
Adv. Appl. Prob. 44, 1173–1196 (2012)
Printed in Northern Ireland

© Applied Probability Trust 2012

RARE-EVENT SIMULATION OF HEAVY-TAILED
RANDOM WALKS BY SEQUENTIAL IMPORTANCE
SAMPLING AND RESAMPLING

HOCK PENG CHAN,∗ National University of Singapore

SHAOJIE DENG, Microsoft

TZE-LEUNG LAI,∗∗ Stanford University

Abstract

We introduce a new approach to simulating rare events for Markov random walks with
heavy-tailed increments. This approach involves sequential importance sampling and
resampling, and uses a martingale representation of the corresponding estimate of the
rare-event probability to show that it is unbiased and to bound its variance. By choosing
the importance measures and resampling weights suitably, it is shown how this approach
can yield asymptotically efficient Monte Carlo estimates.
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1. Introduction

The past decade has witnessed many important advances in Monte Carlo methods for
computing tail distributions and boundary crossing probabilities of multivariate random walks
with independent and identically distributed (i.i.d.) or Markov-dependent increments; see the
survey paper by Blanchet and Lam [5]. In particular, the case of heavy-tailed random walks
has attracted much recent attention because of its applications to queueing and communication
networks. A random variable is called light tailed if its moment generating function is finite in
some neighborhood of the origin. It is said to be heavy tailed otherwise.

Another area of much recent interest is the development and the associated probability theory
of the efficient Monte Carlo method to compute rare-event probabilities αn = P(An) such that
αn → 0 as n → ∞. A Monte Carlo estimator α̂n of αn using m simulation runs is said to be
logarithmically efficient if

mvar(α̂n) ≤ α2+o(1)
n as n → ∞; (1)

it is said to be strongly efficient if

mvar(α̂n) = O(α2
n).

Strong efficiency means that, for every ε > 0,

var(α̂n) ≤ εα2
n (2)
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can be achieved by usingm simulation runs, withm depending on ε but not on n. In the case of
logarithmic efficiency, (2) can be achieved by using mn simulation runs, with mn = (α−1

n )o(1)

to cancel the αo(1)n term in (1). Since the focus of this paper is on rare events associated with a
random walk Sn, any Monte Carlo estimate of a rare-event probability has to generate the i.i.d.
or Markov-dependent incrementsX1, . . . , Xn of the random walk for each simulation run, and
this computational task is linear in n. We call the Monte Carlo estimate linearly efficient if
mn = O(n) simulation runs can be used to achieve (2). More generally, for any nondecreasing
sequence of positive constants Cn → ∞ such that Cn = o(α−1

n ), we call the Monte Carlo
estimate Cn-efficient if mn = O(Cn) simulation runs can achieve (2). Note in this connection
that the variance of the direct Monte Carlo estimate of αn usingmn independent simulation runs
is αn(1−αn)/mn, and, therefore, (2) can be achieved only by choosingmn ≥ (εαn)

−1(1−αn).
To achieve strong efficiency, Blanchet and Glynn [4] and Blanchet and Liu [6] made use

of approximations of Doob’s h-transform to develop an importance sampling method for
computing P(A)when the eventA is related to a Markov chain Yk that has transition probability
densities pk(· | Yk−1) with respect to some measure ν. Letting hk(Yk) = P(A | Yk), note that

E[hk(Yk) | Yk−1] = E[P(A | Yk) | F k−1] = P(A | Fk−1) = hk−1(Yk−1),

i.e.
∫
pk(x, y)hk(y) dν(y) = hk−1(x). This yields the transition density

phk (x, y) := pk(x, y)
hk(y)

hk−1(x)
(3)

of an importance measure Q = P(· | A), and phk is called the h-transform of pk . Although
the likelihood ratio dP/ dQ is equal to P(A) and therefore has zero variance, this importance
measure cannot be used in practice because P(A) is the unknown probability to be estimated.
On the other hand, one may be able to find a tractable approximation vk of hk for k = 1, 2, . . .
so that phk (x, y) can be approximated by

qk(x, y) = pk(x, y)
vk(y)∫

pk(x, y)vk(y′) dν(y′)
, (4)

which is the transition density function of an importance measure that can be used to perform
importance sampling.

In this paper we propose a new approach to simulating rare-event probabilities for heavy-tailed
random walks. This approach uses not only sequential (dynamic) importance sampling but also
resampling. Chan and Lai [9] introduced the sequential importance sampling with resampling
(SISR) methodology and applied it to simulate P(g(Sn/n) ≥ b) and P(maxn0≤n≤n1 ng(Sn/n) ≥
c) for light-tailed random walks, where g is a general function and Sn is a random walk. Note
that, unlike [3], we consider here the situation in which n approaches ∞, rather than with
fixed n. In [9], the importance measure is simply Q = P and the resampling weights for the
light-tailed case heavily depend on the finiteness of the moment generating function. Moreover,
a distinguishing feature of a heavy-tailed random walk Sn is the possibility of a single large
increment resulting in the exceedance of g(Sn/n) or maxn0≤n≤n1 ng(Sn/n) over a threshold.
An important idea underlying the SISR method to simulate rare-event probabilities for heavy-
tailed random walks in Section 3 is to make use of the single large jump property to decompose
the event of interest into two disjoint events, one of which involves the maximum increment
being large. We use different Monte Carlo schemes to simulate these two events.

In Section 2 we describe another way of using SISR to simulate rare-event probabilities of
heavy-tailed random walks. Here we start with a target importance measure, such as the one that
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uses the transition density (4) to approximate the h-transform (3). The normalizing constant,
which is the integral in (4), may be difficult to compute for general state spaces. Moreover, it
may be difficult to sample from such density. The SISR procedure in Section 2 provides an
alternative to this elaborate direct importance sampling procedure but still achieves its effect.
The analysis of the two different SISR schemes for estimating rare-event probabilities, given
in Sections 2 and 3, respectively, enables us to bound the variance of an SISR estimate. In
Corollaries 1–5 in Sections 2 and 4 we use these bounds to show that the SISR estimates
are efficient under certain regularity conditions. In Section 5 we provide numerical results to
supplement the asymptotic theory and give further discussions on related literature.

2. Implementing a target importance measure by SISR

Let Yn = (Y1, . . . , Yn), and let pk(· | yk−1) be the conditional density, with respect to some
measure ν, of Yk given Yk−1 = yk−1. Let pn(yn) = ∏n

k=1 pk(yk | yk−1). To evaluate a rare-
event probability α = P(Yn ∈ �), direct Monte Carlo involves the generation ofm independent
samples from the density function pn(yn) and then estimating α by

α̂D = m−1
m∑
j=1

1{Y (j)n ∈�}.

Importance sampling involves the generation of m independent samples from an alternative
density q̃k(· | yk−1) and then estimating α by

α̂I = m−1
m∑
j=1

pn(Y
(j)
n )1{Y (j)n ∈�}
q̃n(Y

(j)
n )

,

where q̃n(yn) = ∏n
k=1 q̃k(yk | yk−1) and satisfies q̃n(yn) > 0 whenever pn(yn)1{yn∈�} > 0. If

one is able to choose q̃n such that pn(yn)1{yn∈�}/q̃n(yn) ≤ cα for some positive constant c,
then one can ensure that

mE
Q̃
(α̂2

I ) ≤ c2α2, (5)

yielding a strongly efficient α̂I.
For the case in which Yn is a random walk Sn and the rare event isA = {Sn ≥ b}, a candidate

for the choice of q̃k(· | Sk−1) is (4) in which vk is an approximation to the h-transform. Large
deviation or some other asymptotic method leads to an asymptotic approximation of the form

P(Sn ≥ b | Sk) ∼ g(b − Sk, n− k), (6)

which can be used to derive vk . As noted in Section 1, the normalizing constant (i.e. the
denominator) in (4) is often difficult to evaluate and the target importance measure with
transition density (4) may be difficult to sample from. We next show that we can bypass
the normalizing constant by using SISR, which also enables us to weaken and generalize (6) to

cngn(Yk, n− k) ≤ P(An | Yk) ≤ c′ngn(Yk, n− k) (7)

for all n and k and almost all Yk , where cn and c′n are positive constants. In (7), Yk is a general
stochastic sequence and we denote the event of interest by An to indicate that it is rare in the
sense that αn = P(An) → 0 as n → ∞. The weakening of (6) to (7) is of particular importance
for implementation since it allows one to choose gn to be piecewise constant so that not only
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can the normalizing constants in (8) below be easily computed but (8) is also convenient to
sample from. Let

qk(yk | yk−1) = pk(yk | yk−1)gn(yk, n− k)

wk−1(yk−1)gn(yk−1, n− k + 1)
, (8)

in which w0 ≡ 1 and wk−1(yk−1) is a normalizing constant to make qk(· | yk−1) a density
function for k ≥ 2. From (7), it follows that

κ−1
n ≤ wk−1(yk−1) ≤ κn, where κn = c′n

cn
. (9)

To be more specific, we describe the SISR procedure in stages, initializing with Y (�)0 = y0,
a specified initial state, or with Y (1)0 , . . . , Y

(m)
0 generated from the initial distribution.

