eq
α and equi-

librium internal energy distribution function geq
α read

f eq
α = ρwα

[
1 + eα · u

c2
s

+ (eα · u)2 − (cs|u|)2

2c4
s

]
, (28)

geq
α =

⎧⎪⎪⎨⎪⎪⎩
− 2

9
T |u|2

cs
2 , α = 0

T
9

[
3
2 + 1

2 · eα ·u
cs

2 + 1
2 · (eα ·u)2

cs
4 − 1

2 · |u|2
cs

2

]
, α = 1, 2, 3, 4

T
36

[
3 + 2 · eα ·u

cs
2 + 1

2 · (eα ·u)2

cs
4 − 1

2 · |u|2
cs

2

]
, α = 5, 6, 7, 8

.

(29)

For D2Q9 model defined in a square lattice as shown in
Fig. 1, the sound speed cs and the coefficients wα are given as

cs = c/
√

3, w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 =
w6 = w7 = w8 = 1/36. c = δx/δt . δx and δt denote the lattice
spacing and the streaming time step, respectively. Generally,
c is taken as 1.

The kinematic viscosity ν and thermal diffusivity κ can be
estimated, respectively, from the relaxation parameters τν and
τκ with

ν = (
τν − 1

2

)
c2

s δt , (30)

κ = 2
(
τκ − 1

2

)
cs

2δt . (31)

The pressure can be calculated from the equation of state,

p = ρc2
s . (32)

The nonequilibrium distribution functions f neq
α in Eqs. (25)

and (26) and gneq
α in Eq. (27) can be approximated by

f neq
α (r, t ) = −τν

[
f eq
α (r, t ) − f eq

α (r − eαδt , t − δt )
]

+ O
(
δ2

t

)
, (33)

gneq
α (r, t ) = −τκ

[
geq

α (r, t ) − geq
α (r − eαδt , t − δt )

]
+ O

(
δ2

t

)
, (34)

where r is physical location and t is time. f eq
α (r, t ) and

f eq
α (r − eαδt , t − δt ) are the equilibrium density distribution

functions at the Gaussian quadrature point r along the cell
interface and its surrounding nodes r − eαδt , respectively.
geq

α (r, t ) and geq
α (r − eαδt , t − δt ) are the equilibrium internal

energy distribution functions at the corresponding positions.
Note that, since c = 1, the streaming time step δt equals
the lattice spacing δx. Equations (33) and (34) indicate that
TLBFS has the 2O of accuracy in terms of the lattice spacing
δx rather than the mesh spacing 	x. In practical implementa-
tion, δx is chosen to be much smaller than 	x in order to keep
the global accuracy of the solution.

In order to calculate f neq
α (r, t ), we have to obtain

f eq
α (r, t ) and f eq

α (r − eαδt , t − δt ) first. Similarly, geq
α (r, t ) and

geq
α (r − eαδt , t − δt ) should be computed first, then gneq

α (r, t )
can be got from Eq. (34). For f eq

α (r − eαδt , t − δt ) and
geq

α (r − eαδt , t − δt ), the corresponding fluid density ρ, ve-
locity u and temperature T can be given from those at cell
center via the HO polynomial approximation form (8). As an
example, based on the information at cell centroids ri and
r j and according to Eq. (8), any variable ϕ at the location
(r − eαδt ) can be interpolated as

ϕ(r − eαδt ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ(ri ) + ∇ϕ(ri )	X i + 1

2	X T
i H (X i )	X i

(r − eαδt ) ∈ �i+ 1
6	2X T

i G(X i )	X i + O(X 4),

ϕ(r j ) + ∇ϕ(r j )	X j + 1
2	X T

j H (X j )	X j
(r − eαδt ) ∈ � j+ 1

6	2X T
j G(X j )	X j + O(X 4),

where ϕ =
⎛⎝ρ

u
T

⎞⎠, 	X i =
(

(r − eαδt − ri )x
(r − eαδt − ri )y

)
, 	X j =

(
(r − eαδt − ri )x
(r − eαδt − ri )y

)
	2X T

i = (
(r − eαδt − ri )

2
x, (r − eαδt − ri )

2
y

)
,

	2X T
j = (

(r − eαδt − ri )
2
x, (r − eαδt − ri )

2
y

)
. (35)
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Normalized variables
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FIG. 2. Velocity and temperature profiles obtained by HO LSFD-
FV method using TLBFS for porous plate problem at Pr = 0.71,
Re = 10, and Ra = 100.

