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This paper presents a high order least square-based finite difference-finite volume 
(LSFD-FV) method together with lattice Boltzmann flux solver for accurate simulation 
of incompressible flows on unstructured grids. Within each control cell, a high order 
polynomial, which is based on Taylor series expansion, is applied to approximate the 
solution function. The derivatives in the Taylor series expansion are approximated by the 
functional values at the centers of neighboring cells using the mesh-free least square-
based finite difference (LSFD) method developed by Ding et al. (2004) [36]. In the high 
order finite volume method, the recently developed lattice Boltzmann flux solver (LBFS) 
is applied to evaluate the inviscid and viscous fluxes physically and simultaneously at 
the cell interface by local reconstruction of lattice Boltzmann solution. Compared with 
traditional k-exact high-order finite volume method, the present method is more accurate 
and efficient. Various benchmark examples are tested to validate the high-order accuracy, 
high computational efficiency and flexibility of the proposed method on unstructured grids.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Development of high-order discretization methods on unstructured grids is becoming fashionable in computational fluid 
dynamics (CFD) due to their higher accuracy than low-order methods. Although the second-order schemes have played an 
important role in engineering applications due to their robust and reliable characteristics, high-order schemes outperform 
them on prediction of turbulence, aeroacoustics and many viscosity-dominated flows. In the past two decades, various 
high-order schemes [1–29] have been developed in the CFD community for simulation of incompressible and compressible 
flows. There are several differences and similarities among them. Firstly, the difference between high-order methods for 
compressible and incompressible flows is inherited from the physics of these two types of flows. For incompressible flows, 
the continuity equation contains only velocity components and there is no explicit link with the pressure. Thus, particular 
techniques, such as vorticity-stream function, artificial compressibility and pressure Poisson equation, have to be adopted 
to overcome the restriction. Then the high-order methods, such as discontinuous Galerkin (DG) methods [20–22], spectral 
methods [23] and finite difference (FD) methods [7,56], are used to discretize these particular equations. However, for 
compressible flows, the continuity and momentum equations are coupled. Therefore, the difficulty of the pressure-velocity 
coupling for incompressible flows does not exist. The high-order methods can discretize the compressible Navier-Stokes 
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(N-S) equations directly. Secondly, for compressible flows, there are discontinuities in the flow field generally and the shock 
capturing techniques (e.g., the multi-dimensional limiter [8]) are usually required for the high-order methods to obtain the 
reasonable results. The incompressible flows, however, possess the smoother flow field where the shock capturing methods 
are not required basically. With regard to the similarities, since the fundamental of the high-order method is independent 
of the specific problems, the algorithm and formulation almost keep the same during the application of one high-order 
method for simulation of incompressible flows or compressible flows. In this work, we focus on the development of a new 
high-order method for incompressible flows.

Among the various high-order methods, the control volume-based high order schemes receive more and more attention 
due to their natural connection with physical conservation laws. In this category, the physical conservation laws (governing 
differential equation written in conservative form) are applied to a control cell. The conventional finite volume method 
(FVM) applies mean theorem to approximate the volume integral and surface integrals for each control cell. This treatment 
has the second-order of accuracy and the position of mean value is usually at the cell center. Thus, each cell has one 
unknown (functional value at cell center) and one equation (discrete form of governing equation by FVM), and the problem 
is well-posed. When a high order finite volume (FV) method is developed, the high order polynomial approximation for 
the solution function within each control cell is necessary. However, this may cause the problem to be not well-posed. 
For example, when the solution function within the control cell is approximated by a high order Taylor series expansion, 
the resultant integration of solution function over the control cell will give functional value and its spatial derivatives 
as unknowns but there is only one discrete equation for each cell. Obviously, the number of unknowns is larger than the 
number of equations, so the problem is not well-posed. To resolve this difficulty, various high order methods were presented. 
The widely used approach is the DG method [18–22,30–32]. To close the system, the DG method increases the number of 
equations. This can be achieved by weighted integrations of governing equation over each control cell. In the process, 
the number of weighting functions is taken the same as the number of unknowns. This can guarantee that the number of 
equations given from the integrations equals the number of unknowns. As compared with conventional FVM, the DG method 
needs to solve more discrete equations, and numerical stability may be affected. The major advantage of the DG method is 
that it is as compact as the conventional FVM since its discrete form of governing equations only involves information of 
current cell. Different from the DG method, the spectral volume method [25–27] uses the current cell and its neighboring 
cells to form a big cell, within which a high order polynomial approximation is established by using functional values at 
small cells. This polynomial is in turn applied to the current small cell for discretization of governing equations. Like the 
conventional FVM, the spectral volume method only uses one discrete equation for each control cell. Thus, its computational 
effort is lower than the DG method. However, the time-dependent term of its discrete form would involve functional values 
at neighboring cell centers, which is not as compact as the DG method. In addition, it is sensitive to the configuration 
of forming a big cell from the small neighboring cells. If it is not properly done, numerical computation may encounter 
instability [33–35]. This may cause inconvenience for numerical simulation, especially for the three-dimensional case. Apart 
from the DG and spectral volume methods, there is another high order method, called k-exact method [5]. In this method, 
the mean theorem is still applied in the finite volume discretization of governing equations. However, the mean value of 
the solution function may not be at the cell center, which is generally unknown. To keep high order approximation for the 
solution function within each cell, a modified Taylor series expansion is adopted, which is determined by the mean values 
of solution function at neighboring cells and used to interpolate the functional value at the cell interface. In the process, the 
modified Taylor series expansion needs to be integrated over the current cell and its neighboring cells respectively, resulting 
in an equation system to compute spatial derivatives at the cell center. Like the spectral volume method, the k-exact method 
also uses one discrete equation for each control cell, and its computational effort is less than that of the DG method. As the 
least square optimization is used for polynomial approximation, the k-exact method is usually more stable than the spectral 
volume method. However, its solution procedure seems to be more complicated as it needs to integrate the modified Taylor 
series expansion over the current and neighboring cells.