Step 1: importance sampling at stage k. Generate Ỹ (j)k from qk(· | Y
(j)
k−1), and let Ỹ

(j)
k =

(Y
(j)
k−1, Ỹ

(j)
k ) for all 1 ≤ j ≤ m.

Step 2: resampling at stage k. Let w̄k = m−1 ∑m
�=1wk(Ỹ

(�)
k ) and the resampling weights

w
(j)
k = wk(Ỹ

(j)
k )

mw̄k
. (10)

Generate i.i.d. multinomial random variables b1, . . . , bm such that P(b1 = j) = w
(j)
k for

1 ≤ j ≤ m. Let Y
(�)
k = Ỹ

(b�)
k for all 1 ≤ � ≤ m. If k < n, increment k by 1 and go to

step 1; otherwise, end the procedure. There is no resampling at stage n.

After stage n, estimate α by

α̂B = w̄1 · · · w̄n−1

m

m∑
j=1

1{Ỹ (j)n ∈�}gn(Y
(aj )

0 , n)

gn(Ỹ
(j)
n , 0)

, (11)

where Y
(aj )

0 is the initial (ancestral) state of Ỹ
(j)
n . For notational simplicity, we assume

a specified initial state Y (�)0 = y0 for all �, and abbreviate gn(y0, n) and αn to g0 and α,
respectively.

Resampling is used in the above procedure to handle the normalizing constants in a target
importance measure that approximates the h-transform. In [7], a computationally expensive
discretization scheme, with partition width 1/n, is used to implement the state-dependent
importance sampling scheme based on the asymptotic approximation (6) in the case of regularly
varying random walks. Using resampling as described in the preceding paragraph enables us
to bypass the costly computation of the normalizing constants, and the SISR estimate α̂B is still
linearly efficient in this case, as will be shown in Corollary 1 at the end of this section. More
importantly, for more complicated models, one can at best expect to have approximations of
the type (7) rather than the sharp asymptotic formula (6). In this case, using (8) to perform
importance sampling usually does not yield a good Monte Carlo estimate because unlike
the situation in (5), (7) does not imply good bounds for

∏n
k=1[pk(yk | yk−1)/qk(yk | yk−1)]

on An. On the other hand, using (8) for the importance sampling component of an SISR
procedure, whose resampling weights are proportional to wk−1(yk−1), can result in a Monte
Carlo estimate α̂B that has a bound similar to (5), which can be used to establish efficiency of
the SISR procedure, as we now proceed to show.
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Following [9], let E∗ denote the expectation with respect to the probability measure from
which the Ỹ

(i)
k and Y

(i)
k are drawn; this differs from EQ for importance sampling from the

measure Q since it involves both importance sampling and resampling. A key tool for the
analysis of the SISR estimate α̂B is the following martingale representation of m(α̂B − α); see
Section 2 of [9].

Lemma 1. Let fk(yk) = P(Yn ∈ � | Yk = yk) for 1 ≤ k ≤ n − 1, f0 = α, and fn(yn) =
1{yn∈�}. Let

F2k−1 = σ({(Ỹ (j)t ,Y
(j)
t ) : 1 ≤ j ≤ m, 1 ≤ t ≤ k − 1} ∪ {Ỹ (j)k : 1 ≤ j ≤ m}),

F2k = σ({(Ỹ (j)t ,Y
(j)
t ) : 1 ≤ j ≤ m, 1 ≤ t ≤ k}).

Let #(j)k be the number of copies of Ỹ
(j)
k generated during the kth resampling stage. Define

η
(j)
2k−1 = (g0w̄1 · · · w̄k−1)

×
[

fk(Ỹ
(j)
k )

gn(Ỹ
(j)
k , n− k)

− fk−1(Y
(j)
k−1)

wk−1(Y
(j)
k−1)gn(Y

(j)
k−1, n− k + 1)

]
, 1 ≤ k ≤ n, (12)

η
(j)
2k = (#(j)k −mw

(j)
k )(g0w̄1 · · · w̄k) fk(Ỹ

(j)
k )

wk(Ỹ
(j)
k )gn(Ỹ

(j)
k , n− k)

, 1 ≤ k ≤ n− 1.

Then {(η(1)t , . . . , η
(m)
t ) : 1 ≤ t ≤ 2n− 1} is a martingale difference sequence with respect to

the filtration {Ft , 1 ≤ t ≤ 2n− 1}. Moreover,

m(α̂B − α) =
2n−1∑
t=1

m∑
j=1

η
(j)
t . (13)

Proof. By (8),

E∗
[

fk(Ỹ
(j)
k )

gn(Ỹ
(j)
k , n− k)

∣∣∣∣ F2k−2

]
= EQ

[
fk(Ỹ

(j)
k )

gn(Ỹ
(j)
k , n− k)

∣∣∣∣ Y
(j)
k−1

]

= E[fk(Ỹ (j)k ) | Y
(j)
k−1]

wk−1(Y
(j)
k−1)gn(Y

(j)
k−1, n− k + 1)

= fk−1(Y
(j)
k−1)

wk−1(Y
(j)
k−1)gn(Y

(j)
k−1, n− k + 1)

. (14)

Since g0w̄1 · · · w̄k−1 is measurable with respect to F2k−2, E∗[η(j)2k−1 | F2k−2] = 0 by (14).
Moreover, note that E∗[#(j)k | F2k−1] = mw

(j)
k and that g0w̄1 · · · w̄k and Ỹ

(j)
k are measurable

with respect to F2k−1. Therefore, E∗[η(j)2k | F2k−1] = 0.

Theorem 1. If (7) holds then α̂B is unbiased and

mvar∗(α̂2
B) ≤ n(κ4

n + κ6
n)

(
1 + κ2

n

m

)n−2

α2.

Hence, the SISR estimate α̂B of α is nκ6
n-efficient.
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Proof. Since η(i)t is a martingale difference sequence by Lemma 1, it follows from (13) that
α̂B is unbiased. Moreover, as shown in Example 1 of [9], all terms on the right-hand side of
(13) are either uncorrelated or negatively correlated with each other, and, therefore,

m2var∗(α̂2
B) ≤

2n−1∑
t=1

m∑
j=1

var∗(η(j)t ). (15)

Since fk(yk) = P(An | Yk)withAn = {Yn ∈ �}, fk(yk)/gn(yk, n−k) ≤ c′n by (7); moreover,
g0 ≤ α/cn. Hence,

g0fk(yk)

gn(yk, n− k)
≤ κnα. (16)

By (9), (12), and (14),

var∗(η(j)2k−1) ≤ E∗(η(j)2k−1)
2 ≤ κ2

nα
2 E∗[w̄2

1 · · · w̄2
k−1]. (17)

Similarly, since E∗[(#(j)k )2 | F2k−1] = mw
(j)
k and

∑m
j=1w

(j)
k = 1,

m∑
j=1

var∗(η(j)2k ) ≤ mκ4
nα

2 E∗[w̄2
1 · · · w̄2

k ]. (18)

By (8), for 0 ≤ s ≤ k,

k∏
�=s

q�+1(y�+1 | y�) = {∏k
�=s p�+1(y�+1 | y�)}gn(yk+1, n− k − 1)

{∏k
�=s w�(y�)}gn(ys , n− s)

,

and, therefore, by (7),

EQ

[ k∏
�=s

w�(Y�)

∣∣∣∣ Ys

]
≤ κn for 0 ≤ s ≤ k. (19)

Theorem 1 follows from (15)–(18) and Lemma 2 below.

Lemma 2. If (19) holds then E∗[w̄2
1 · · · w̄2

k ] ≤ κ2
n(1 +m−1κ2

n)
k−1.

Proof. By (9),
w̄2
k ≤ m−2

∑
u�=v

wk(Ỹ
(u)
k )wk(Ỹ

(v)
k )+m−1κ2

n.