The gradient ∇ϕ, the matrices H and G are

∇ϕ =
(

∂ϕ

∂x
,
∂ϕ

∂y

)
,

H =
[

∂2ϕ

∂x2
∂2ϕ

∂x∂y
∂2ϕ

∂y∂x
∂2ϕ

∂y2

]
, G =

[
∂3ϕ

∂x3 3 ∂3ϕ

∂x2∂y

3 ∂3ϕ

∂y2∂x
∂3ϕ

∂y3

]
, (36)

where the derivatives are approximated by the LSFD method
as introduced in Sec.II B. Once the required ρ, u, and T are
available, f eq

α (r − eαδt , t − δt ) and geq
α (r − eαδt , t − δt ) can

be computed from Eqs. (28) and (29), respectively. Moreover,
following the derivations in Ref. [30], we can obtain

ρ(r, t ) =
Nd∑
α=0

f eq
α (r − eαδt , t − δt ), (37)

ρ(r, t )u(r, t ) =
Nd∑
α=0

f eq
α (r − eαδt , t − δt )eα, (38)

T (r, t ) =
Nd∑
α=0

geq
α (r − eαδt , t − δt ). (39)

Thus, f eq
α (r, t ) and geq

α (r, t ) can be, respectively, calculated
by Eqs. (28) and (29). Then, f neq

α (r, t ) can be calculated by
Eq. (33) and gneq

α (r, t ) can be computed by Eq. (34). Finally,
all the fluxes Fρ1 , Fρu1 , Fρu2 , and FT1 in Eqs. (24)–(27) can be
obtained.

Since the fluxes in Eqs. (24)–(27) are defined in the local-
coordinate system, they cannot be used in Eq. (5) directly. We
have to conduct the coordinate transformation as the following
equation, then the fluxes F in the global Cartesian coordinate
system can be evaluated:

F = (
Fρ1 , Fρu1 nx − Fρu2 ny, Fρu2 nx + Fρu1 ny, FT1

)T
. (40)

TABLE I. Accuracy test results of temperature T for the porous
plate problem.

Quadrilateral Mesh Triangular Mesh

Scheme Mesh size L1 errors Order L1 errors Order

1/5 2.17 × 10−1 3.08 × 10−2

1/10 1.77 × 10−2 3.619 2.83 × 10−3 3.445
HO

1/20 1.37 × 10−3 3.691 3.05 × 10−4 3.212
1/30 3.42 × 10−4 3.419 9.76 × 10−5 2.814

1/10 5.16 × 10−1 1.37 × 10−1

1/20 1.20 × 10−1 2.107 3.41 × 10−2 2.002
2O

1/30 5.22 × 10−2 2.049 1.56 × 10−2 1.932
1/40 2.92 × 10−2 2.016 9.40 × 10−3 1.760

Note that, in TLBFS, the LBE solution is reconstructed
physically and locally at every Gaussian quadrature point
along each cell interface. This means that different δx could be
chosen for different interfaces, which provides great flexibility
for application on unstructured grids. Meanwhile, due to
the independence between the time marching step 	t and
the streaming time step δt (δt ) is only used in the solution
reconstruction), the choice of small δx will not affect the time
evolution process in the present method.

D. Solution of resultant ordinary differential equations

By substituting the derivative expression of Eq. (23) ap-
proximated by LSFD method into Eq. (10), we have∫

�i

U (x, y)d� = �iU i +
9∑

k=1

CkdU k

= �iU i +
9∑

k=1

Ck

N∑
j=1

Wk, j	U i j

= �iU i +
9∑

k=1

Ck

N∑
j=1

Wk, j (U i j − U i ). (41)

For the whole domain, Eq. (41) is applied to each control
cell. It is noteworthy that the coefficients Ck and Wk, j could
be different for different cells. Thus, we use Ci

k and W i
k, j to

TABLE II. Accuracy test results of velocity component u for the
porous plate problem.

Quadrilateral Mesh Triangular Mesh

Scheme Mesh size L1 errors Order L1 errors Order

1/5 7.06 × 10−1 1.014 × 10−1

1/10 4.21 × 10−2 4.068 6.82 × 10−3 3.894HO 1/20 3.35 × 10−3 3.652 6.71 × 10−4 3.346
1/30 7.68 × 10−4 3.629 1.86 × 10−4 3.165

1/10 1.09 × 10 3.07 × 10−1

1/20 2.42 × 10−1 2.174 7.72 × 10−2 1.9892O 1/30 1.04 × 10−1 2.089 3.48 × 10−2 1.969
1/40 5.74 × 10−2 2.057 1.99 × 10−2 1.944

063308-6



HIGH-ORDER LEAST-SQUARE-BASED FINITE-DIFFERENCE … PHYSICAL REVIEW E 100, 063308 (2019)