In this paper, we aim to present a more straightforward high order FV method. Like other high order methods, within 
each control cell, the solution function is approximated by a high order Taylor series expansion, which is then substituted 
into the discrete form of governing equations given by FVM. Since the Taylor series expansion involves the functional value 
and its spatial derivatives at the cell center, the discrete form of governing equations for each control cell would involve 
more than one unknowns (solution function and its spatial derivatives). To close the system, the least square-based finite 
difference (LSFD) scheme is used to approximate all the spatial derivatives by the functional values at centers of current cell 
and its neighboring cells. LSFD was proposed by Shu and his colleagues [36], which is a mesh-free method to approximate 
derivatives at randomly distributed points. It is an ideal approach to approximate derivatives on unstructured meshes. LSFD 
has been successfully applied to simulate various flow problems [37–40] with high-order of accuracy. However, due to 
the nature of finite difference discretization, there is no guarantee for its numerical discretization to be conservative if it 
is applied alone. In this work, FV method can guarantee conservative discretization and LSFD is a mesh-free method for 
approximation of derivatives. Thus, it is believed that the combination of LSFD and FV method can provide a simple and 
effective high order solver on unstructured mesh. On the other hand, similar to the spectral volume and k-exact methods, 
there is only one equation for each control cell in the present work, but the trade-off is that the time-dependent term 
resultant from volume integral of solution function over the control cell involves a pre-multiplied coefficient matrix. As 
shown in the paper, the resultant equation system can be solved by a point iterative method.
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Apart from solution approximation within each cell, the discrete form of governing equations also involves evaluation 
of numerical fluxes at cell interface. Conventional methods usually evaluate inviscid flux and viscous flux separately by 
using smooth function interpolation or difference approximation, which is a mathematical way. For high order methods, the 
evaluation of viscous flux becomes more critical. For example, the DG method [41–43] needs to introduce additional degree 
of freedoms for evaluation of viscous flux. The process may increase complexity and computational effort. As compared to 
the mathematical approach, physical evaluation of numerical fluxes at the cell interface is more desirable as this way can 
assure that the solution at the cell interface also satisfies the governing equation. Lattice Boltzmann flux solver (LBFS) [44]
is such a physical way. It uses local solution of lattice Boltzmann equation (LBE) to compute inviscid and viscous fluxes 
at the cell interface simultaneously. Through Chapman-Enskog (C-E) expansion analysis [44,45], it can be shown that the 
LBE solution can satisfy N-S equations. This means that the flow variables and fluxes at the cell interface given from LBFS 
also satisfy N-S equations. Thus, the mass and momentum conservation can be guaranteed effectively. So far, LBFS has been 
extensively applied to simulate various incompressible flows [46–50] with the weakly compressible assumption in the limit 
of low Mach number. In this work, LBFS is adopted to evaluate numerical fluxes at the cell interface in the high order 
LSFD-FV solver. Since inviscid and viscous fluxes are evaluated physically at the same time, the conventional difficulty of 
evaluating viscous flux in other high order methods is not appeared in the present work. To validate the present high order 
solver, several benchmark problems are solved. Numerical results demonstrate that the present high order method is slightly 
more accurate and efficient than conventional k-exact method.

2. High order least square-based finite difference-finite volume (LSFD-FV) method

2.1. Governing equations and high order finite volume discretization

This subsection describes the governing equations and the general framework for the cell-centered FVM on arbitrary 
grids. In Cartesian coordinate system, the governing equations for two-dimensional incompressible flows in the low Mach 
number limit, in the absence of source terms, can be cast as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu

∂t
+ ∇ · (ρuu + p I) = ν∇ · [∇ρu + (∇ρu)T ]

, (2)

where ρ , p and ν are respectively the density, pressure and kinematic viscosity of fluid flow. u = (u, v) is the velocity 
vector expressed in the global Cartesian coordinate system. I is the unit tensor. Eqs. (1) and (2) can be written in a unified 
way as

∂U

∂t
+ ∇ · F = 0, (3)

where the vector of conservative variables U and the vector of flux F are given by

U =
[

ρ
ρu

]
, F =

[
Fρ

Fρu

]
. (4)

In this work, the cell-centered FVM is adopted to discretize the governing equations. The basic discretization stems from 
the integral form of Eq. (3) over a control cell Ωi with application of the divergence theorem. Then Eq. (3) can be written 
as

∂

∂t

∫
Ωi

UdΩ = −
∫
Γi

F · ndΓ, (5)

where Γi denotes the boundary of the control cell Ωi and n = (nx, ny) represents the unit normal vector of the cell interface 
in the global Cartesian coordinate system.

In the conventional FVM, the volume integral and the surface integral in Eq. (5) are approximated by the mean theorem, 
and the mean value is defined at the cell/surface center. This approximation has the second-order of accuracy. To achieve a 
high-order of accuracy for Eq. (5), the solution variable U should be approximated by a high order polynomial, which is also 
used to interpolate functional value at the surface center for evaluation of numerical fluxes. As an example, it is supposed 
that the solution variable U is approximated by the following polynomial given from Taylor series expansion,

U (x, y) = U i + ∂U

∂x

∣∣∣∣
i
(x − xi) + ∂U

∂ y

∣∣∣∣
i
(y − yi) + ∂2U

∂x2

∣∣∣∣
i

(x − xi)
2

2

+ ∂2U

∂ y2

∣∣∣∣
i

(y − yi)
2

2
+ ∂2U

∂x∂ y

∣∣∣∣
i
(x − xi)(y − yi) + ∂3U

∂x3

∣∣∣∣
i

(x − xi)
3

6

+ ∂3U
3

∣∣∣∣ (y − yi)
3

6
+ ∂3U

2

∣∣∣∣ (x − xi)
2(y − yi)

2
+ ∂3U

2

∣∣∣∣ (y − yi)
2(x − xi)

2
,

(6)
∂ y i ∂x ∂ y i ∂ y ∂x i
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where the reference point (xi, yi) is the cell centroid of Ωi . Note that from Taylor series expansion, the truncation error of 
Eq. (6) is in the order of O (�x4, �y4). When Eq. (6) is substituted into Eq. (5), it involves 10 unknowns at the cell center 
(1 functional value, 2 first order derivatives, 3 second order derivatives and 4 third order derivatives). In fact, integrating 
Eq. (6) over the control cell Ωi gives the following equation,∫

Ωi

U (x, y)dΩ = Ωi U i + dU T
i Ci, (7)

with

dU T
i =

[
∂U

∂x

∣∣∣∣
i
,
∂U

∂ y

∣∣∣∣
i
,
∂2U

∂x2

∣∣∣∣
i
,
∂2U

∂ y2

∣∣∣∣
i
,

∂2U

∂x∂ y

∣∣∣∣
i
,
∂3U

∂x3

∣∣∣∣
i
,
∂3U

∂ y3

∣∣∣∣
i
,

∂3U

∂x2∂ y

∣∣∣∣
i
,

∂3U

∂ y2∂x

∣∣∣∣
i

]
,

C T
i =

[
x1 y0

i, x0 y1
i,

x2 y0
i

2
,

x0 y2
i

2
, x1 y1

i,
x3 y0

i

6
,

x0 y3
i

6
,

x2 y1
i

2
,

x1 y2
i

2

]
,

(8)

where xn ym
i = ∫

Ωi
(x − xi)

n(y − yi)
mdΩ . Equation (7) has 10 unknowns but Eq. (5) only provides one equation for each cell. 

Obviously, the problem is not well-posed. To close the system, the DG method modifies Eq. (5) by multiplying a weighting 
function to Eq. (3) and then performing integration over the control cell. The number of weighting functions is chosen to 
be the same as the number of unknowns (10 in Eq. (6)). Therefore, 10 equations for the control cell will be given. In this 
work, the unknown derivatives in Eq. (6) will be approximated by the meshless LSFD method, which will be described in 
Section 2.2. Apart from the volume integral, the surface integral in Eq. (5) also needs high order approximation. In this work, 
Gaussian quadrature is applied to approximate the surface integral. Generally, two Gaussian quadrature points will provide 
the fourth-order of accuracy. By applying the Gaussian quadrature rule, the surface integral in Eq. (5) can be approximated 
by

∫
Γi

F · ndΓ =
nedge∑

edge=1

nG Q p∑
G Q p=1

(F edge,G Q p · nedge)Aedge wG Q p, (9)

where nedge is the number of control surfaces for the control cell Ωi , nG Q p represents the number of Gaussian quadrature 
points on each control surface, wG Q p denotes a quadrature weight and A is the surface area. The evaluation of numerical 
flux F in Eq. (9) will be addressed in Section 2.3. With Eqs. (7) and (9), Eq. (5) can be reduced to a set of ordinary 
differential equations. The solution of these equations will be discussed in Section 2.4.