Hence, by the independence of Ỹ
(u)
k and Ỹ

(v)
k conditioned on F2k−2,

E∗[w̄2
k | F2k−2] ≤ m−2

∑
u�=v

EQ[wk(Yk) | Y
(u)
k−1] EQ[wk(Yk) | Y

(v)
k−1] +m−1κ2

n. (20)

Since Y
(u)
k−1 is sampled from Ỹ

(i)
k−1 with probability w(i)k−1 = wk−1(Ỹ

(i)
k−1)/(mw̄k−1),

E∗[EQ[wk(Yk) | Y
(u)
k−1] | F2k−3] =

m∑
i=1

w
(i)
k−1 EQ[wk(Yk) | Ỹ

(i)
k−1]

= 1

mw̄k−1

m∑
i=1

EQ

[ k∏
�=k−1

w�(Y�)

∣∣∣∣ Ỹ
(i)
k−1

]
. (21)
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By (19)–(21),

E∗[w̄2
1 · · · w̄2

k | F2k−3]

≤ w̄2
1 · · · w̄2

k−2

{
m−1

m∑
i=1

EQ

[ k∏
�=k−1

w�(Y�)

∣∣∣∣ Ỹ
(i)
k−1

]}2

+m−1κ2
n E∗[w̄2

1 · · · w̄2
k−1 | F2k−3]

≤ w̄2
1 · · · w̄2

k−2m
−2

∑
u�=v

EQ

[ k∏
�=k−1

w�(Y�)

∣∣∣∣ Ỹ
(u)
k−1

]
EQ

[ k∏
�=k−1

w�(Y�)

∣∣∣∣ Ỹ
(v)
k−1

]

+m−1κ2
n E∗[w̄2

1 · · · w̄2
k−1 + w̄2

1 · · · w̄2
k−2 | F2k−3].

Conditioning successively on F2k−4,F2k−5, . . . then yields

E∗[w̄2
1 · · · w̄2

k ] ≤
{

EQ

[ k∏
�=1

w�(Y�)

]}2

+m−1κ2
n E∗[w̄2

1 · · · w̄2
k−1 + · · · + w̄2

1]

≤ κ2
n +m−1κ2

n E∗[w̄2
1 · · · w̄2

k−1 + · · · + w̄2
1],

from which the desired conclusion follows by induction.

We next give an application of Theorem 1 in which κn = O(1). A distribution function F
is said to be regularly varying with index γ > 0 if

F̄ (x) ∼ x−γ L(x) as x → ∞ (22)

for some slowly varying function L, that is, limx→∞ L(tx)/L(x) = 1 for all t > 0. Suppose
that E[X] = µ and var(X) = σ 2 < ∞. Let

g∗(b, n) = nF̄ (b − (n− 1)µ)1{b−nµ≥σ√
n} + 
̄

(b − nµ

σ
√
n

)
, (23)

in which 
 denotes the standard normal distribution. Rozovskiı̌ [18] showed that if F is
regularly varying then

P(Sn ≥ b) ∼ g∗(b, n) as n → ∞ uniformly over b ∈ R. (24)

By (24), (6) holds with g = g∗. The usefulness of weakening (6) to (7) which only requires
bounds is that gn can be chosen to be considerably simpler than g∗. In particular, we can
discretize g∗ and define

gn(Yn, n− k) = g∗(ζi, n− k) if ζi ≤ b − Sk < ζi+1, (25)

where ζ−2 = −∞, ζ−1 = 0, and ζi = ηi for some η > 1 and all i ≥ 0.

Corollary 1. LetX1, X2, . . . be i.i.d. with distribution function F satisfying (22) and such that
var(X1) < ∞. Consider the SISR procedure with importance density (8), in which gn is given
by (25), and with resampling weights (10). Then the SISR estimate of αn = P(Sn ≥ b) is
linearly efficient.

Proof. From (22) and (24), it follows that (7) holds with cn = c < 1 < c′ = c′n. Putting
κn = c′/c in Theorem 1 yields Corollary 1.
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3. SISR schemes via truncation and tilting for heavy-tailed random walks

LetX,X1, X2, . . . be i.i.d. with a common distribution function F . Let Sn = ∑n
k=1Xk and

Mn = max1≤k≤n Xk . Let τb = inf{n : Sn ≥ b}. Assume that

F̄ (x)[= 1 − F(x)] = e−(x), with ψ(x) =  ′(x) → 0 as x → ∞.

Then (x) = o(x) and F is heavy tailed, with density function

f (x) = ψ(x)e−(x).

We use  to develop general SISR procedures for simulating the probabilities

p = P(Sn ≥ b), α = P
(

max
1≤j≤n Sj ≥ b

)
= P(τb ≤ n).

These algorithms are shown to be linearly efficient in Section 4 as b = bn approaches ∞
with n, under certain conditions for which asymptotic approximations to p and α have been
developed. Unlike the SISR procedures in Section 2 that are based on (6) or its relaxation (7),
the SISR procedures based on  do not make explicit use of the asymptotic approximations to
p and α. On the other hand, these approximations guide the choice of importance measure and
the truncation in the SISR procedure.

3.1. Truncation and tilting measures for evaluating p by SISR

To evaluate p, we express it as the sum of probabilities of two disjoint events

A1 = {Sn ≥ b, Mn ≤ cb}, A2 = {Sn ≥ b, Mn > cb},
for which the choice of cb (which tends to ∞ as b → ∞) will be discussed in Theorem 2 and in
Sections 4 and 5. Juneja [16] applied a similar decomposition in the special case of nonnegative
regularly varying random walks, and efficiency was achieved with cb = b and with fixed n.
However, the rare events considered herein involve n → ∞, which requires a more elaborate
method to evaluate P(A1).

Let θb = (b)/b and πb = ∫ cb
1 x−2 dx (≤ 1), 0 < r < 1, and define the mixture density

q(x) = rf (x)+ 1 − r

πbx2 1{1≤x≤cb}. (26)

Let p̂1 be the SISR estimate of P(A1), with importance density (26) and resampling weights

wk(Xk) = eθbXkf (Xk)

q(Xk)
1{Xk≤cb}. (27)

Specifically, instead of using (8) to define qk(· | yk−1), we define qk(· | yk−1) by (26) for the
importance sampling step at stage k in the third paragraph of Section 2. Moreover, we now use
(27) instead of (9) to define the resampling weights and perform resampling even at stage n.
The counterpart of (11) now takes the simple form

p̂1 = (w̄1 · · · w̄n)m−1
m∑
j=1

e−θbS(j)n 1{S(j)n ≥b}, (28)
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where w̄k = m−1 ∑m
j=1wk(X̃

(j)
k ); see Equations (2.3) and (2.4) of [9]. As in Equations (2.4)

and (2.5) of [9], define

Zk(xk) =
[ k∏
t=1

f (xt )

q(xt )

]
P(A1 | xk), hk(xk) =

k∏
t=1

w̄t

wt (xt )
, w

(j)
k = wk(X̃

(j)
k )

mw̄k
, (29)

with Z0 = α and h0 = 1. Then Equation (2.10) of [9] gives the martingale decomposition

m[p̂1 − P(A1)] =
2n∑
t=1

ξt , (30)

where

ξ2k−1 =
m∑
j=1

[Zk(X̃(j)
k )− Zk−1(X

(j)
k−1)]hk−1(X

(j)
k−1)

and

ξ2k =
m∑
j=1

(#(j)k −mw
(j)
k )Zk(X̃

(j)
k )hk(X̃

(j)
k ),

and #(j)k is the number of copies of X̃
(j)
k in the kth resampling step.

Theorem 2. Let ζb = EQ[w1(X1)]. Suppose that one of the following conditions is satis-
fied:

(C)
∫ cb

1 ψ2(x)x2e2[θbx−(x)] dx = O(1),

(C′)
∫ cb
−∞ ψ(x)e2θbx−(x) dx = O(1),

as b → ∞. Then there exists a constant K > 0 such that, for all large b,

var(p̂1) ≤ Kn

m
ζ 2n
b eKn/m P2(X > b).

Proof. We will show that

P(St ≥ x, Mt ≤ cb) ≤ ζ tbe−θbx for all t ≥ 1, x ∈ R. (31)

Let G be the distribution function with density

g(x) = ζ−1
b eθbxf (x)1{x≤cb}.