FIG. 3. Accuracy of the temperature T and velocity component u on quadrilateral mesh (left) and triangular mesh (right) at Pr = 0.71,
Re = 10, and Ra = 100.

replace Ck and Wk, j in Eq. (41) for the following derivations.
With new notations, Eq. (41) reads

∫
�i

U (x, y)d� =
⎛⎝�i −

9∑
k=1

Ci
k

N∑
j=1

W i
k, j

⎞⎠U i

+
N∑

j=1

(
9∑

k=1

Ci
kW

i
k, j

)
U i j . (42)

If we substitute Eq. (42) into Eq. (7) and use variable Ri

to represent the flux contributions as given in Eq. (12) and the
source term, then Eq. (7) can be written as⎛⎝�i −

9∑
k=1

Ci
k

N∑
j=1

W i
k, j

⎞⎠∂U i

∂t
+

N∑
j=1

(
9∑

k=1

Ci
kW

i
k, j

)
∂U i j

∂t

= −Ri. (43)

As shown in Eq. (43), the time derivative terms consist of
two parts: the solution value at the current cell i and those at
the neighboring cells. To simplify the solution process, point
iterative method is used to solve Eq. (43) efficiently. In fact,
the following matrix form can be obtained when Eq. (43) is
applied to all control cells:

M
∂U
∂t

= −R, (44)

where U , R is, respectively, the solution vector and the vector
of flux and the source term contribution for all control cells;
M is a sparse matrix formed by coefficients on the left-hand
side of Eq. (43).

When a steady state problem is considered, the time deriva-
tive in Eq. (44) is zero and the temporal accuracy is of no
importance. Thus, we can use the first-order Euler explicit
scheme to march Eq. (44) in time until a steady state solution

FIG. 4. Efficiency comparison between the HO and 2O LSFD-FV methods using TLBFS for porous plate problem on quadrilateral mesh
(left) and triangular mesh (right) at Pr = 0.71, Re = 10, and Ra = 100.
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FIG. 5. Streamlines and isotherms for Rayleigh-Bénard convection problem by HO LSFD-FV method using TLBFS at Rayleigh number
Ra = 105.
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FIG. 6. Mesh used for natural convection in a square cavity by HO LSFD-FV method using TLBFS at different Rayleigh numbers:
(a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and 106.
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FIG. 7. Streamlines for natural convection in a square cavity by HO LSFD-FV method using TLBFS at different Rayleigh numbers: (a)
Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.

is reached. Then Eq. (44) is written as

M
Un+1 − Un

	t
= −Rn. (45)

If we use the point iterative method to solve Eq. (45), only
at the current cell, Un+1

i is written as

Un+1
i = Un

i + 	Un
i . (46)

For all the neighboring cells, Un+1
i j is approximated by Un

i j .
As a consequence, Eq. (45) can be simplified to

Mi,i
	Un

i

	t
= −Rn

i , (47)

where Mi,i are the diagonal elements and can be easily ob-
tained from Eq. (43) as

Mi,i = �i −
9∑

k=1

Ci
k

N∑
j=1

W i
k, j . (48)
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FIG. 8. Isotherms for natural convection in a square cavity by HO LSFD-FV method using TLBFS at different Rayleigh numbers: (a)
Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.

As shown in Eq. (47), the solution for 	U avoids the
construction of matrix M, which is usually hard to write out
due to the unstructured distribution of mesh cells. Therefore,
this simplified process is as convenient as the explicit method
utilized in the conventional FV method. Once 	U is obtained
for all the control cells, the solution at the new time level
(n + 1) can be updated by using Eq. (46).

For unsteady flow problems, the temporal accuracy is
as important as the spatial accuracy. In Eq. (44), the time
derivative is not zero and the sparse matrix M affects the time
evolution solution directly. In this case, in order to simplify the
solution process in this work, the dual time stepping method
[32] is adopted. By adding a pseudotime derivative to Eq. (44),
we have

M
∂U
∂τ ∗ + M

∂U
∂t

= −R, (49)

where τ ∗ is the pseudotime. Introducing a new residual vector
R* as

R∗ = R + M
∂U
∂t

, (50)

then Eq. (49) can be reduced to

M
∂U
∂τ ∗ = −R∗. (51)

As a result, Eq. (51) represents a steady state problem in the
pseudotime domain. Thus, similar to the steady state case, the
point iterative method described above can be used to solve
Eq. (51). To ensure time accuracy, the matrix M in R* cannot
be simplified and the time derivative in R* is approximated by
the 2O backward-difference scheme.
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TABLE III. Results of natural convection in a square cavity at
four different Rayleigh numbers: Ra = 103, 104, 105, and 106.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Shu et al. [37] 3.649 16.190 34.736 64.775
Yang et al. [35] 3.647 16.183 34.775 64.938

umax Wang et al. [30] 3.640 16.14 34.87 64.838
HO scheme 3.644 16.152 34.729 64.875
2O scheme 3.622 16.150 34.791 65.011