2.2. Derivative approximation by least square-based finite difference (LSFD) scheme

In this work, the least square-based finite difference (LSFD) scheme [36,37] is applied to approximate spatial derivatives 
in Eq. (6). In fact, LSFD is also based on two-dimensional Taylor series expansion as shown in Eq. (6), where derivatives are 
considered as unknowns. Therefore, the approximation form has 9 unknowns. By applying Eq. (6) at 9 neighboring points, 
the following equation system can be obtained:

SdU = �U , (10)

where the matrix S contains all the geometric information about the distribution of the supporting points. The details of 
the matrix S and �U are

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

�x1 �y1
�x2

1
2

�y2
1

2 �x1�y1
�x3

1
6

�y3
1

6
�x2

1�y1
2

�y2
1�x1
2

�x2 �y2
�x2

2
2

�y2
2

2 �x2�y2
�x3

2
6

�y3
2

6
�x2

2�y2
2

�y2
2�x2
2

...
...

...
...

...
...

...
...

...

�x9 �y9
�x2

9
2

�y2
9

2 �x9�y9
�x3

9
6

�y3
9

6
�x2

9�y9
2

�y2
9�x9
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�U T = [U 1i − U i, U 2i − U i, . . . , U 9i − U i],

(11)

where (�x, �y) = (x − xi, y − yi), U ki is the functional value at the center of the kth neighboring cell to the current cell 
i. By solving equation system (10), the expression of the derivative vector dU can be obtained in terms of �U . However, 
due to unstructured cell distribution for a general case, the equation system may be ill-conditioned or even singular. To 
overcome this difficulty, the local scaling technique and least square optimization were introduced, where Eq. (6) is applied 
at more than 9 neighboring points. The details of these techniques can be referred to the work of Ding et al. [36]. As a 
consequence, the derivative vector dU can be approximated by the following matrix form
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dU = W �U , (12)

where W is the 9 × N dimensional weighting coefficient matrix, whose components are uniquely determined by the co-
ordinates of mesh points (centers of current cell and its neighboring cells), and N is the number of neighboring cells. The 
details of matrix W can be referred to the appendix. With matrix W , the first, second and third order derivatives at the 
center of current cell i can be approximated by the following forms,

∂U

∂x

∣∣∣∣
i
=

N∑
j=1

W1, j�U i j, (13a)

∂U

∂ y

∣∣∣∣
i
=

N∑
j=1

W2, j�U i j, (13b)

∂2U

∂x2

∣∣∣∣
i
=

N∑
j=1

W3, j�U i j, (13c)

∂2U

∂ y2

∣∣∣∣
i
=

N∑
j=1

W4, j�U i j, (13d)

∂2U

∂x∂ y

∣∣∣∣
i
=

N∑
j=1

W5, j�U i j, (13e)

∂3U

∂x3

∣∣∣∣
i
=

N∑
j=1

W6, j�U i j, (13f)

∂3U

∂ y3

∣∣∣∣
i
=

N∑
j=1

W7, j�U i j, (13g)

∂3U

∂x2∂ y

∣∣∣∣
i
=

N∑
j=1

W8, j�U i j, (13h)

∂3U

∂x∂ y2

∣∣∣∣
i
=

N∑
j=1

W9, j�U i j, (13i)

where j is the jth neighboring cell of the current cell i, i j is the global index of jth neighboring cell. As indicated above, 
the weighting coefficient matrix W is uniquely determined by the mesh point distribution. So, when a stationary problem 
is considered, the computational mesh is fixed. Therefore, we only need to compute W once and store the data for the 
following computation. This can save the computational effort.

2.3. Evaluation of numerical fluxes at cell interface by lattice Boltzmann flux solver

The above subsection discusses how to use LSFD method to approximate derivatives in the high order Taylor series 
expansion for the solution function in the FV discretization. This subsection will address another important issue, that is, 
evaluation of numerical flux at the cell interface. As indicated in the introduction, the lattice Boltzmann flux solver (LBFS) 
[44] is adopted in this work to fulfill the job. The LBFS is proposed recently for simulation of incompressible inviscid and 
viscous flows, which evaluates the inviscid and viscous fluxes simultaneously by local reconstruction of lattice Boltzmann 
solution from macroscopic flow variables at two cell centers. Clearly, it is a physical reconstruction of solution at the cell 
interface. In this work, only 2D cases are considered. In order to facilitate simulations of flows on arbitrary grids, a local-
coordinate system is introduced at the cell interface, in which the two directions are the outward normal direction and the 
tangential direction. Some details of LBFS in the local-coordinate system for the 2D case are shown below.

Through multiscale Chapman-Enskog expansion analysis [45], Eqs. (1) and (2) can be recovered by expressing the fluxes 
as follows

Fρ =
Nd∑

α=0

f eq
α (eα)1, (14)



6 Y.Y. Liu et al. / Journal of Computational Physics 401 (2020) 109019
Fig. 1. Local reconstruction of lattice Boltzmann solution at cell interface. δx denotes the streaming distance. f eq
α denotes the equilibrium distribution 

function at the α-th lattice point.

Fρu1 =
Nd∑

α=0

(eα)1(eα)1

[
f eq
α +

(
1 − 1

2τ

)
f neq
α

]
, (15a)

Fρu2 =
Nd∑

α=0

(eα)1(eα)2

[
f eq
α +

(
1 − 1

2τ

)
f neq
α

]
, (15b)

where τ is the single relaxation parameter and eα is the lattice velocity vector. The subscripts “1” and “2” denote the 
outward normal and tangential direction of the cell interface, respectively. Nd is the number of discrete particle velocities 
in the lattice Boltzmann method. For the most popular D2Q9 model, Nd = 9. f eq

α denotes the equilibrium distribution 
function along the α direction and f neq

α is the corresponding non-equilibrium distribution function.
The equilibrium distribution function f eq

α reads

f eq
α = ρwα

[
1 + eα · u

c2
s

+ (eα · u)2 − (cs|u|)2

2c4
s

]
. (16)

For D2Q9 model defined in a square lattice as shown in Fig. 1, the sound speed cs and the coefficients wα are given as 
cs = c/

√
3, w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36. c = δx/δt . δx and δt denote the lattice 

spacing and the streaming time step, respectively. Generally, c is taken as 1.
The kinematic viscosity ν can be estimated from the relaxation parameter τ with

ν =
(
τ − 1

2

)
c2

s δt . (17)

The pressure can be calculated from the equation of state,

p = ρc2
s . (18)

