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INFINITE ARMS BANDIT:

OPTIMALITY VIA CONFIDENCE BOUNDS

Hock Peng Chan and Shouri Hu

National University of Singapore

Berry et al. (1997) initiated the development of the infinite arms bandit prob-

lem. They derived a regret lower bound of all allocation strategies for Bernoulli re-

wards with uniform priors, and proposed strategies based on success runs. Bonald

and Proutière (2013) proposed a two-target algorithm that achieves the regret

lower bound, and extended optimality to Bernoulli rewards with general priors.

We present here a confidence bound target (CBT) algorithm that achieves opti-

mality for rewards that are bounded above. For each arm we construct a confidence

bound and compare it against each other and a target value to determine if the

arm should be sampled further. The target value depends on the assumed priors

of the arm means. In the absence of information on the prior, the target value

is determined empirically. Numerical studies here show that CBT is versatile and

outperforms its competitors.

Key words and phrases: MAB, optimal allocation, sequential analysis, UCB.
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1 Introduction

Berry, Chen, Zame, Heath and Shepp (1997) initiated the development

of the infinite arms bandit problem. They showed in the case of Bernoulli

rewards with uniform prior a
√
2n regret lower bound for n rewards, and

provided algorithms based on success runs that achieve no more than 2
√
n

regret. Bonald and Proutière (2013) provided a two-target stopping-time

algorithm that can get arbitrarily close to Berry et al.’s lower bound, and is

also optimal on Bernoulli rewards with general priors. Wang, Audibert and

Munos (2008) considered bounded rewards and showed that their confidence

bound algorithm has regret bounds that are log n times the optimal regret.

Vermorel and Mohri (2005) proposed a POKER algorithm for general reward

distributions and priors.

The confidence bound method is arguably the most influential approach

over the past thirty years for the fixed arm-size bandit problem. Lai and

Robbins (1985) derived the smallest asymptotic regret that can be achieved

by any algorithm. Lai (1987) showed that by constructing an upper confi-

dence bound (UCB) for each arm, playing the arm with the largest UCB,

this smallest regret is achieved in exponential families. The UCB approach

was subsequently extended to unknown time-horizons and other parametric
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families in Agrawal (1995a), Auer, Cesa-Bianchi and Fischer (2002), Bur-

netas and Katehakis (1996), Cappé, Garivier, Maillard, Munos and Stoltz

(2013) and Kaufmann, Cappé and Garivier (2012), and it has been shown to

perform well in practice, achieving optimality beyond exponential families.

Chan (2020) modified the subsampling approach of Baransi, Maillard and

Mannor (2014) and showed that optimality is achieved in exponential fam-

ilies, despite not applying parametric information in the selection of arms.

The method can be considered to be applying confidence bounds that are

computed empirically from subsample information, which substitutes for the

missing parametric information. A related problem is the study of the multi-

armed bandit with irreversible constraints, initiated by Hu and Wei (1989).

The Bayesian approach has also enjoyed considerable success, see Berry

and Fridstedt (1985), Gittins (1989) and Thompson (1933) for early ground-

work and Korda, Kaufmann and Munos (2013) for more recent advances.

We show here how the confidence bound method can be applied on infinite

arms. We call this new procedure confidence bound target (CBT). Like UCB,

in CBT a confidence bound is computed for each arm. The difference is that

in CBT we specify an additional target value. We compare the confidence

bound of an arm against this target to decide whether to play an arm further,

or to discard it and play a new arm.
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We derive a regret lower bound that applies to all bandit algorithms,

and proceed to show how the target in CBT is to be chosen to achieve this

lower bound. This optimal target depends only on the prior distribution

of the arm means and not the reward distributions. That is the reward

distributions need not be specified for optimality to be achieved.

To handle the situation in which the prior is not available, we provide an

empirical version of CBT in which the target value is computed empirically.

Numerical studies on Bernoulli rewards and on a URL dataset show that

CBT and empirical CBT outperform their competitors.

In a related continuum-armed bandit problem, there are uncountably in-

finite number of arms. Each arm is indexed by a known parameter θ and

has rewards with mean f(θ), where f is an unknown continuous function.

For solutions to the problem of maximizing the expected sum of rewards, see

Agrawal (1995b), Auer, Ortner and Szepesvari (2007), Cope (2009), Klein-

berg (2004) and Tyagi and Gärtner (2013).

The layout of this paper is as follows. In Section 2 we describe the infinite

arms bandit problem. In Section 3 we review the literature on this problem.

In Section 4 we describe CBT. In Section 5 we motivate why the chosen target

of CBT leads to the regret lower bound and state the optimality of CBT.

In Section 6 we introduce an empirical version of CBT to tackle unknown
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priors and explain why it works. In Section 7 we perform numerical studies.

In Section 8 we provide a short conclusion.