Shu et al. [37] 0.815 0.825 0.855 0.850
Yang et al. [35] 0.815 0.823 0.853 0.850

y Wang et al. [30] 0.815 0.825 0.855 0.850
HO scheme 0.815 0.825 0.855 0.850
2O scheme 0.824 0.816 0.854 0.851

Shu et al. [37] 3.698 19.638 68.640 220.64
Yang et al. [35] 3.696 19.627 68.634 220.67

vmax Wang et al. [30] 3.708 19.67 68.85 220.92
HO scheme 3.693 19.612 68.355 218.34
2O scheme 3.678 19.560 68.162 218.78

Shu et al. [37] 0.180 0.120 0.065 0.035
Yang et al. [35] 0.175 0.117 0.067 0.038

x Wang et al. [30] 0.180 0.118 0.065 0.038
HO scheme 0.176 0.117 0.067 0.035
2O scheme 0.176 0.117 0.067 0.036

Shu et al. [37] 1.118 2.245 4.523 8.762
Yang et al. [35] 1.118 2.245 4.524 8.835

Nu Wang et al. [30] 1.115 2.232 4.491 8.711
HO scheme 1.118 2.245 4.524 8.848
2O scheme 1.119 2.254 4.535 8.936

III. NUMERICAL EXAMPLES

In this section, the accuracy of the developed HO LSFD-
FV method is tested on triangular and quadrilateral grids
first. Then the performance of this method is examined by
a series of incompressible thermal flow problems. In order
to further evaluate the robustness of HO LSFD-FV method,
the challenging numerical examples involving heat transfer
at very high Rayleigh numbers and/or with curved bound-
aries are also tested. In the simulation, for the present HO
scheme, conservative variables at two sides of cell interface
are interpolated by cubic approximation from those at cell
centers. For comparison purposes, the 2O scheme using linear
interpolation, which is the same as the work of Wang et al.
[30], has been chosen as the basis to assess the capability of
the present HO scheme.

A. Accuracy test with porous plate problem with a temperature
gradient

For thermal incompressible flow simulations, the HO
LSFD-FV method uses TLBFS to evaluate the inviscid and
viscous fluxes simultaneously. In this work, the fourth-order
accuracy interpolation is applied within every control cell.
Thus, the conservation variables would be reconstructed with
the fourth-order of accuracy and the LSFD-FV method itself
can achieve the fourth-order of accuracy. This has been val-
idated in the work of Liu et al. [28] by the accuracy test
for the LSFD-FV method. However, the TLBFS only has

TABLE IV. Comparison of computational cost of HO and 2O
LSFD-FV methods in natural convection in a square cavity at
Ra = 104.

Methods HO 2O 2O

Grids 7200 7200 28800
Nu 2.245 2.254 2.247
Virtual memory (Megabytes) 24.8 12.0 29.5
Iteration steps 46999 50019 153747
Computational time (s) 4895.1 1377.9 17942.8

the 2O accuracy in solution reconstruction. Naturally, one
may doubt the overall accuracy when these two methods are
combined together. To clear up the doubts, we should note
that the 2O accuracy of TLBFS is the local reconstruction
accuracy in terms of δx or δt rather than the mesh spacing
h. If δx is much smaller than h, the overall accuracy of the
whole method which is assessed in terms of h will not be
affected significantly by the TLBFS. Basically, there are some
limitations for the choice of δx. In practical implementa-
tion, the present HO LSFD-FV method chooses two Gauss-
Legendre quadrature points on every cell interface which can
ensure the fourth-order accuracy of the surface integral. To
avoid the extrapolation, the virtual streaming nodes should be
inside the two control cells as depicted in Fig. 1. Thus, δx is
restricted by the distribution of the Gauss-Legendre quadra-
ture points and the control cell. Specifically, after numerous
numerical studies, one effective and practical limitation for δx

is that δx = (1/2 − √
3/2)lmin sin θ ≈ 0.2113lmin sin θ , where

lmin and θ are the minimum length of the edge and the
minimum interior angle among the left and right cells of the
interface.