Let EG denote the expectation under which X1, . . . , Xt are i.i.d. with distribution G. Then

P(St ≥ x, Mt ≤ cb) = EG

[[ t∏
k=1

f (Xk)

g(Xk)

]
1{St≥x}

]
= ζ tb EG[e−θbSt 1{St≥x}],

and (31) indeed holds.
In the martingale decomposition (30), the summands are either uncorrelated or negatively

correlated with each other, as shown in Example 1 of [9]. Therefore,

E∗[p̂1 − P(A1)]2 ≤ m−1
n∑
k=1

E∗[Z2
k (X̃

(1)
k )h2

k−1(X
(1)
k−1)]

+m−1
n∑
k=1

E∗[(#(1)k −mw
(1)
k )2Z2

k (X̃
(1)
k )h2

k(X̃
(1)
k )]. (32)
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Let sk = x1 + · · · + xk . Since

P(A1 | xk) = P(Sn−k ≥ b − sk, Mn−k ≤ cb)1{max(x1,...,xk)≤cb},

it follows from (27), (29), and (31) that

E∗[Z2
k (X̃

(1)
k )h2

k−1(X
(1)
k−1) | X

(1)
k−1 = xk−1]

= w̄2
1 · · · w̄2

k−1 EQ

[
f 2(X)e−2θbsk−1 P2(A1 | Xk = (xk−1, X))

q2(X)

]

≤ w̄2
1 · · · w̄2

k−1ζ
2n−2k
b e−2θbb EQ

[
f 2(X)e2θbX

q2(X)
1{X≤cb}

]
= w̄2

1 · · · w̄2
k−1ζ

2n−2k
b e−2θbb EQ[w2

1(X1)]. (33)

By the independence of the Xk in (27),

E∗[w̄2
1 · · · w̄2

k−1] = [EQ(w̄2
1)]k−1

=
(
ζ 2
b + varQ(w1(X1))

m

)k−1

≤ ζ 2k−2
b exp

(
(k − 1)EQ[w2

1(X1)]
mζ 2

b

)
. (34)

Since cb → ∞ as b → ∞, ζb ≥ 1 + o(1). Moreover, e−2θbb = P2(X > b). Hence, it follows
from (33), (34), and Lemma 3 below that there exists K1 > 0 such that

m−1
n∑
k=1

E∗[Z2
k (X̃

(1)
k )h2

k−1(X
(1)
k−1)] ≤ K1n

m
ζ 2n
b exp

(
K1n

m

)
P2(X > b). (35)

By (31),

Z2
k (X̃

(j)
k )h2

k(X̃
(j)
k ) = w̄2

1 · · · w̄2
ke−2θbS̃

(j)
k P2(A1 | X̃

(j)
k ) ≤ w̄2

1 · · · w̄2
kζ

2n−2k
b e−2θbb. (36)

Since

var(#(j)k | F2k−1) ≤ mw
(j)
k and

m∑
j=1

w
(j)
k = 1,

by (36),

E∗[(#(1)k −mw
(1)
k )2Z2

k (X̃
(1)
k )h2

k(X̃
(1)
k )]

= m−1
m∑
j=1

E∗[(#(j)k −mw
(j)
k )2Z2

k (X̃
(j)
k )h2

k(X̃
(j)
k )]

≤ ζ 2n−2k
b e−2θbb E∗

[( m∑
j=1

w
(j)
k

)
w̄2

1 · · · w̄2
k

]

= ζ 2n−2k
b e−2θbb E∗(w̄2

1 · · · w̄2
k ). (37)

Combining (34) with (37) and applying (35), we then obtain Theorem 2 from (32).
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Lemma 3. Under the assumptions of Theorem 2,

EQ[w2
1(X1)] = · · · = EQ[w2

n(Xn)] = O(1) as b → ∞. (38)

Proof. First assume that (C) holds. Then

EQ[w2
1(X1)] =

∫ cb

−∞
e2θbxf 2(x)

q(x)
dx

≤ e2θb

r

∫ 1

−∞
f (x) dx + 1

1 − r

∫ cb

1
ψ2(x)x2e2[θbx−(x)] dx.

As b → ∞, θb = (b)/b → 0 and, therefore, the first summand in the above inequality
converges to F(1)/r . Moreover, by (C), the integral in the second summand is O(1), proving
(38) in this case.

Next assume that (C′) holds. Since EQ[w2
1(X1)] ≤ r−1

∫ cb
−∞ e2θbxf (x) dx and f (x) =

ψ(x)e−(x), (38) follows similarly. In fact, under (C′), (38) still holds when r = 1 in (26),
i.e. when q is the original density f . Therefore, if (C′) holds then Theorem 2 still holds with
q = f .

We next evaluate P(A2) by using importance sampling that draws Xn from a measure Q̃ for
which

dQ̃

dP
(Xn) = #{i : Xi > cb}

nP(X > cb)
on {Mn > cb}. (39)

Letting F(x | X > c) = P(c < X ≤ x)/P(X > c), we carry out m simulation runs, each
using the following procedure.

1. Choose an index k ∈ {1, . . . , n} at random.

2. Generate Xk ∼ F(· | X > cb) and Xi ∼ F for i �= k.

This sampling procedure indeed draws from the measure Q̃ as the factor #{i : Xi > cb} in
the likelihood ratio (39) corresponds to assigning equal probability to each component Xi of
Xn that exceeds cb to be the maximum Mn on {Mn > cb}. We estimate P(A2) by the average
p̂2 of the m independent realizations of

nP(X > cb)

#{i : Xi > cb}1{Sn≥b} (40)

given by them simulation runs. Note that p̂2 is an importance sampling estimate and is therefore
unbiased. Since the denominator in (40) is at least 1 under the measure Q̃, (40) ≤ nP(X > cb),
yielding the variance bound

var(p̂2) ≤ n2 P2(X > cb)

m
. (41)

3.2. Truncations and tilting measures for SISR estimates of α

We are interested here in the Monte Carlo evaluation of P(max1≤j≤n Sj ≥ b) as b, n → ∞,
when E[X] ≤ 0. It is technically easier to consider the equivalent case of evaluating P(Sj ≥
b+ ja for some 1 ≤ j ≤ n) in the case where E[X] = 0 and a ≥ 0. More generally, consider
the evaluation of P(τb ≤ n), where τb = inf{j : Sj ≥ b(j)} and b(j) is monotone increasing,
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e.g. b(j) = b + ja. Let cb be monotone increasing in b, and let n∗
i = min{j : b(j) ≥ 2i} and

ni = min(n∗
i , n). Let

A1,i = {ni ≤ τb < ni+1, Xk ≤ cb(k) for all 1 ≤ k ≤ τb},
A2 = {τb ≤ n, Xk > cb(k) for some 1 ≤ k ≤ τb}.

Let θi = (2i )/2i . Let α̂1,i be the SISR estimate of P(A1,i ), with importance density for
Xk of the form

qk(x) = rf (x)+ 1 − r

πb(k)x2 1{1≤x≤cb(k)}, (42)

and with resampling weights

wk,i(Xk) =
⎧⎨
⎩

eθiXkf (Xk)

qk(Xk)
1{Xk≤cb(k)} for 1 ≤ k ≤ τb,

1 otherwise.
(43)

Note the similarity between (26)–(27) and (42)–(43). In fact, the latter just replaces cb, θb, and
q in (26)–(27) by cb(k), θi , and qk . Using an argument similar to the proof of Theorem 2, we
can extend (28) to obtain a similar variance bound for α̂1,i in the following.

Theorem 3. Let ζ ∗
i = max{1, ∫ c2i+1

−∞ eθixf (x) dx}. Suppose that α̂1,i is based on mi SISR
samples. Suppose that one of the following conditions is satisfied:

(A)
∫ c2i+1

1 ψ2(x)x2e2[θix−(x)] dx = O(1),

(A′)
∫ c2i+1
−∞ ψ(x)e2θix−(x) dx = O(1),

as i → ∞. Then there exists a constant K > 0 such that, for all large i,

var(α̂1,i ) ≤ Kni+1

mi
(ζ ∗
i )
ni+1 eKni+1/mi P2(X > 2i ).

To evaluate P(A2), we perform m simulations, each using the following procedure.

1. Choose an index k ∈ {1, . . . , n} with probability F̄ (cb(k))/
∑n
j=1 F̄ (cb(j)).

2. Generate Xk ∼ F(· | X > cb(k)) and Xj ∼ F for j �= k.

We estimate P(A2) by the average α̂2 of m independent realizations of

[∑n
k=1 F̄ (cb(k))]1A2

#{k : Xk > cb(k)}
given by the m simulation runs. Analogous to (41), we have the following variance bound
for α̂2.