The non-equilibrium distribution function f neq
α in Eq. (15) can be approximated by

f neq
α (r, t) = −τ

[
f eq
α (r, t) − f eq

α (r − eαδt, t − δt)
] + O

(
δ2

t

)
, (19)

where r is physical location and t is time. f eq
α (r, t) and f eq

α (r − eαδt , t − δt) are the equilibrium distribution functions at 
the Gaussian quadrature point r along the cell interface and its surrounding nodes r − eαδt , respectively. Note that the 
streaming time step δt equals the lattice spacing δx , since c = 1. It is indicated that LBFS has the second-order of accuracy, 
but this order of accuracy is in terms of lattice spacing δx rather than the mesh spacing �x. In practical implementation, δx

is chosen to be much smaller than �x in order to keep the global accuracy of the solution.
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In order to calculate f neq
α (r, t), we have to obtain f eq

α (r, t) and f eq
α (r − eαδt , t − δt) firstly. For f eq

α (r − eαδt , t − δt), 
the corresponding fluid density ρ and velocity u can be given from those at cell centroid via the high order polynomial 
approximation form (6). Using the information at cell centroids ri and r j and according to Eq. (6), any variable ϕ at the 
location (r − eαδt ) can be given as

ϕ(r − eαδt) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(ri) + ∇ϕ(ri)�X i + 1
2 �X T

i H(X i)�X i

+ 1
6 �2 X T

i G(X i)�X i + O (X4)
(r − eαδt) ∈ Ωi

ϕ(r j) + ∇ϕ(r j)�X j + 1
2 �X T

j H(X j)�X j

+ 1
6 �2 X T

j G(X j)�X j + O (X4)
(r − eαδt) ∈ Ω j

where ϕ =
(

ρ
u

)
,�X i =

(
(r − eαδt − ri)x

(r − eαδt − ri)y

)
,

�2 X T
i = (

(r − eαδt − ri)
2
x , (r − eαδt − ri)

2
y

)
.

(20)

The gradient ∇ϕ , the matrices H and G are

∇ϕ =
(

∂ϕ

∂x
,
∂ϕ

∂ y

)
,

H =
⎡
⎣ ∂2ϕ

∂x2
∂2ϕ
∂x∂ y

∂2ϕ
∂ y∂x

∂2ϕ
∂ y2

⎤
⎦ , G =

⎡
⎣ ∂3ϕ

∂x3 3 ∂3ϕ
∂x2∂ y

3 ∂3ϕ
∂ y2∂x

∂3ϕ
∂ y3

⎤
⎦ ,

(21)

where the derivatives are calculated by the LSFD method. Once the required fluid density ρ and velocity u have been 
obtained, f eq

α (r − eαδt , t − δt) can be calculated from Eq. (16). In addition, following the derivations in [44], we can obtain

ρ(r, t) =
Nd∑

α=0

f eq
α (r − eαδt, t − δt), (22)

ρ(r, t)u(r, t) =
Nd∑

α=0

f eq
α (r − eαδt, t − δt)eα. (23)

Thus, f eq
α (r, t) can be further calculated with Eq. (16). Once f eq

α (r − eαδt , t − δt) and f eq
α (r, t) are available, f neq

α can be 
calculated with Eq. (19). Finally, Fρ in Eq. (14) and Fρu1 and Fρu2 in Eq. (15) can be computed.

Practically, the fluxes in Eqs. (14) and (15) cannot be used in Eq. (3) directly since they are defined in the local coordinate 
system. In order to calculate fluxes F in the global Cartesian coordinate system, the coordinate transformation should be 
conducted. Then F in the global Cartesian coordinate system can be evaluated from the local coordinate system via

F = (Fρ, Fρu1nx − Fρu2ny, Fρu2nx + Fρu1ny)
T . (24)

It is noted that, since LBE solution is reconstructed physically and locally at every Gaussian quadrature point along 
each cell interface, different δt could be chosen for different interfaces. This provides a great flexibility for applications on 
unstructured grids. Moreover, the time marching step �t is independent of the streaming time step δt (δt is only used in 
the solution reconstruction), which gives flexibility for the choice of time evolution scheme in the present solver.

2.4. Solution of resultant ordinary differential equations

As shown in Eq. (7), when Taylor series expansion form (6) is substituted into the volume integral of solution function 
over the control cell i, we have

∫
Ωi

U (x, y)dΩ = Ωi U i + dU T
i Ci = Ωi U i +

9∑
k=1

CkdU k. (25)

Eq. (25) involves functional value U i and its spatial derivatives. As shown in Eq. (13), the spatial derivatives can be approx-
imated by LSFD in terms of differences between the functional values at the centers of current cell i and its neighboring 
cells. Thus, we have

∫
U (x, y)dΩ = Ωi U i +

9∑
k=1

Ck

N∑
j=1

Wk, j�U i j = Ωi U i +
9∑

k=1

Ck

N∑
j=1

Wk, j(U i j − U i). (26)
Ωi
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Eq. (26) is applied to each control cell. Note that for different cells, the coefficients Ck and Wk, j could be different. To show 
the difference, we use C i

k and W i
k, j to replace Ck and Wk, j in Eq. (26) in the following derivations. With new notations, 

Eq. (26) can be written as∫
Ωi

U (x, y)dΩ =
(

Ωi −
9∑

k=1

C i
k

N∑
j=1

W i
k, j

)
U i +

N∑
j=1

(
9∑

k=1

C i
k W i

k, j

)
U i j . (27)

If we use variable R i to represent the flux contributions as given in Eq. (9), then Eq. (5) can be written as(
Ωi −

9∑
k=1

C i
k

N∑
j=1

W i
k, j

)
∂U i

∂t
+

N∑
j=1

(
9∑

k=1

C i
k W i

k, j

)
∂U i j

∂t
= −R i . (28)

As compared to the conventional FVM form, Eq. (28) involves not only the time derivative of functional value at the current 
cell i but also the time derivatives of functional value at the neighboring cells. To simplify the solution process, in this work, 
we will use point iterative method to solve Eq. (28). For simplicity, when Eq. (28) is applied to all control cells, we can have 
the following matrix form,

M
∂U

∂t
= −R, (29)

where U , R is respectively the solution vector and the vector of flux contribution for all control cells, and M is a sparse 
matrix formed by coefficients on the left hand side of Eq. (28). Although the elements of M depend on the ordering of the 
vector U , and it is not easy to write out all elements of M , the diagonal elements of M can be easily given from Eq. (28) as

Mi,i = Ωi −
9∑

k=1

C i
k

N∑
j=1

W i
k, j. (30)

Eq. (30) will be very useful for the point iterative solution of Eq. (29) when a steady state problem is considered. For this 
case, the time derivative is zero, and Eq. (29) is used to march in time until a steady state solution is reached. Since the 
accuracy of temporal discretization is not important for the steady problem, we can use the first order Euler explicit scheme 
to solve Eq. (29), which gives

M
U n+1 − U n

�t
= −Rn. (31)

For the point iterative method to solve Eq. (31), only at the current cell, U n+1
i is written as

U n+1
i = U n

i + �U n+1
i . (32)

For all the neighboring cells, U n+1
i j is approximated by U n

i j . As a consequence, Eq. (31) can be simplified to

M i,i
�U n+1

i

�t
= −Rn

i , (33)

where M i,i is given by Eq. (30). It can be seen from Eq. (33) that the solution for �U does not need to form matrix M . This 
process is as convenient as the explicit method utilized in the conventional FVM. Once �U is obtained for all the control 
cells, the solution at new time level (n + 1) can be updated by using Eq. (32).