Based on the discussion above, the porous plate problem
with a temperature gradient [33] is solved to conduct the
convergence study for the HO LSFD-FV method with TLBFS.
The physical configuration of this problem is a channel flow
sheared between two porous plates, while an identical fluid
is injected normal to the shearing direction from the bottom
plate and withdrawn at the same rate from the upper plate.
The steady state governing equations can be given as

v0
∂u

∂y
= ν

∂2u

∂y2
,

∂ p

∂y
= gβ(T − Tm), (52)

v0
∂T

∂y
= κ

∂2T

∂y2
,

where v0 is the injection velocity; Th is the temperature for
the bottom plate; Tc is the temperature for the upper plate,
and Tm = (Th + Tc)/2 is the average temperature. The steady
state analytical solutions of the velocity component u and
temperature T are given as

u = u0

(
eRe·y/L − 1

eRe − 1

)
, (53)

T = Tc + 	T

(
ePr·Re·y/L − 1

ePr ·Re − 1

)
, (54)
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FIG. 9. Simulation results of HO LSFD-FV method using TLBFS for natural convection in a square cavity. (a) Streamlines at Ra = 107,
(b) streamlines at Ra = 108, (c) isotherms at Ra = 107, (d) isotherms at Ra = 108.

where u0 is the velocity of the upper plate, Re is the Reynolds
number, 	T = Th − Tc is the temperature difference between
the upper and bottom plates, and Pr = ν/κ is the Prandtl
number. This flow problem is also determined by the Rayleigh
number which is defined by

Ra = gβ	T L3

νκ
. (55)

The computation is on a square domain [−L, L] × [−L, L]
at Re = v0L/ν = 10, Pr = 0.71 and Ra = 100. The relaxation
parameter τν is set as 0.8 and the streaming distance δx

is selected as 0.2lmin sin θ . Periodic boundary condition is
imposed at the entrance and exit of the channel and the
Dirichlet boundary conditions are used at the top and bottom
plates.

Figure 2 plots the velocity and temperature profiles ob-
tained by the present HO LSFD-FV method, i.e. the HO

scheme, and the analytical solutions on the quadrilateral mesh
with the mesh size h = 1/30. It is clear that the results of the
HO scheme have good agreement with the analytical solu-
tions. This indicates that the present HO method using TLBFS
can capture the distribution of the velocity and temperature
in the flow field accurately. For the convergence study, the
accuracy of the 2O scheme is tested as a validation and com-
parison. In the test, four regular quadrilateral and triangular
grids with the mesh size of h = 1/10, 1/20, 1/30, and 1/40
are used. The accuracy of the HO scheme is examined on the
grids of h = 1/5, 1/10, 1/20, and 1/30. Table I lists errors
of temperature T in terms of L1 norm and the convergence
rates on the quadrilateral and triangular grids, respectively.
In Table II, accuracy test results of the velocity component
u are shown. Evidently, the relative errors of the HO scheme
are much smaller than the 2O scheme, which reflects the
higher order accuracy of the HO scheme. The slopes of
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TABLE V. Results of natural convection in a square cavity at
Ra = 107 and 108.

Ra 107 108

Chen et al. [20] 16.558 30.37
Quéré [39] 16.523 30.23

Nu0 Mayne et al. [40] 16.387 29.63
HO scheme 16.685 30.064
2O scheme 17.187 30.966

Chen et al. [20] 148.81 324.22
Quéré [39] 148.59 321.9

umax Mayne et al. [40] 145.27 283.07
HO scheme 148.83 324.05
2O scheme 151.76 264.85

Chen et al. [20] 699.52 2221.3
Quéré [39] 699.18 2222

vmax Mayne et al. [40] 703.25 2223.4
HO scheme 698.58 2202.7
2O scheme 690.37 2247.5

linearly fitted lines in Fig. 3 reveal that the accuracy of both
schemes can achieve the designed order and the HO LSFD-
FV method can achieve more than three roughly for both
velocity and temperature field, which is consistent with the
above discussion of accuracy. Furthermore, Fig. 4 compares
the efficiency between the HO and 2O schemes. It is shown
that the HO scheme with TLBFS requires less CPU time
than the 2O one to achieve the same accuracy. This provides
evident proof for the better efficiency of the HO LSFD-FV
method.

B. Rayleigh-Bénard convection

Rayleigh-Bénard convection, as a classic benchmark case
of natural convection, is simulated to test the developed HO
method. This problem models a viscous fluid between two
horizontal walls which is heated from the bottom and cooled
by the top. The temperatures at the bottom and top walls are

FIG. 10. Illustration of the setup for natural convection in a
concentric annulus.

FIG. 11. Mesh used for natural convection in a concentric annu-
lus at different Rayleigh numbers. Control cells: 2740.