Lemma 4. Suppose that F̄ (cb(k)) = O(F̄ (b(k))) as b → ∞, uniformly in 1 ≤ k ≤ n. Then

mvar(α̂2) ≤
[ n∑
k=1

F̄ (cb(k))

]2

= O

([ n∑
k=1

F̄ (b(k))

]2)
.
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4. Efficiency of SISR schemes via truncation and tilting

In this section we apply the bounds in Theorems 1–3 to show that the SISR procedures in
Section 3 give efficient estimates of p and α when we have asymptotic lower bounds to these
quantities for certain classes of heavy-tailed random walks.

4.1. Regularly varying tails

In Section 3.1 we proposed an alternative SISR procedure that involves a truncation scheme
and established in Theorem 2 and (41) upper bounds for var(p̂1)+ var(p̂2), which can be used
to prove linear efficiency of the procedure, in the case of b being some power of n. This is the
content of the following corollary, which gives a stronger result than linear efficiency.

Corollary 2. Assume that (22) holds and that there exists J > 0 for which

ψ(x) =  ′(x) ≤ J

x
for all large x. (44)

Assume that, for some 0 < β < γ with β ≤ 2, n = O(bβ/(log b)β) and E(X−)β < ∞. For
the case β > 1, also assume that EX = 0. Then the estimate p̂1 + p̂2 of p is linearly efficient
if cb = ρb for some 0 < ρ < min{(γ − β)/γ, 1

2 }. In fact,

var(p̂1 + p̂2) = O

(
p2

m

)
[= o(p2)] when lim inf

(
m

n

)
> 0.

Proof. Recall that f (x) = ψ(x)e−(x) is the density of X. With ζb defined in Theorem 2,
we will show that

ζb =
∫ ρb

−∞
eθbxf (x) dx ≤ 1 +O(θ

β
b ) = 1 +O(n−1), (45)

∫ ρb

−∞
e2θbxf (x) dx = O(1), (46)

i.e. (C′) holds. From (45), it follows that ζ 2n
b = O(1). Moreover, it will be shown that

nP(X ≥ b) = O(P(Sn ≥ b)). (47)

Since P(X > ρb) = O(P(X > b)) by (22), Corollary 2 follows from Theorem 2, (41), and
(47).

To prove (47), note that in the case γ > 2, var(X) < ∞ and (47) follows from (24). For the
case γ ≤ 2, we use the inclusion–exclusion principle to obtain

P(Sn ≥ b) ≥ P

( n⋃
i=1

Bi

)
(where Bi = {Xi ≥ 2b, Sn −Xi ≥ −b}) (48)

≥ nP(Sn−1 ≥ −b)P(X ≥ 2b)− n2 P2(X ≥ 2b).

Note that nP(X ≥ b) → 0 under (22) and n = O(bβ/(log b)β) for 0 < β < γ . For the
case β ≤ 1, P(Sn−1 < −b) ≤ E(S−

n−1)
β/bβ ≤ nE(X−)β/bβ → 0. For the case 1 < β <

γ ≤ 2, (22) and the assumption E(X−)β < ∞ imply that E |X|β < ∞. Therefore, by the
Marcinkiewicz–Zygmund law of large numbers [12, p. 125], Sn = o(n1/β) almost surely and,
hence, P(Sn−1 < −b) → 0 as n1/β = o(b). Since P(X ≥ 2b) ∼ 2−γ P(X ≥ b) by (22), (47)
follows from (48).
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We next prove (45) and (46) when 0 < β ≤ 1. Since ex ≤ 1 + 2xβ for 0 < x ≤ 1 and
ex ≤ 1 for x ≤ 0,

ζb ≤ 1 + 2θβb

∫ 1/θb

0
xβf (x) dx +

∫ ρb

1/θb
eθbxf (x) dx. (49)

By (22), E(X+)β < ∞ and, therefore,

2θβb

∫ 1/θb

0
xβf (x) dx = O(θ

β
b ). (50)

Let 0 < δ < 1. Since (x) ∼ γ log x, (x) ≥ γ δ log x for large x. Moreover, 1/θb ≥ bδ for
all large b and, therefore, by selecting δ ≥ √

β/γ ,

e−(2J/θb) ≤ e−(1/θb) = O(e−γ δ log bδ ) = O(b−γ δ2
) = O(θ

β
b ). (51)

By (44) and (51),∫ 2J/θb

1/θb
eθbxf (x) dx ≤

(
2J

θb

)
e2J sup

1/θb≤x≤2J/θb
[ψ(x)e−(x)] = O(θ

β
b ). (52)

Integration by parts yields∫ ρb

2J/θb
eθbxψ(x)e−(x) dx ≤ e2J−(2J/θb) + θb

∫ ρb

2J/θb
eθbx−(x) dx. (53)

For x ≥ 2J/θb, [θbx − (x)]′ = θb − ψ(x) ≥ θb/2 by (44) and, therefore, θbx − (x) ≤
θbρb −(ρb)+ 1

2θb(x − ρb) if x ≤ ρb. The change of variable y = x − ρb then yields

θb

∫ ρb

2J/θb
eθbx−(x) dx ≤ θbe

θb(ρb)−(ρb)
∫ 0

−∞
eyθb/2 dy = O(eρ(b)−(ρb)). (54)

By (22), (ρb) = (b) + O(1) and, therefore, ρ(b) − (ρb) = (ρ − 1)(b) + O(1).
Since ρ − 1 < −β/γ and (b) ∼ γ log b, it follows that eρ(b)−(ρb) = O(b−β) = O(θ

β
b ).

Combining this with (51)–(54) yields∫ ρb

1/θb
eθbxf (x) dx = O(θ

β
b ). (55)

Substituting (50) and (55) into (49) proves (45). To prove (46), we make use of the inequality∫ ρb

−∞
e2θbxf (x) dx ≤ e2J

∫ J/θb

−∞
f (x) dx +

∫ ρb

J/θb

e2θbxf (x) dx. (56)

Since [2θbx − (x)]′ ≥ θb for x ≥ J/θb and ρ ≤ 1
2 , it follows from integration by parts and

the bounds in (51)–(55) that∫ ρb

J/θb

e2θbxψ(x)e−(x) dx = −e2θbx−(x)∣∣ρb
J/θb

+ 2θb

∫ ρb

J/θb

e2θbx−(x) dx

= O(θ
β
b )+O(e(2ρ−1)(b))

= O(1). (57)

By (56) and (57), (46) holds.
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To prove (45) and (46) for the case 1 < β ≤ 2, E[X] = 0 and E[|X|β ] < ∞, we start with
the bound ex ≤ 1 + 2βxβ−1 for 0 ≤ x ≤ 1 from which it follows by integration that

ex ≤ 1 + x + 2|x|β (58)

for 0 ≤ x ≤ 1. We next show that (58) in fact holds for all x ≤ 1, by noting that the left-hand
side of (58) is less than or equal to 1, whereas the right-hand side (RHS) of (58) is greater than
or equal to 1 + |x| for x ≤ −1, and that

RHS of (58) ≥ 1 + x + 2x2

{
≥ 1 + x + x2 + x4 + x6 + · · · ≥ ex for − 1

2 ≤ x ≤ 0,

= 2
(
x + 1

4

)2 + 7
8 ≥ ex for −1 ≤ x ≤ − 1

2 .

It follows from (58) that

ζb ≤ 1 + θb

∫ 1/θb

−∞
xf (x) dx + 2θβb

∫ 1/θb

−∞
xβf (x) dx +

∫ ρb

1/θb
eθbxf (x) dx

≤ 1 +O(θ
β
b ), (59)

since

E[X] = 0 ⇒ θb

∫ 1/θb

−∞
xf (x) dx ≤ 0,

E[|X|β ] < ∞ ⇒ 2θβb

∫ 1/θb

−∞
xβf (x) dx = O(θ

β
b ),

and (52)–(54) can still be applied to show that (55) holds. Using arguments similar to (56) and
(57), we can prove (46) in this case.

Similarly, we can prove the following analog of Corollary 2 for the SISR algorithm in
Section 3.2 to simulate α.

Corollary 3. Assume that (22) with γ > 1 and (44) hold. Suppose that n = O(bβ/(log b)β),
E[X] = 0, and E(X−)β < ∞ for some 1 < β < γ with β ≤ 2. Let b(j) = b for all 1 ≤ j ≤ n,
and suppose that 2i ≤ b < 2i+1. Assign all m simulations to evaluate P(A1,i ). Then α̂1 + α̂2
is linearly efficient when cb = ρb for some 0 < ρ < 1

2 min{(γ − β)/γ, 1
2 }. In fact,

var(α̂1 + α̂2) = O

(
α2

m

)
when lim inf

(
m

n

)
> 0. (60)

Proof. By Theorem 3 and Lemma 4,

var(α̂1) = O

(
n

m
P2(X > 2i )

)
= O

(
n

m
P2(X > b)

)
when lim inf

(
m

n

)
> 0,

var(α̂2) = O

(
n2

m
P2(X > b)

)
.