2 Problem set-up

Let Yk1, Yk2, . . . be i.i.d. rewards from arm k. In the classical multi-armed

bandit problem, there are finitely many arms and the objective is to sequen-

tially select the arms so as to maximize expected sum of rewards. Equiva-

lently we minimize the regret, which is the expected cumulative differences

between the best arm mean and the mean of the arm played.

In the infinite arms bandit problem that we consider here, there are in-

finitely many arms and rewards are bounded above by a value that we shall

assume for simplicity to be 1. We assume in addition that it is possible for

an arm to have reward mean arbitrarily close to 1.

The regret of a bandit algorithm, after n trials, is defined to be

Rn = E
( ∞∑

k=1

nk∑
t=1

Xkt

)
, where Xkt = 1− Ykt (≥ 0) (2.1)

is the loss associated with reward Ykt, and nk is the number of times arm

k has been played (hence n =
∑∞

k=1 nk). The expectation in (2.1) is with

respect to the following Bayesian framework.
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Let g be a prior on (0,∞). For each µ in which g(µ) > 0, let Fµ be

a non-negative distribution with mean µ. The expectation in (2.1) is with

respect to

µk
i.i.d.∼ g for k ≥ 1 and Xkt

i.i.d.∼ Fµk
for t ≥ 1. (2.2)

The minimization of the regret under (2.2) for finite arms, known as the

stochastic bandit problem, has been studied in Agrawal and Goyal (2012),

Bubeck and Liu (2013) and Russo and van Roy (2014).

In the infinite arms bandit problem a key decision to be made at each

trial is whether to sample a new arm or to play a previously played arm. The

Bayesian framework in (2.2) provides useful information on the new arms.

3 Preliminary background

Let a ∧ b denote min(a, b), ⌊·⌋ (⌈·⌉) denote the greatest (least) integer

function and a+ denote max(0, a). We say that an ∼ bn if limn→∞(an/bn) = 1,

an = o(bn) if limn→∞(an/bn) = 0, and an = O(bn) if lim supn→∞ |an/bn| < ∞.

Berry et al. (1997) showed that for Bernoulli rewards with g uniform on

(0, 1), a regret lower bound

lim inf
n→∞

Rn√
n
≥

√
2 (3.1)

is unavoidable. They proposed the following bandit strategies.
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1. f -failure strategy. We play the same arm until f failures are encoun-

tered. When this happens we switch to a new arm. We do not go back

to a previously played arm, that is the strategy is non-recalling.

2. s-run strategy. We restrict ourselves to no more than s arms, following

the 1-failure strategy in each, until a success run of length s is observed

in an arm. When this happens we play the arm for the remaining trials.

If no success run of length s is observed in all s arms, then the arm with

the highest proportion of success is played for the remaining trials.

3. Non-recalling s-run strategy. We follow the 1-failure strategy until an

arm produces a success run of length s. When this happens we play

the arm for the remaining trials. If no arm produces a success run of

length s, then the 1-failure strategy is used in all n trials.

4. m-learning strategy. We follow the 1-failure strategy for the first m

trials, with the arm at trialm played until it yields a failure. Thereafter

we play, for the remaining trials, the arm with the highest proportion

of successes.

Berry et al. showed that Rn ∼ n/(log n) for the f -failure strategy for any

f ≥ 1, whereas for the
√
n-run strategy, the

√
n log n-learning strategy and
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the non-recalling
√
n-run strategy,

lim sup
n→∞

Rn√
n
≤ 2.

Bonald and Proutière (2013) proposed a two-target algorithm with target

values s1 = ⌊ 3
√

n
2
⌋ and sf = ⌊f

√
n
2
⌋, where f ≥ 2 is user-defined. An arm is

discarded if it has fewer than s1 successes when it encounters its first failure,

or fewer than sf successes when it encounters its fth failure. If both targets

are met, then the arm is accepted and played for the remaining trials. Bonald

and Proutière showed that for the uniform prior, the two-target algorithm

satisfies, for n ≥ f2

2
,

Rn ≤ f + (
sf+1

f
)(

sf−f+2

sf−s1−f+2
)f (2 + 1

f
+ 2(f+1)

s1+1
),

from which they conclude that

lim sup
n→∞

Rn√
n
≤

√
2 + 1

f
√
2
.

Thus for f and n large, the regret is close to the asymptotic lower bound

√
2n.

Bonald and Proutière extended their optimality on Bernoulli rewards to

non-uniform priors. They showed that when g(µ) ∼ αµβ−1 for some α > 0

and β > 0 as µ → 0, the regret lower bound of Berry et al. is extended to

lim inf
n→∞

(n− β
β+1Rn) ≥ C0, where C0 = (β(β+1)

α
)

1
β+1 . (3.2)
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They also showed that their two-target algorithm with s1 = ⌊n
1

β+2C
−β+1

β+2

0 ⌋

and sf = ⌊fn
1

β+1C−1
0 ⌋ satisfies

lim sup
f→∞

[lim sup
n→∞

(n− β
β+1Rn)] ≤ C0.