T1 = 1 and T0 = 0, respectively, with the difference 	T = 1.
The dynamic similarity of this case is determined by the
dimensionless parameters of Prandtl number Pr and Rayleigh
number Ra. In the present simulation, the Rayleigh number
Ra is defined as below using the vertical length scale H as the
characteristic length:

Ra = gβ	T H3

νκ
= V 2

c H2

νκ
, (56)

where Vc = √
gβH · 	T is the characteristic thermal velocity

constrained by the low Mach number limit. For this test case,
we set Pr = 0.71, Vc = 0.1, and Ra = 105. The horizontal
and vertical length scales are, respectively, chosen as L = 2
and H = 1. No-slip boundary conditions are applied on the
bottom and top walls, and periodic boundary conditions are
implemented at the left and right boundaries. The computa-
tional domain is divided by 3200 regular quadrilateral cells.
The computed streamlines and isotherms by the present HO
LSFD-FV method using TLBFS are shown in Fig. 5. It can
be observed that the heat transfer in the box can be captured
accurately and these results agree well with the literature
[34,35]. The agreements validate the present HO LSFD-FV
method using TLBFS.

C. Natural convection in a square cavity

The following benchmark case is the natural convection in
a square cavity, driven by the buoyancy force. It is a good test
problem for validating new numerical methods at a wide range
of Rayleigh numbers, and it has been used for many previous
studies [20,30,35,36]. In our simulation, the no-slip boundary
condition is applied on all walls. The adiabatic condition is set
on the top and bottom walls, while isothermal conditions with
fixed temperatures of T1 = 1 and T0 = 0 are implemented at
the left and right walls, respectively. The dynamic similarity of
this problem is determined by the Prandtl number Pr and the
Rayleigh number Ra which is defined the same as Eq. (55).
Here, we set L = 1, Pr = 0.71 and Vc = 0.1. Commonly, the
Nusselt number Nu is used to evaluate the heat transfer rate.
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FIG. 12. Streamlines for natural convection in a concentric annulus by HO LSFD-FV method using TLBFS at different Rayleigh numbers:
(a) Ra = 102, (b) Ra = 103, (c) Ra = 104, (d) Ra = 5 × 104.

The averaged Nusselt number over the whole flow domain
and that along the vertical boundary of x = 0 are, respectively,
defined as

Nu = L

κ	T

1

L2

∫∫
©

�

(
uT − κ

∂T

∂x

)
d�, (57)

Nu0 = L

	T

1

L

∫
x=0

∂T

∂x
dy. (58)

First, a series of tests at Ra = 103, 104, 105, and 106 are
carried out on three different unstructured grids with 3200,
7200, and 14 554 cells, respectively, as shown in Fig. 6. For
the case of Ra = 103 and 104, the grids with 3200 and 7200
cells are employed, respectively. For Ra = 105 and 106, the
refined grids with 14554 cells are used. Figures 7 and 8 depict
the streamlines and isotherms computed by the present HO
method, respectively. These results have good agreement with
those obtained by Peng et al. [36], Wang et al. [30], and Chen
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FIG. 13. Isotherms for natural convection in a concentric annulus by HO LSFD-FV method using TLBFS at different Rayleigh numbers:
(a) Ra = 102, (b) Ra = 103, (c) Ra = 104, (d) Ra = 5 × 104.

et al. [20]. Additionally, Table III quantitatively compares the
computed representative properties, i.e., the average Nusselt
number Nu, the maximum velocity u at the vertical centerline
umax, the maximum velocity v at the horizontal centerline
vmax and their corresponding locations, with those of Wang

et al. [30], Yang et al. [35], and Shu and Xue [37]. We can
see that results obtained by the HO scheme agree well with
those reported in literature. Moreover, it is noteworthy that the
previous work [30,35] used a much more refined mesh to get
the ideal results while relatively coarse grids are used in the

TABLE VI. Comparison of average equivalent heat conductivity for natural convection in a concentric annulus at different Rayleigh numbers.

Inner cylinder, keqi Outer cylinder, keqo

Ra Kuehn et al. [42] Shu et al. [41] HO scheme 2O scheme Kuehn et al. [42] Shu et al. [41] HO scheme 2O scheme

102 1.000 1.001 1.001 1.000 1.002 1.001 1.001 1.000
103 1.081 1.082 1.084 1.089 1.084 1.082 1.084 1.089
104 2.010 1.979 2.001 2.044 2.005 1.979 2.000 2.043
5 × 104 3.024 2.958 3.015 3.104 2.973 2.958 3.013 3.102
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FIG. 14. Illustration of the mixed heat transfer simulation setup
from a heated circular cylinder.

present work, which reflects the higher accuracy of the present
HO scheme. This can be proven again from the comparison
between the results of HO scheme and the 2O scheme on the
same mesh in Table III.