By (47), nP(X > b) = O(P(Sn ≥ b)) = O(α) and, therefore, (60) holds.

Corollary 4. Assume that (22) with γ > 1 and (44) hold. Suppose that E[X] = 0 and
E(X−)β < ∞ for some 1 < β < γ . Let b(j) = b + ja for some a > 0, and let �(k) =
�log2 b(k)�, where log2 denotes the logarithm to base 2. Assign mi simulation runs for the
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estimation of P(A1,i ) such that

mi ∼ m[i − �(1)+ 1]−2∑�(n)−�(1)+1
�=1 �−2

uniformly over �(1) ≤ i ≤ �(n) as b → ∞, (61)

where m = ∑�(n)
i=�(1) mi is the total number of simulation runs. Let α̂1 = ∑�(n)

i=�(1) α̂1,i . Then

the estimate α̂1 + α̂2 is n(log2 n)
2-efficient if cb = ρb for some 0 < ρ < 1

2 min{(γ − β)/γ, 1
2 }.

In fact,

var(α̂1 + α̂2) = m−1O(α2)[= o(α2)] whenever lim inf

(
m

n(log2 n)
2

)
> 0.

Proof. We can proceed as the proofs of (45) and (46) to show that ζ ∗
i ≤ 1 +O(θ

β
i ) and (A′)

holds in Theorem 3. Noting that

lim inf

(
m

n log2 n

)
> 0 ⇒ lim inf

[
inf

�(1)≤i≤�(n)
m

n(i − �(1)+ 1)2

]
> 0,

we obtain, from (61),

lim inf

(
inf�(1)≤i≤�(n) mi

n

)
> 0. (62)

Since ni+1θ
β
i → 0, it then follows from Theorem 3 and (62) that

var(α̂1,i ) = O

(
ni+1

mi
P2(X > 2i )

)
uniformly over �(1) ≤ i ≤ �(n),

and, hence, by (61),

var(α̂1) = m−1O

( �(n)∑
i=�(1)

[i − �(1)+ 1]2ni+1 P2(X > 2i )

)
. (63)

Since 2i ≤ b(j) ≤ 2i+1 for ni ≤ j < ni+1 and ni+1 − ni ≥ ni+1/2, (22) implies that, for
some positive constants C1 and C2,

[ni+1−1∑
j=ni

P(X > b(j))

]2

≥ C1(ni+1 − ni)
2 P2(X > 2i ) ≥ C2[i − �(1)+ 1]2ni+1 P2(X > 2i ).

Substituting this into (63) yields

var(α̂1) = m−1O

([ n∑
j=1

P(X > b(j))

]2)
= m−1O(α2);

see [15, Theorem 5.5(i)]. A similar bound can be derived for var(α̂2) by applying Lemma 4,
completing the proof of Corollary 4.
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4.2. More general heavy-tailed distributions

A distribution function F is said to be (right) heavy tailed if
∫ ∞
−∞ eλxF (dx) = ∞ for all

λ > 0. It is said to be long tailed if its support is not bounded above and, for all fixed
a > 0, F̄ (x + a)/F̄ (x) → 1, or, equivalently, (x + a) − (x) → 0 as x → ∞; see [15,
Section 3.5]. To simulate p = P(Sn ≥ b), we have shown in Section 4.1 that the truncation
method described in Section 3.1 is linearly efficient in the case of regularly varying tails.
For other long-tailed distributions, such as the Weibull and log-normal distributions, some
modification of the truncation method is needed for efficiency. It is based on representing
P(Sn ≥ b) as a sum of four probabilities that can be evaluated by SISR or importance sampling.

Let cb < b, Vn = #{k : cb < Xk ≤ b},
A1 = {Sn ≥ b,Mn ≤ cb}, A2 = {Sn ≥ b,Mn > b},
A3 = {Sn ≥ b, Vn = 1,Mn ≤ b}, A4 = {Sn ≥ b, Vn ≥ 2,Mn ≤ b}.

The Monte Carlo estimate p̂1 of P(A1) is described in Section 3.1, using SISR with mixture
density (26) and resampling weights (27). The Monte Carlo estimate p̂2 of P(A2) uses the
importance sampling scheme described in Section 3.1, with b taking the place of cb. To
simulate P(A3), we retain the simulation results {X(j)

n−1 : 1 ≤ j ≤ m} in p̂1 after the (n− 1)th
resampling step. The corresponding SISR estimate is

p̂3 = (w̄1 · · · w̄n−1)m
−1

×
m∑
j=1

ne−θbS(j)n−1 [min(e−(b−S(j)n−1), e−(cb))− e−(b)]1{S(j)n−1≥0,M(j)
n−1≤cb}.

To evaluate P(A4), we performm simulations such that, for the j th simulation run, k(j)1 and k(j)2
are selected at random without replacement from {1, . . . , n}, and X(j)k ∼ F(· | cb < X ≤ b)

for k = k
(j)
1 , k

(j)
2 , while X(j)k ∼ F for k �= k

(j)
1 , k

(j)
2 . The Monte Carlo estimate of P(A4) is

p̂4 = [F̄ (cb)− F̄ (b)]2
(
n

2

)
m−1

m∑
j=1

(
V
(j)
n

2

)−1

1{S(j)n ≥b,M(j)
n ≤b}.

Theorem 4. The Monte Carlo estimate p̂i of P(Ai ) is unbiased for i = 1, 2, 3, 4. Let λb =
min0≤x≤b−cb [θbx +(b− x)]. Assume that either (C) or (C′) holds. Then there existsK > 0
such that

mvar(p̂1) ≤ Knζ 2n
b eKn/m P2(X > b), mvar(p̂2) ≤ n2F̄ 2(b),

mvar(p̂3) ≤ K(n− 1)ζ 2n−2
b eK(n−1)/mn2e−2λb , mvar(p̂4) ≤ n4F̄ 4(cb).

(64)

Proof. As noted above, p̂1 is an SISR estimate of P(A1) and p̂2 is an importance sampling
estimate of P(A2). By exchangeability,

P(A3) = nP(Sn ≥ b, Mn−1 ≤ cb, cb < Xn ≤ b). (65)

Let A = {Sn ≥ b, cb < Xn ≤ b}. In view of (65), P(A3) can be evaluated by Monte Carlo
using the SISR estimate

nw̄1 · · · w̄n−1m
−1

n∑
j=1

e−θbS(j)n−1 P(A | S(j)n−1)1{M(j)
n−1≤cb}. (66)
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Note that P(A | S(j)n−1) = 0 if S(j)n−1 < 0. For s > 0,

P(A | S(j)n−1 = s) =
{

P(b − s ≤ Xn ≤ b) = e−(b−s) − e−(b) if b − s > cb,

P(cb < Xn ≤ b) = e−(cb) − e−(b) if b − s ≤ cb.

Hence, p̂3 is the same as the SISR estimate (66) of P(A3) and is therefore unbiased. The
estimate p̂4 is also unbiased. In fact, it is an importance sampling estimate that draws Xn from
a measure Q for which

dQ

dP
(Xn) =

(
Vn

2

)/{(
n

2

)
P2(cb < X ≤ b)

}
on {Vn ≥ 2, Mn ≤ b},

which is an extension of (39) to the present problem.
We next prove the variance bounds (64) for the unbiased estimates p̂3 and p̂4; those for

p̂1 and p̂2 have already been shown in Section 3.1. Consider the martingale decomposition
m[p̂3 − P(A3)] = ∑2(n−1)

t=1 ξt , where ξt is given in the display after (30) with

Zk(xk) =
[ k∏
t=1

f (xt )

q(xt )

]
nP(Sn ≥ b, Mn−1 ≤ cb, cb < Xn ≤ b | Xk = xk) (67)

in view of (65), noting that p̂3 is based on the simulations used in p̂1 up to the (n − 1)th
resampling step. The change-of-measure argument used to prove (31) can be modified to show
that, for all t ≥ 1 and x ∈ R,

P(St ≥ x, Mt−1 ≤ cb, cb < Xt ≤ b) ≤ ζ t−1
b eθb(b−x) max

0≤y≤b−cb
e−θby−(b−y). (68)

Making use of (67) and (68), we can proceed as in the proof of Theorem 2 to prove the
upper bound for var(p̂3) in (64). The bound for var(p̂4) follows from (F̄ (cb)− F̄ (b))2

(
n
2

) ≤
n2F̄ 2(cb), thus completing the proof of Theorem 4.