For unsteady flow problems, the use of Euler explicit method may not be able to provide accurate time evolution solution. 
For this case, the dual time stepping (DTS) [51] method is adopted in this work. By adding a pseudo-time derivative to 
Eq. (29), we have

M
∂U

∂τ ∗ + M
∂U

∂t
= −R, (34)

where τ ∗ is the pseudo time. By defining a new residual vector R∗ as

R∗ = R + M
∂U

∂t
. (35)

Eq. (34) can be reduced to

M
∂U

∂τ ∗ = −R∗. (36)

Eq. (36) is similar to Eq. (29). In the pseudo-time domain, it is a steady state problem. Thus the point iterative method 
described above can be used to solve Eq. (36). To keep time accuracy, the time derivative in R∗ is approximated by the 
second order finite difference scheme.
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2.5. Computational sequence

The computational sequence for the present high-order LSFD-FV method is summarized as below:

(1) Select the supporting cells for every cell. Calculate and store the weighting coefficient matrix W in Eq. (12) for every 
cell.

(2) Specify a streaming time step δt which should ensure that the location of the virtual lattice velocity point of D2Q9 
model is within either the left or the right cell of the interface. Then compute the single relaxation parameter τ by 
Eq. (17).

(3) Calculate the derivatives of conservative variables with Eq. (12) based on the functional values at the cell center.
(4) For the considered interface, reconstruct the macroscopic flow variables at the lattice velocity point of D2Q9 with 

Eq. (20). Calculate f eq
α (r − eαδt , t − δt) and f eq

α (r, t) using Eq. (16). Then, use Eq. (19) to calculate f neq
α (r, t) and further 

compute the fluxes at every Gaussian quadrature point by Eqs. (14) and (15). Then convert fluxes with Eq. (24) and 
further apply the Gaussian quadrature rule to calculate total fluxes across the considered interface.

(5) Solve resultant ordinary differential equations by Eq. (33) for steady problems and Eq. (36) for unsteady problems.
(6) Repeat steps (2)–(5) until the converged solution or the specified time is reached.

3. Numerical examples

In this section, a series of benchmark cases are tested to validate the accuracy, efficiency, stability and flexibility of 
present high-order LSFD-FV method. In the simulation, the small constant physical time step of �t = 10−4 is chosen and 
the pseudo time step in DTS is taken as �τ ∗ = 10−4. The maximum number of pseudo iterations is set as kmax = 20 and 
the criterion for pseudo steady state convergence per physical time step requires that the unsteady residual R∗ drops by 
five orders of magnitude.

3.1. Accuracy test

3.1.1. Accuracy test of high order LSFD-FV method
Firstly, the accuracy of the present high-order LSFD-FV method without LBFS is tested by the isentropic vortex transport 

problem [1]. This test problem involves convection of an isentropic vortex in the inviscid flow, where the inviscid fluxes are 
calculated by the Roe scheme [52]. The free-stream conditions are (ρ, u, v, P ) = (1, 1, 1, 1). The following perturbations are 
added to the free stream with no entropy gradient in the flow field,

(δu, δv) = ε

2π
e0.5(1−r2)(−y, x), (37)

while the temperature and entropy are

T = 1 − (γ − 1)ε2

8γπ2 e1−r2
, S = 1, (38)

where (x, y) = (x − 5, y − 5), r2 = x2 + y2 and the vortex strength ε = 5. The density ρ and pressure p are calculated from 
the temperature T and the entropy S by

T = p

ρ
, S = p

ργ
. (39)

The computational domain is [0, 10] ×[0, 10]. Periodic boundary condition is applied to all boundaries. The regular triangular 
grids are used and the grid spacing ranges from 1 to 1/8. The accuracy tests of the k-exact FV method are also performed 
for the purpose of comparison.

Table 1
Accuracy test results for the isotropic vortex problem on regular triangular grids.

Schemes Grid size L∞ errors Order L1 errors Order

4th order k-exact FV 1/20 3.59E-02 1.27E-03
1/40 3.08E-03 3.544 1.04E-04 3.599
1/60 5.76E-04 4.133 1.89E-05 4.210
1/80 1.52E-04 4.619 5.61E-06 4.228

4th order LSFD FV 1/20 3.52E-02 1.24E-03
1/40 2.87E-03 3.619 9.82E-05 3.657
1/60 5.21E-04 4.204 1.75E-05 4.255
1/80 1.25E-04 4.956 5.49E-06 4.027
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Fig. 2. Accuracy comparison between the present high-order LSFD-FV method and the high-order k-exact FV method for the isentropic vortex problem on 
regular triangular grids. The numbers in the figures denote the slopes of the linearly fitted lines. For the L∞ error, the slopes of the LSFD-FV and k-exact 
FV methods are 4.02 and 3.91, respectively. For the L1 error, the slopes of the LSFD-FV and k-exact FV methods are 3.92 and 3.90, respectively.

Fig. 3. Efficiency comparison between the present high-order LSFD-FV method and the high-order k-exact FV method for the isentropic vortex problem on 
regular triangular grids.

Results at t = 2.0 are extracted. The errors of density in terms of L1 and L∞ norms and the convergence rates are 
listed in Table 1. Fig. 2 shows the accuracy comparison. These results verify the fourth-order accuracy of both FV methods 
using LSFD approximation and k-exact approximation. Furthermore, the slopes of linearly fitted lines in Fig. 2 reveal that 
the accuracy of LSFD-FV method is slightly higher than the k-exact FV method. Additionally, from the relative errors listed 
in Table 1, the solutions computed by the fourth-order LSFD-FV method are more accurate than those obtained by the 
fourth-order k-exact FV method. The efficiency comparison in Fig. 3 shows that, for this unsteady simulation, the efficiency 
of LSFD-FV method is almost the same as the k-exact FV method. Moreover, for the grid of h = 1/80, the LSFD-FV method 
takes a little less CPU time (around 5%) than the k-exact FV method.

3.1.2. Accuracy test of high-order LSFD-FV method with LBFS
For incompressible flow simulations, the high-order LSFD-FV method uses LBFS to evaluate the inviscid and viscous fluxes 

simultaneously. From the first test case, the fourth-order accuracy of the LSFD-FV method has been validated. However, the 
LBFS only has the second-order accuracy in solution reconstruction. Naturally, one may doubt the overall accuracy of the 
whole method. Nevertheless, it is noteworthy that the second-order accuracy of LBFS is the local reconstruction accuracy 
in terms of δx or δt rather than the grid spacing h. Theoretically, if h is far larger than δx , the global or overall accuracy of 
the whole method which is assessed in terms of h will not be affected significantly by the LBFS. For the present high-order 
LSFD-FV method, two Gauss-Legendre quadrature points are chosen on every interface of the control cell to ensure the 
fourth-order accuracy of the surface integral. To avoid the extrapolation, generally, δx must satisfy the limitation that the 
virtual streaming nodes should be inside the two control cells as depicted in Fig. 1. Thus, δx is restricted by the distribution 
of the Gauss-Legendre quadrature points and the control cell. Specifically, for unstructured grids, one effective and practical 
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Table 2
Accuracy test results for decaying vortex flow on regular triangular grids.