Apart from the accuracy, the computational efficiency and
memory cost of the HO LSFD-FV method are tested and
compared with the 2O one. Here, we choose the case of
Ra = 104 as an example and the corresponding results are
presented in Table IV. As can be seen, although both the
memory cost and computational time of the HO scheme are
higher than the 2O scheme on the same mesh with 7200
triangular cells, the results of the 2O scheme do not accord
with those in the literature. When the refined mesh with 28
800 triangular cells is used for the 2O scheme to get the
comparable results as the HO scheme, the memory cost of the
HO scheme only accounts for 84% of that of the 2O scheme,
while the computational time of the HO scheme is as little as
27% of that of the 2O scheme. This provides evident proof

for the better computational efficiency of the HO LSFD-FV
method.

Finally, two more challenging cases of Ra = 107 and 108

are solved on the unstructured mesh which has 100 grid points
at each boundary, totally 14 554 cells, as shown in Fig. 6.
Figure 9 presents the computed streamlines and isotherms. It
can be seen that, in comparison with the case at moderate
Rayleigh numbers (Ra = 103, 104, 105, and 106), both the
flow and temperature boundary layers close to the hot and
cold walls at Ra = 107 and 108 are very thin. Moreover,
vertical convection in the central area becomes very weak and
heat conduction dominates this region. These observations
keep in accordance with results in Refs. [35,38]. Detailed
comparisons of representative quantities of Nu0, umax and
vmax are presented in Table V. From these results, it can be
concluded that the HO LSFD-FV method using TLBFS can
capture highly squeezed isotherms and streamlines on coarse
unstructured meshes and the HO LSFD-FV scheme is more
accurate than the 2O one.

D. Natural convection in a concentric annulus

The previous three test cases have validated the present
HO LSFD-FV method using TLBFS for simulation of thermal
flow problems with relatively simple geometry. To further
illustrate the flexibility and capability of the present method
in the use of unstructured mesh for solving thermal prob-
lems with curved boundaries, a numerical test of the natural
convection in a concentric annulus [30,35,41,42] is presented
in this subsection. A schematic diagram of the problem is
shown in Fig. 10. From this figure, the temperature of the
hot inner cylinder with radius Ri is Ti = 1 and that of the
cold outer cylinder with radius Ro is To = 0. The distance L
between these two cylinders is selected as the characteristic
length. The dynamic similarity of this problem depends on
three dimensionless parameters, i.e., the aspect ratio Ar , Pr,
and Ra. Pr and Ra were previously defined while the aspect
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FIG. 15. Mesh used for mixed heat transfer from a heated circular cylinder at various Grashof numbers. Control cells: 5600.
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FIG. 16. Streamlines for mixed convection obtained by HO LSFD-FV method using TLBFS at Re = 20 and various Gr: (a) Gr = 0, (b)
Gr = 100, (c) Gr = 800, (d) Gr = 1600.

ratio Ar is defined as

Ar = Ro

Ri
. (59)

Moreover, the average equivalent heat conductivities on the
inner and outer cylinders are defined as follows to quantify the
heat transfer efficiency of this problem:

keqi = ln (Ar )

2π (Ar − 1)

∫ 2π

0

∂T

∂r
dθ, (60)

keqo = Ar ln (Ar)

2π (Ar − 1)

∫ 2π

0

∂T

∂r
dθ. (61)

In the simulation, Ar is set as 2.6 and Pr = 0.71. Four
cases at various Rayleigh numbers of Ra = 103, 104, and 5
× 104 are carried out on the unstructured mesh with 2740
triangular cells as shown in Fig. 11. Figures 12 and 13 present
the streamlines and isotherms at different Rayleigh numbers

obtained by the HO LSFD-FV method using TLBFS, respec-
tively. It can be seen that at lower Rayleigh number, e.g., Ra =
102, both isotherms and streamlines are nearly symmetric
about the x and y axes. This phenomenon indicates that, when
Rayleigh number is low, the thermal conduction dominates
the heat transfer. Thus, the heat transfer efficiency is relatively
low. With Rayleigh number increased, the rotational centers of
the flow field move upwards and the thermal boundary layers
of both inner and outer cylinders separate gradually. This
means that, when Rayleigh number exceeds 103, thermal con-
vection becomes strong enough to affect the thermal field and
the heat transfer efficiency is increased. These observations
can be quantitatively verified via the equivalent conductivities
in Table VI. Besides the converged results obtained by the
present HO method, results of the 2O counterpart and the data
given by Shu [41], Kuehn and Goldstein [42] are included
for comparison. As the discussion above, the equivalent
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FIG. 17. Isotherms for mixed convection obtained by HO LSFD-FV method using TLBFS at Re = 20 and various Gr: (a) Gr = 0, (b)
Gr = 100, (c) Gr = 800, (d) Gr = 1600.

conductivities on both inner and outer cylinders increase
gradually when the Rayleigh number becomes larger. From
Table VI, it can be observed that the computed parameters by
the present HO scheme agree well with the reference data and
the maximum relative error between the present results and
the benchmark data is within 2%. Furthermore, through the
comparison between the HO scheme and the 2O scheme in
Table VI, it is clear that the HO method outperforms the 2O
one in terms of the accuracy.