The following corollary of Theorem 4 establishes linear efficiency of the Monte Carlo method
to evaluate P(Sn ≥ b) for heavy-tailed distributions satisfying certain assumptions. Examples 1
and 2 in Section 5.1 show that these assumptions are satisfied in particular by Weibull and log-
normal X.

Corollary 5. LetX be heavy tailed with E[X]= 0 and var(X) <∞,and letn = O(b2/2(b)).
Assume that either (C) or (C′) holds. If θb ≥ ψ(x) for all cb ≤ x ≤ b, ζb = 1 +O(θ2

b ), and

be−2(cb) = O(e−(b)), (69)

then
∑4
i=1 p̂i is linearly efficient for estimating P(Sn ≥ b).

Proof. Since n = o(b2), nP(X > b) → 0 by Chebyshev’s inequality. Therefore, it follows
from the inclusion–exclusion principle and the central limit theorem that

P(Sn ≥ b) ≥ nP(Sn−1 ≥ 0)P(X > b)− n2 P2(X > b) ≥ 1
2 [1 + o(1)]nP(X > b).

Hence, it suffices to show that, for any ε > 0, there exists m = O(n) such that

var(p̂i) ≤ εn2F̄ 2(b) for 1 ≤ i ≤ 4. (70)
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We will assume that lim inf m/n > 0. Since nP(X > b) → 0, (70) holds for i = 2. Since
nθ2
b = O(1) and ζb = 1 +O(θ2

b ), ζ
2n
b = O(1) and (70) holds for i = 1. Since

[θbx +(b − x)]′ = θb − ψ(b − x) ≥ 0 for all 0 ≤ x ≤ b − cb,

the minimum of θbx+(b−x) over 0 ≤ x ≤ cb is attained at x = 0 and, therefore, λb = (b),
proving (70) for i = 3. Finally, by (69), n3F̄ 4(cb) = O(n3e−2(b)/b2) = O(n2e−2(b)),
proving (70) for i = 4.

5. Examples and discussion

In this concluding section we first give examples of heavy-tailed distributions satisfying the
assumptions of Corollary 5. We also give numerical examples to illustrate the performance
of the proposed Monte Carlo methods. In this connection we describe in Section 5.2 some
implementation details such as the use of occasional resampling to speed up the SISR procedure
and the estimation of standard errors for the SISR estimates of rare-event probabilities. Finally,
we discuss in Section 5.4 related works in the literature and compare our approach with
importance sampling and IPS (interacting particle system) methods.

5.1. Weibull and log-normal increments

Example 1. (Weibull.) A long-tailed distribution is Weibull if (x) = xγ 1{x>0} for some
0 < γ < 1. Let Y ∼ F , where F̄ (x) = e−(x), and let X = Y − E Y . Then

P(X > x) = e−(x+µ) = exp(−(x + µ)γ ) for x + µ > 0,

where µ = E Y . Moreover, for x > −µ,  ′(x + µ) = γ (x + µ)γ−1. Therefore, θb =
(b + µ)/b ∼ bγ−1 and  ′(x + µ) ≤ θb for all b/2 ≤ x ≤ b when b is sufficiently large,
noting that γ 21−γ < 1 for 0 < γ < 1. Let cb = b/2 and n = O(b2(1−γ )). It is easy to check
that (69) holds. By (58) with β = 2 and (59),

ζb ≤ 1 +O(θ2
b )+

∫ b/2

1/θb
f (x)eθbx dx ≤ 1 +O(θ2

b ),

where f (x) = γ (x + µ)γ−1 exp(−(x + µ)γ ). Moreover, applying (58) with β = 2 to the
range 2θbx ≤ 1 and using the bound f (x) ≤ 1 for x ≥ 1,

∫ b/2

1
x2e2θbxf 2(x) dx ≤ e

∫ 1/2θb

1
x2f (x) dx

+
(
b

2

)3

max
1/2θb≤x≤b/2

exp(2[θbx − (x + µ)γ ]), (71)

in which the last term is an upper bound of
∫ b/2

1/2θb
x2e2θbxf 2(x) dx, noting that f (x) ≤

exp(−(x + µ)γ ) for x ≥ 1. The maximum of the convex function θbx − (x + µ)γ over
1/2θb ≤ x ≤ b/2 is attained at 1/2θb and is equal to −(1/2γ + o(1))bγ (1−γ ) for all large b.
Since E[X2] < ∞, (71) implies that (C) holds. Hence, all the conditions of Corollary 5 hold
in this case.

Example 2. (Log normal.) Let φ and 
 be the standard normal density and distribution
functions, respectively. Let X = eZ , where Z is standard normal. Then X is log normal
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Table 1: Monte Carlo estimates of P(Sn ≥ (5+µ)n) for log-normal increments, with estimated standard
errors (after the ± sign).

n Direct method Truncation method

10 (4.80 ± 0.69)× 10−4 (5.02 ± 0.04)× 10−4

50 0 ± 0 (8.78 ± 0.06)× 10−7

100 0 ± 0 (2.61 ± 0.02)× 10−8

500 0 ± 0 (1.27 ± 0.01)× 10−12

1000 0 ± 0 (8.61 ± 0.07)× 10−15

and has distribution function F(x) = 1 − e−(x), where (x) = | log 
̄(log x)|1{x>0}. Since

̄(z) ∼ (2πz2)−1/2e−z2/2 as z → ∞, it follows that

(x) = (log x)2

2
+ log log x + log(2π)

2
+ o(1) as x → ∞,

f (x)(= ψ(x)e−(x)) = φ(log x)

x
⇒ ψ(x) ∼ log x

x
as x → ∞.

Let µ = E[X] = E[eZ] = √
e and p = P(Sn ≥ b + nµ), where n = O(b2/2(b)). Let

cb = b/2. By using arguments similar to those in Example 1, it can be shown that all the
assumptions of Corollary 5 again hold in this case.

To illustrate the performance of the truncation method in Section 4.2 to estimate p =
P(Sn ≥ (5 + µ)n), which is shown to be linearly efficient in Corollary 5, we consider n =
10, 50, 100, 500, and 1000 and use the procedure described in the next subsection to implement
the SISR estimates p̂1 and p̂3 with 10 000 sample paths and the importance density (26) in which
r = 0.8. Recall that p̂3 uses the SISR sample paths for p̂1 up to the (n− 1)th resampling step.
The importance sampling estimates p̂2 and p̂4 are each based on 100 000 simulations. For
comparison, we also apply direct Monte Carlo with 100 000 runs to evaluate the probability.
The results are given in Table 1, which shows about 300-fold variance reduction for a probability
of order 10−4. For probabilities of order 10−7 or smaller, the results given in Table 1 show that
direct Monte Carlo is not feasible whereas the truncation method does not seem to deteriorate
in performance.

5.2. Standard errors and occasional resampling

The SISR procedure carries out importance sampling sequentially within each simulated
trajectory and performs resampling across the m trajectories. Instead of implementing this
procedure directly, we use the modification in [9, Section 3.3] to reduce computation time for
resampling, which increases withm, and also to obtain standard error estimates easily. Dividing
the m sample paths into r subgroups of size ν so that m = rν, we perform resampling within
each subgroup of ν sample paths, independently of the other subgroups. This method also has
the advantage of providing a direct estimate of the standard error of the Monte Carlo estimate
ᾱ := r−1 ∑r

i=1 α̂(i), where α̂(i) denotes the SISR estimate of the rare-event probability α
based on the ith subgroup of simulated sample paths. Due to resampling, the SISR samples
are no longer independent and one cannot use the conventional estimate of the standard error
for Monte Carlo estimates. On the other hand, since the r subgroups are independent and yield
the independent estimates α̂(1), . . . , α̂(r) of α, we can estimate the standard error of ᾱ to be
σ̂ /

√
r , where σ̂ 2 = (r − 1)−1 ∑r

i=1(α̂(i)− ᾱ)2. In Example 2 above and Example 3 below,
we use ν = r = 100, corresponding to a total of m =10 000 SISR sample paths.
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An additional modification that can be used to further reduce the resampling task is to carry
out resampling at stage k only when the coefficient of variation (CV) of the resampling weights
w
(j)
k exceeds some threshold. As pointed out by Kong et al. [17], the purpose of resampling is

to help prevent the weightsw(j)k from becoming heavily skewed (e.g. nearly degenerate) and the
effective sample size for ν sequentially generated sample paths is ν/(1+CV2). Therefore, Kong
et al. [17] recommended resampling when CV exceeds a threshold. Choosing the threshold to
be 0 is tantamount to resampling at every step, and a good choice in many applications is in the
range from 1 to 2.