Schemes Grid size L1 errors Order L2 errors Order

4th order k-exact FV 1/10 2.22E-02 2.51E-02
1/20 2.30E-03 3.272 2.57E-03 3.287
1/30 4.64E-04 3.948 5.19E-04 3.948
1/40 1.45E-04 4.050 1.62E-04 4.050
1/80 8.28E-06 4.129 9.26E-06 4.127

4th order LSFD FV 1/10 1.99E-02 2.24E-02
1/20 2.00E-03 3.313 2.24E-03 3.323
1/30 4.06E-04 3.933 4.55E-04 3.933
1/40 1.27E-04 4.028 1.43E-04 4.032
1/80 7.34E-06 4.117 8.23E-06 4.115

2nd order k-exact/LSFD FV 1/30 6.78E-03 6.09E-03
1/40 3.95E-03 1.881 3.55E-03 1.876
1/80 1.02E-03 1.951 9.20E-04 1.949
1/100 6.57E-04 1.982 5.91E-04 1.981
1/160 2.58E-04 1.991 2.32E-04 1.990

Note: The 2nd order k-exact FV and 2nd order LSFD-FV methods are degraded to the conven-
tional 2nd order FV method. Thus, they give the totally same results.

limitation for δx is that δx = (1/2 − √
3/2)lmin sin θ ≈ 0.2113lmin sin θ , where lmin and θ are the minimum length of the 

edge and the minimum interior angle among the left and right cells of the interface. Furthermore, due to the independence 
between the streaming time step and the time marching step, the small streaming distance does not affect the convergence 
rate.

Based on the discussion above, the decaying vortex flow problem which has an analytic solution is used to test the accu-
racy of the LSFD-FV method with LBFS numerically. The analytical solution of the problem satisfying the 2D incompressible 
N-S equations reads

u(x, y, t) = −U cos(πx/L) sin(π y/L)e−2π2Ut/(ReL),

v(x, y, t) = U sin(πx/L) cos(π y/L)e−2π2Ut/(ReL),

ρ(x, y, t) = ρ0 − ρ0U 2

4c2
s

[
cos(2πx/L) + cos(2π y/L)

]
e−4π2Ut/(ReL).

(40)

Numerical simulations are conducted on the computational domain of [−L, L] × [−L, L] at a Reynolds number of Re =
U L/ν = 10. The relaxation parameter τ is set as 0.8 and ρ0 is taken as 1. The streaming distance δx is selected as 
0.2lmin sin θ . The solutions at t = L/U = 1 are computed and the relative errors of velocity component u are measured 
using the L2 norm and L1 norm, which are defined as

L1(u) = 1

Ncell

Ncell∑
i=1

(∣∣∣∣ui − ue
i

U

∣∣∣∣
)

, L2(u) =
(

1

Ncell

Ncell∑
i=1

(
ui − ue

i

U

)2
) 1

2

, (41)

where ui and ue
i represent the numerical result and the exact solution, respectively. Ncell is the number of the cells.

For the convergence study, the regular triangular grids with the spacing of h = 1/10 to 1/160 are used. L1 and L2 norms 
of the relative errors of velocity component u and the rates of convergence are shown in Table 2. Fig. 4 shows the accuracy 
comparison of the high-order and second-order LSFD-FV method. As can be seen in Table 2 and Fig. 4, both the k-exact 
FV method and LSFD-FV method with LBFS achieve the theoretical accuracy, which is consistent with the above discussion 
of accuracy. In addition, the solutions calculated by both high-order methods are much more accurate than those obtained 
by the second-order methods. It is noteworthy that the relative errors obtained by high-order LSFD-FV method are slightly 
smaller than those computed by the high-order k-exact FV method. This proves that the high-order LSFD-FV method is 
slightly more accurate than the high-order k-exact FV method again. Furthermore, the efficiency comparison between the 
fourth- and the second-order LSFD-FV method is shown in Fig. 5, which indicates that the fourth-order LSFD-FV method 
with LBFS requires less CPU time than the second-order counterpart to achieve the same accuracy. This means that the 
high-order LSFD-FV method is more efficient than the second-order one.

3.2. Steady plane Poiseuille flow

The plane Poiseuille flow which is driven by a pressure gradient is a classic benchmark test for incompressible viscous 
flows. The analytical solution of this problem can be easily derived, which provides an ideal test case to investigate the 
accuracy of the high-order LSFD-FV method with LBFS and compare it with the second-order counterpart. The physical 
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Fig. 4. Convergence studies for 2D decaying vortex flow at t = 1. The numbers in the figures denote the slopes of the linearly fitted lines. For the L1 error, 
the slopes of the fourth- and second-order LSFD-FV methods are 3.83 and 1.96, respectively. For the L2 error, the slopes of the fourth- and second-order 
LSFD-FV methods are 3.82 and 1.96, respectively.

Fig. 5. Efficiency comparison between the fourth- and second-order LSFD-FV methods for 2D decaying vortex flow at t = 1.

configuration of this problem is that the viscous flow between 2 parallel plates is driven by a uniform pressure gradient. 
From the Navier-Stokes equations, the analytical solution of the velocity profile for this problem can be given as

u(y) = (y2 − H y)

2μ

∂ p

∂x
, (42)

where ∂ p/∂x is the pressure gradient. In the present simulation, the computational domain is set as [0, 1] × [0, 1], H = 1, 
the dynamic viscosity of the fluid is μ = 0.05 and ∂ p/∂x = −0.001. The uniform quadrilateral grids with the spacing of 
h = 1/10, 1/20 and 1/40 are applied. No-slip boundary condition is implemented on the upper and lower solid boundaries, 
while uniform pressure boundary condition is applied on the inlet and outlet of the channel.

Fig. 6 shows the computed u-component profiles by the high-order LSFD-FV method with different mesh points (N = 10, 
20 and 40). Clearly, good mesh convergence of the solution is achieved and the velocity profile is well captured even with 
the coarse mesh by the current high-order method. This indicates that the velocity distribution can be accurately predicted 
by the high-order LSFD-FV method with LBFS. Furthermore, as can be seen in Fig. 7, on the same coarse mesh of h = 1/20, 
the high-order LSFD-FV method gives more accurate results than the second-order one. Such outcomes evidently prove the 
better performance of the high-order LSFD-FV method than the second-order one in terms of numerical accuracy.

3.3. Lid-driven cavity flow

The case of plane Poiseuille flow can be regarded as a simple one-dimensional problem with negligible velocity in the 
vertical direction. To comprehensively evaluate the performance of the high-order LSFD-FV method with LBFS, the two-
dimensional lid-driven flow in a square cavity is tested. As one of the most important benchmark cases for validating new 
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Fig. 6. u-component profiles given by the fourth-order LSFD-FV method on the uniform quadrilateral grids. The solid line denotes the analytical solution. 
Symbols are computed with different meshes.