E. Mixed heat transfer from a heated circular cylinder

To further demonstrate the capability of the present HO
LSFD-FV method using TLBFS for solving thermal flow
problems with curved boundary, validation on the mixed
heat transfer from a heated circular cylinder is conducted
at Reynolds number Re = 20 and various Grashof number

Gr = 0, 100, 800, and 1600. Physically, as illustrated in
Fig. 14, both natural heat convection and forced heat con-
vection are involved in this problem. Therefore, this test case
is more complicated than the previous examples. Apart from
the Prandtl number defined previously with the characteristic
length D, the Reynolds number Re, Grashof number Gr,
and average Nusselt number Nu are usually introduced for
better description of the mixed convection problem. These
nondimensional parameters are defined as follows:

Re = u0D

ν
, (62)

Gr = gβ(T1 − T0)D3

ν2
, (63)

Nu = D

2π (T1 − T0)

∫ 2π

0

∂T

∂n
dθ. (64)
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TABLE VII. Comparison of average Nusselt number and separation angle on a circular cylinder for mixed convection at Re = 20 and
various Gr.

Nu θs(deg)

Gr Badr et al. [43] Yang et al. [35] HO scheme Badr et al. [43] Yang et al. [35] HO scheme

0 2.540 2.454 2.454 43.13 43.59 43.57
100 2.654 2.655 2.662 29.51 30.01 29.60
800 3.227 3.201 3.210 0.0 0.0 0.0
1600 3.564 3.508 3.524 0.0 0.0 0.0

In the present simulation, Pr = 0.7, u0 = 0.1, T1 = 1,
and T0 = 0 are chosen to accord with the initial setup in
Refs. [30,43]. The computation is on the unstructured mesh
which has 5600 triangular cells as shown in Fig. 15. The
far-field boundary is set at 25.5 diameters away from the
center of the cylinder.

Figures 16 and 17, respectively, plot the computed stream-
lines and isotherms at four different Grashof numbers by the
present HO method. When Gr = 0, the temperature field has
no effect on the flow field. Hence, the streamlines obtained
are the same as those in isothermal simulations at the same
Reynolds number and clear recirculation zones are captured.
With the increase of Grashof number, the separation angle
θs and the length of the vortex behind the circular cylinder
decrease gradually until the vortex disappears at Gr � 800.
This indicates that the heat transfer rate may increase and the
viscous effect becomes weaker as Gr increases, which can be
verified via the isotherm figure. Table VII lists the quantitative
comparison between the computed average Nusselt number
Nu and separation angle θs on the circular cylinder with the
results of Badr [43] and Yang et al. [35]. As can be seen, as Gr
is increased, Nu increases but θs decreases, which keeps in ac-
cordance with trends in the streamlines and isotherms shown
in Figs. 16 and 17. Meanwhile, good agreements between
the results of the present HO method and the published data
[35,43] can be achieved. These validate the accuracy and the
flexibility on unstructured grids of the present HO LSFD-FV
method with TLBFS for solving the complicated heat transfer
flow problem with curved boundaries.

IV. CONCLUSIONS

This paper presents a straightforward HO least-square-
based finite difference-finite volume method on arbitrary grids
for simulation of incompressible thermal flows. This HO
method is based on the polynomial approximation with a
high order Taylor series expansion, where unknown deriva-
tives are approximated by the mesh-free LSFD technique.
Different from the other HO FV methods, the LSFD-FV
method directly uses the Taylor series expansion as the
approximation function within the control cell. This pro-
vides the present method with the advantage of a straight-
forward algorithm and easy comprehension. Moreover, this
highly accurate LSFD-FV method adopts TLBFS to eval-
uate the inviscid and viscous fluxes simultaneously with-
out introducing new degrees of freedom, which makes the
HO LSFD-FV method competitive in terms of the viscous
discretization.

Representative simulations validate the robustness, ac-
curacy, and computational efficiency of the present HO
method as well as its capability of handling the prob-
lems with a curved boundary on unstructured grids. Nu-
merical results show that the HO LSFD-FV method can
achieve the third order of accuracy. Furthermore, com-
pared with the 2O scheme, the HO method can obtain
more precise results with less computational cost. Such out-
comes indicate that the HO LSFD-FV method with TLBFS
has great potential in simulating practical heat transfer
problems.
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