5.3. Positive increments with regularly varying tails

Example 3. LetX = �Y , where P(Y > x) = min(x−4, 1) and� ∼ Laplace(1) is independent
of Y . Blanchet and Liu [7] in their Example 1 showed that X has tail probability

F̄ (x) = 2x−4[6 − e−x(6 + 6x + 3x2 + x3)].
Let X,X1, . . . , Xn be i.i.d., and let Sn = X1 + · · · + Xn. In [7], P(Sn ≥ n) is simulated for
n =100, 500, and 1000 by using

(I) state-dependent importance sampling (IS) that approximates the h-transform,

(II) time-varying mixtures for IS introduced by Dupuis et al. [14].

We compare their results in [7], each of which is based on 10 000 simulations, with those of
10 000 SISR sample paths generated by the following methods:

(III) SISR using (25) with

ζi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∞ for i = −1,
bi

180
for 0 ≤ i ≤ 90,

b

2
+ b(i − 90)

20
for 91 ≤ i ≤ 100,

∞ for i = 101,

(72)

and resampling conducted at every step,

(IV) SISR using (25) and (72) with resampling only when CV exceeds 2,

(V) the truncation method in Section 3.1 with cb = 2b/5, importance density (26) in which
r = 0.9, and resampling weights (27) in which θb = 4b−1 log b.

For (V), besides using 10 000 SISR sample paths to estimate P(Sn ≥ n, Mn ≤ 2n/5), we
also use 10 000 IS simulations to estimate P(Sn ≥ n, Mn > 2n/5). As shown in Table 2, the
standard errors of (I) and (III)–(V) are comparable and are all smaller than that of (II) when
n = 500 and 1000, whereas, for n = 100, the standard errors of (III)–(V) are substantially
smaller than those of (I) and (II). Although Blanchet and Liu [7, Theorem 4] showed (II) to be
strongly efficient, their parametric mixtures are based on a single large jump since the effect of
two or more large jumps is asymptotically negligible when the tail probability is of the order
10−7 or smaller. For larger tail probabilities, the effect of two or more jumps may be significant,
and the results given in Table 2 show that (V) can provide substantial improvement by taking
this effect into consideration.

https://doi.org/10.1239/aap/1354716593 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716593


1194 H. P. CHAN ET AL.

Table 2: Monte Carlo estimates of P(Sn ≥ n) ± standard errors.

n
Method

100 500 1000

I (2.37 ± 0.23)× 10−5 (1.02 ± 0.01)× 10−7 (1.23 ± 0.01)× 10−8

II (2.09 ± 0.10)× 10−5 (1.11 ± 0.04)× 10−7 (1.16 ± 0.05)× 10−8

III (2.21 ± 0.06)× 10−5 (1.04 ± 0.01)× 10−7 (1.25 ± 0.01)× 10−8

IV (2.26 ± 0.03)× 10−5 (1.05 ± 0.01)× 10−7 (1.24 ± 0.01)× 10−8

V (2.16 ± 0.03)× 10−5 (1.05 ± 0.02)× 10−7 (1.24 ± 0.02)× 10−8

5.4. Other methods, related works, and discussion

Asmussen et al. [3] introduced several methods for importance sampling of tail probabilities
of sums of heavy-tailed random variables and showed that these importance sampling methods
are strongly efficient for fixed n as b → ∞. One such method involves simulating i.i.d.
X1, . . . , Xn from a distribution H that has a heavier tail than F . This method cannot be
extended to the case n → ∞ because the likelihood ratio statistic has exponentially increasing
variance with n. Noting that

P(Sn ≥ b) = nE[P(Sn ≥ b, Xn ≥ max(X1, . . . , Xn−1) | X1, . . . , Xn−1)],
Asmussen and Kroese [2] introduced the conditional Monte Carlo method that estimates P(Sn ≥
b) by the average of m independent realizations of

F̄ (max{b − (X1 + · · · +Xn−1),X1, . . . , Xn−1}),
and showed that it is strongly efficient for fixed n as b → ∞, when F is regularly varying.
This approach, however, breaks down if n also approaches ∞.

Blanchet et al. [8] also introduced a truncation method to simulate tail probabilities of
a random walk Sn with log-normal increments, and showed that it is strongly efficient as
b → ∞ for fixed n. Their truncation method used cb = b and importance sampling to
estimate P(Sn ≥ b, Mn ≤ b), and their argument heavily depended on fixed n. By using
SISR instead, we can control the variances of the likelihood ratio statistics associated with
sequential importance sampling and of the resampling steps, as shown in Theorems 2 and 4
and Corollaries 3 and 5.

The truncation scheme in Sections 3 and 4 can be regarded as a Monte Carlo implementation
of a similar truncation method for the analysis of tail probabilities of random walks whose i.i.d.
increments have mean 0 and finite variance. Chow and Lai [10], [11] used the truncation method
to prove that, for α > 1

2 and p > 1/α,
∞∑
n=1

npα−2 P
(

max
1≤k≤n Sk ≥ nα

)
≤ Cp,α{E(X+)p + (EX2)(pα−1)/(2α−1)}, (73)

where Cp,α is a universal constant depending only on p and α. This inequality is sharp in the
sense that there is a corresponding lower bound for the two-sided tail probability in the case
p ≥ 2: ∞∑

n=1

npα−2 P
(

max
1≤k≤n |Sk| ≥ nα

)
≥

∞∑
n=1

npα−2 P(|Sn| ≥ nα)

≥ Bp,α{E |X|p + (EX2)(pα−1)/(2α−1)}.
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The proof of (73) makes use of the bound

P
(

max
1≤k≤n Sk ≥ nα

)
≤ P(Mn > εnα)+ P

(
max

1≤k≤n Sk ≥ nα, Mn ≤ εnα
)
,

with ε = 1/2ν for some positive integer ν. In fact, the term E(X+)p in (73) comes from the
bound ∞∑

n=1

npα−2 P(Mn > εnα) ≤
∞∑
n=1

npα−1 P(X > εnα) ≤ Ap,α E(X+)p,

and is associated with the ‘large jump’ probability of an increment for heavy-tailed random
walks. In this connection, note that b = nα satisfies the assumption that n = O(b2/2(b)) in
Corollary 2 and Examples 1 and 2 when α > 1

2 and EX2 < ∞.
Although we have focused on one-dimensional random walks, the SISR procedures can be

readily extended to the multivariate setting in which the Xi are i.i.d. d-dimensional random
vectors such that ‖X‖ is heavy tailed, satisfying P(‖X‖ > x) = e−(x) such that ψ(x) =
 ′(x) → 0. Here p = P(g(Sn/n) ≥ b) and α = P(maxn1≤j≤n jg(Sj /j) ≥ bn), as considered
in [9] for the light-tailed case. Another extension, also considered in [9] for the light-tailed
case, is to heavy-tailed Markov random walks for which (x) above is replaced by u(x),
where u is a generic state of the underlying Markov chain.

Approximating the h-transform closely is crucial for the sequential (state-dependent)
importance sampling methods of Blanchet and Glynn [4] and Blanchet and Liu [6], [7] to
be strongly efficient. This requires sharp and easily computable analytic approximations of
α and p, provided by the Pakes–Veraberbeke theorem [1, p. 296] in [4] and provided by
Rozovskiı̌’s theorem [18] in [7]. In addition, an elaborate acceptance–rejection scheme is
needed to sample from the state-dependent importance measure at every stage. If less accurate
approximations to the h-transform are used, e.g. using (7) instead of (6) because either (6) is
not available or because the gn in (7) is much simpler to compute, then the likelihood ratios
associated with the corresponding sequential importance sampling scheme would eventually
have very large variances that approach ∞ as n → ∞. This was first pointed out by Kong et
al. [17], who proposed using resampling to address this difficulty. While these SISR schemes,
also called particle filters or interacting particle systems, were used primarily for filtering in
nonlinear state-space models and more general hidden Markov models, Del Moral and Garnier
[13] recognized that they could be used to simulate probabilities of rare events of the form
{V (Un) ≥ a} for a possibly nonhomogeneous Markov chainUn, with large a but fixed n. Chan
and Lai [9] recently developed a comprehensive theory of SISR for simulating large deviation
probabilities of g(Sn/n) for large n in the case of light-tailed multivariate random walks. This
paper continues the development for the heavy-tailed case, which provides new insights into
the SISR approach to rare-event simulation.
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