Fig. 7. Comparison of u-component profile on uniform quadrilateral grids of h = 1/20.

numerical methods in the simulation of incompressible viscous fluid flow problems, this steady case is also used to com-
pare the performance of the high order LSFD-FV and k-exact FV methods. Furthermore, the memory cost and computational 
efficiency between the high-order LSFD-FV method and the second-order one are compared.

The Reynolds number for the problem is defined as Re = U L/ν , where U is the velocity of the top lid and L is the 
length of the square cavity. The computational domain of [0, 1] ×[0, 1] with unstructured grids is presented in Fig. 8, where 
the non-uniform mesh spacings are respectively h = 1/20 for the cells in the middle and h = 1/45 for the cells near the 
walls, which has 2734 cells in total. The streamlines at Re = 1000 given by the high-order LSFD-FV method are shown in 
Fig. 8. For three Reynolds numbers of Re = 1000, 3200 and 5000, the u-velocity and v-velocity profiles along the vertical 
and horizontal central lines obtained by the high-order and second-order LSFD-FV method, and benchmark data of Ghia et 
al. [53] are presented in Fig. 9. Furthermore, to compare the computational efficiency and memory cost of the second- and 
high-order schemes, the mesh is refined to obtain comparable results for the second-order scheme. For internal cells, the 
mesh spacing is taken as h = 1/60, while for cells near the walls, h is reduced to h = 1/100. The total number of cells is 
11032. The corresponding results are shown in Fig. 10 and Table 3. From the results, it is clear that on the coarse mesh 
of 2734 cells, the high-order LSFD-FV method can give more accurate results than the second-order one. Meanwhile, for 
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Fig. 8. Lid-driven cavity flow: mesh and streamlines for the high-order LSFD-FV method at Re = 1000.

the similar accuracy achieved on different meshes, the high-order LSFD-FV method is almost three times faster than the 
second-order method with less memory cost. Such outcomes provide strong evidence that the high-order LSFD-FV method 
performs better than the second-order LSFD-FV method in terms of numerical accuracy and computational efficiency.

In order to further evaluate the performance of the high-order LSFD-FV method, the comparison between the high-order 
LSFD-FV and k-exact FV methods for this steady case is conducted. The results of Re = 3200 and 5000 on the mesh of 2734 
cells are shown in Fig. 11 and Fig. 12, respectively. Although the two methods can give comparable results, the high-order 
LSFD-FV method converges faster than the high-order k-exact FV method with less iterations. Furthermore, for the case of 
Re = 5000, the high-order LSFD-FV method uses only 85% of the CPU time spent by the high-order k-exact FV method. Such 
results clearly demonstrate the better efficiency of the high-order LSFD-FV method than the k-exact FV method with the 
same accuracy.

3.4. Viscous flow past a stationary circular cylinder

To further illustrate the capability of the present LSFD-FV method for problems with curved boundary, the viscous 
flow past a stationary circular cylinder at various Reynolds numbers (Re = 20, 40 and 100) is simulated. Physically, the 
simulation models the incoming viscous fluid with a constant free-stream velocity flowing over a fixed circular cylinder. To 
meet the incompressible limit, the free-stream velocity is chosen as U0 = 0.1 and the Reynolds number, which affects the 
flow pattern, is defined as Re = U0L/ν , where L is the diameter of the circular cylinder. The pressure coefficient C p , lift 
coefficient Cl , drag coefficient Cd and Strouhal number St are used to quantify the numerical results. They are defined as

C p = pw − p0

ρ0U 2
0/2

, Cl = Fl

ρ0U 2
0/2

, Cd = Fd

ρ0U 2
0/2

, St = fq L

U0
, (43)

where p0 is the free-stream pressure, pw is the pressure on the cylinder surface, Fl is the lift force, Fd is the drag force and 
fq is the vortex shedding frequency. In addition, the geometrical quantities of the eddies, such as the recirculation length 
Ls and the separation angle θs , are also measured for steady flows.

No-slip boundary condition is implemented on the cylinder surface, whereas far field free-stream condition is enforced 
on the outer boundary. Unstructured grid (see Fig. 13) with 65 points on the cylinder surface and 5908 cells in total is used 
for the simulation of steady flow at Re = 20, where the outer boundary is taken 25L away from the center of the cylinder. 
For the steady simulation of Re = 40 and the unsteady simulation of Re = 100, due to the smaller physical viscosity, 
a refined mesh (see Fig. 14) with 65 points on the cylinder surface and 11626 cells in total is used with the far-field 
boundary at 55L away from the center of the cylinder. For quantitative comparisons, the drag coefficient Cd , the length of 
the recirculation zone Ls and the separation angle θs in steady cases are tabulated and compared with the reference data 
[44,54–58] as shown in Table 4. The computed dynamic parameters for Re = 100 and the corresponding reference data 
[44,54,59,60] are presented in Table 5. As can be seen, on the same unstructured grids, the results of LSFD-FV methods are 
all within the range of reference data, while the high-order method outperforms the second-order method, which validates 
the accuracy and flexibility of the present high-order method on unstructured grids.

3.5. Inviscid flow past a stationary circular cylinder

In the present LSFD-FV method with LBFS, when τ is set as 0.5, the contribution from the non-equilibrium distribution 
function is vanished, and only the equilibrium distribution function has contribution to the flux calculation. In this way, we 
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Fig. 9. Comparison of the u-velocity (left) and v-velocity (right) profiles along vertical and horizontal central lines at (a) Re = 1000, (b) Re = 3200 and (c) 
Re = 5000 on the mesh of 2734 cells.
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Fig. 10. Comparison of the u-velocity (left) and v-velocity (right) profiles along vertical and horizontal central lines at (a) Re = 1000, (b) Re = 3200 and (c) 
Re = 5000 on different grids.



Y.Y. Liu et al. / Journal of Computational Physics 401 (2020) 109019 17
Fig. 11. Comparison of the u-velocity (left) and v-velocity (right) profiles along vertical and horizontal central lines at (a) Re = 3200 and (b) Re = 5000
between the high-order LSFD-FV method and high-order k-exact FV method. The mesh has 2734 cells.

Table 3
Comparison of the memory cost and computational time for lid-driven cavity flow.

Cells of mesh Re 4th order LSFD-FV method 2nd order LSFD-FV method

Memory (Mb) CPU time (s) Memory (Mb) CPU time (s)

2734 1000 8.0 742.06 3.2 302.38
3200 8.0 2175.25 3.2 923.41
5000 8.0 3328.03 3.1 1357.14

11032 1000 9.7 2126.75
3200 9.7 5464.59
5000 9.6 9093.02

further test the LSFD-FV method for inviscid flows by setting τ = 0.5. Inviscid flow past a circular cylinder has analytical 
solution in fluid mechanics, which is usually used to verify the accuracy of high-order methods. Since there is no boundary 
layer around the cylinder surface for this case, the computational mesh used is much coarser than that for the viscous flow. 
In the present simulation, the computational domain is divided into 2456 triangular grids and 40 points are distributed on 
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Fig. 12. Comparison of the convergence history (left) and efficiency (right) between the high-order LSFD-FV and k-exact FV methods at (a) Re = 3200 and 
(b) Re = 5000. The mesh has 2734 cells.

Fig. 13. Mesh of the viscous flow past a circular cylinder at Re = 20. 65 grids on the cylinder; 5908 cells.
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Fig. 14. Mesh of the viscous flow past a circular cylinder at Re = 40 and 100. 65 grids on the cylinder; 11626 cells.

Table 4
Comparison of drag coefficient, recirculation length and separation angle for 
steady flow past a stationary circular cylinder at Re = 20 and 40.

Re References Cd Ls/D θs �
20 Dennis and Chang [55] 2.05 0.94 43.7

Shukla et al. [56] 2.07 0.92 43.3
Wu and Shu et al. [57] 2.091 0.93 –
2nd order LSFD-FV method 2.08 0.848 40.995
4th order LSFD-FV method 2.072 0.92 43.78

40 He and Doolen [58] 1.499 2.245 52.84
Pellerin et al. [54] 1.505 2.259 53.64
Shu et al. [44] 1.53 2.24 52.69
2nd order LSFD-FV method 1.524 2.114 55.08
4th order LSFD-FV method 1.508 2.249 53.63

Table 5
Comparison of dynamic parameters for unsteady flow past a stationary circular 
cylinder at Re = 100.

Re References Cl Cd St

100 Braza et al. [59] ±0.30 1.28 ± 0.02 0.16
Liu et al. [60] ±0.339 1.350 ± 0.02 0.164
Shu et al. [44] ±0.33 1.334 ± 0.02 0.164
Pellerin et al. [54] ±0.325 1.325 0.164
2nd order LSFD-FV method ±0.327 1.338 ± 0.011 0.158
4th order LSFD-FV method ±0.332 1.337 ± 0.011 0.164

the cylinder surface. The far-field boundary is taken 30 diameters away from the geometrical center of the cylinder. The 
mesh is shown in Fig. 15. On the cylinder surface, no-penetration condition is applied.

The pressure contours and the streamlines near the rear stagnation point obtained by the high-order LSFD-FV method are 
shown in Fig. 16. As can be seen, the symmetry of the solutions is well captured. The streamlines pass through the cylinder 
smoothly and no vortex emerges. From the comparison of pressure coefficient computed by the high- and second-order 
LSFD-FV methods shown in Fig. 17, it is clear that the high-order method outperforms the second-order one and the results 
of the high-order method match well with the analytical solution. This test case well demonstrates the good capability of 
the present high-order LSFD-FV method for simulation of inviscid flows with curved boundary.

4. Conclusions

In this paper, a high-order least square-based finite difference-finite volume method is developed on arbitrary grids. 
This high-order method is based on the polynomial approximation with a Taylor series expansion. Different from the high-
order k-exact FV method, the LSFD-FV method directly uses the Taylor series expansion as the approximation function 
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Fig. 15. Mesh of the inviscid flow past a circular cylinder.

Fig. 16. Pressure contours (left) and streamlines (right) given by the high-order LSFD-FV method.

within the control cell instead of constructing the modified Taylor series expansion for its application on the current and 
neighboring cells. This provides the high-order LSFD-FV method with the advantage of straightforward algorithm and easy 
comprehension. For simulating incompressible flow problems, the LBFS is used to evaluate the inviscid and viscous fluxes 
simultaneously without introducing new degrees of freedom, which makes the LSFD-FV method competitive in terms of the 
viscous discretization. Moreover, in comparison with existing high-order solvers, the present high-order method is simpler 
and easier for implementation.

Representative simulations validate the high order accuracy and high computational efficiency of present LSFD-FV 
method as well as its capability of handling the problems with curve boundary on unstructured grids. Numerical results 
show that, at the same mesh resolution, the high-order LSFD-FV method has smaller absolute errors and better efficiency 
compared with the traditional k-exact FV method of the same order of accuracy. In addition, compared with the second-
order LSFD-FV method, the high-order method can obtain more precise results with less computational cost. Such outcomes 
indicate that the high-order LSFD-FV method with LBFS is very promising in practical problems of engineering interest. 
Since this high-order LSFD-FV method can be extended to three-dimensional simulation straightforwardly, the application 
for three-dimensional incompressible flow problems will be presented in the future work.
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Fig. 17. Comparison of pressure coefficients given by the high- and second-order LSFD-FV methods.

Appendix A. Computation of weighting coefficient matrix W

As reported in [36], the local scaling technique and least square optimization were used to prevent the coefficient ma-
trix S in Eq. (10) from being ill-conditioned. By applying Eq. (6) at N (N > 9) neighboring points, a least square optimal 
approximation of the derivative vector in succinct matrix form is obtained,

SdU = �U , (A.1)

where the matrix S and �U are

S T = [s1, s2, . . . , sN ],

s j =
[
�x j,�y j,

�x2
j

2
,
�y2

j

2
,�x j�y j,

�x3
j

6
,
�y3

j

6
,
�x2

j �y j

2
,
�y2

j �x j

2

]
, j = 1,2, . . . , N,

�U T = [U 1 − U i, U 2 − U i, . . . , U j − U i].

(A.2)

Note that S is not a square matrix but a N × 9 matrix.
For Eq. (A.1), applying the local scaling technique by scaling the local distance (�x, �y) with the radius of the support 

domain d0. Eq. (A.1) is then written as

S D D−1dU = S D−1dU = �U , (A.3)

with

S
T = [s̄1, s̄2, . . . , s̄N ],

s̄ j =
[
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�x2
j

2
,
�y2

j

2
,�x j�y j,

�x3
j

6
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�y3

j

6
,
�x2

j �y j

2
,
�y2

j �x j

2

]
, j = 1,2, . . . , N,

(A.4)

where (�x, �y) = (�x/d0, �y/d0) and the scaling matrix D is given as

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d−1
0

d−1
0

d−2
0

d−2
0

d−2
0

d−3
0

d−3
0

d−3
0

d−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.5)
0
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As a result, the condition number of resultant scaled coefficient matrix S̄ can be improved greatly. The solution of 
Eq. (A.3) gives,

dU = D
(

S
T

S
)−1

S
T
�U . (A.6)

On the other hand, as shown in [36], the distance-related weighting functions are introduced to reduce the influence of 
data farther from the reference point. In this work, the weighting function used is Wej = 1/

√
�x2

j + �y2
j . By applying the 

weighting function at N supporting points, the N × N diagonal matrix W e is formed as

W e =

⎛
⎜⎜⎜⎝

We1
.

.

.

WeN

⎞
⎟⎟⎟⎠ . (A.7)

Then the derivatives are calculated by

dU = D
(

S
T

W e S
)−1

S
T

W e�U = W �U , (A.8)

Thus, the weighting coefficient matrix W in Eq. (12) is

W = D
(

S
T

W e S
)−1

S
T

W e. (A.9)
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