Wang, Audibert and Munos (2008) proposed a UCB-F algorithm for re-

wards taking values in [0, 1] and showed that under suitable regularity con-

ditions, Rn = O(n
β

β+1 log n). In UCB-F an order n
β

β+1 arms are chosen, and

confidence bounds are computed on these arms to determine which arm to

play. UCB-F is different from CBT in that it pre-selects the number of arms,

and it also does not have a mechanism to reject weak arms quickly. Carpen-

tier and Valko (2015) also considered rewards taking values in [0,1] but their

interest in maximizing the selection of a good arm differs from the aims here

and in the papers above.

4 Proposed methodology

We propose here a new bandit algorithm CBT in which a confidence

bound is constructed for each arm and compared against a target value. Let

Skt =
∑t

u=1Xku, X̄kt = t−1Skt and σ̂2
kt = t−1

∑t
u=1(Xku − X̄kt)

2. Let bn and
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cn be positive confidence coefficients satisfying

bn → ∞ and cn → ∞ with bn + cn = o(nδ) for all δ > 0. (4.1)

In our numerical studies we select bn = cn = log log n. We define the confi-

dence bound of arm k, after it has been played t times, to be

Lkt = max
(X̄kt

bn
, X̄kt −

cnσ̂kt√
t

)
. (4.2)

Let ζ > 0 be a specified target value. In CBT the arms are played

sequentially. Arm k is played until Lkt goes above ζ and it is discarded when

that happens. We discuss in Section 5 how ζ should be selected to achieve

optimality. It suffices to mention here that the optimal ζ decreases at a

polynomial rate with respect to n.

Confidence bound target (CBT)

1. Play arm 1 at trial 1.

2. For m = 1, . . . , n− 1: Let k be the arm played at trial m, and let t be

the number of times arm k has been played up to trial m.

(a) If Lkt ≤ ζ, then play arm k at trial m+ 1.

(b) If Lkt > ζ, then play arm k + 1 at trial m+ 1.
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Let K be the number of arms played after n trials, and let nk be the number

of times arm k has been played after n trials. Hence n =
∑K

k=1 nk.

There are three types of arms that we need to take care of, and that

explains the design of Lkt. The first type are arms with µk (mean of loss

Xkt) significantly larger than ζ. We would like to reject these arms quickly.

The decision to reject arm k when X̄kt/bn exceeds ζ is key to achieving this.

The second type are arms with µk larger than ζ but not by as much as

those of the first type. We are unlikely to reject these arms quickly as it

is difficult to determine whether µk is smaller or larger than ζ based on a

small sample. Rejecting arm k when X̄kt − cnσ̂kt/
√
t exceeds ζ ensures that

arm k is rejected only when it is statistically significant that µk is larger

than ζ. Though there may be large number of rewards from these arms,

their contributions to the regret are small because these arms have small µk,

as ζ is chosen small when n is large.

The third type of arms are those with µk smaller than ζ. For these

arms the best strategy (when ζ is chosen correctly) is to play them for the

remaining trials. Selecting bn → ∞ and cn → ∞ in (4.2) ensures that the

probabilities of rejecting these arms are small.

For Bernoulli rewards the first target s1 of the two-target algorithm is
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designed for quick rejection of the first type of arms, and the second target

sf is designed for rejection of the second type. What is different is that

whereas two-target monitors an arm for rejection only when there are 1 and

f failures, with f chosen large for optimality, CBT checks for rejection each

time a failure occurs. The frequent monitoring of CBT is a positive feature

that results in significantly better performances in the numerical experiments

in Section 7.

5 Optimality

We state the regret lower bound in Section 5.1 and show that CBT

achieves this bound in Section 5.2.

5.1 Regret lower bound

In Lemma 1 below we motivate the choice of ζ. Let Pµ denote prob-

ability and Eµ denote expectation, with respect to X
d∼ Fµ. Let Pg(·) =∫∞

0
Pµ(·)g(µ)dµ and Eg(·) =

∫∞
0

Eµ(·)g(µ)dµ. Let λ =
∫∞
0

Eµ(X|X >

0)g(µ)dµ[= Eg(X|X > 0)] be the mean of the first positive loss of a ran-

dom arm. We assume that λ < ∞. The value λ is the unavoidable cost

of exploring a new arm. We consider Eµ(X|X > 0) instead of µ because
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it makes sense to reject an arm only after observing a positive loss. For

Bernoulli rewards λ = 1. Let p(ζ) = Pg(µ1 ≤ ζ) and v(ζ) = Eg(ζ − µ1)
+.

Consider an idealized algorithm which plays arm k until a positive loss

is observed, and µk is revealed when that happens. If µk > ζ, then arm k

is rejected and a new arm is played next. If µk ≤ ζ, then we stop exploring

and play arm k for the remaining trials.

Let

rn(ζ) =
λ

p(ζ)
+ nEg(µ1|µ1 ≤ ζ). (5.1)

Assuming that the exploration stage of the idealized algorithm uses o(n)

trials and ζ is small, its regret is asymptotically rn(ζ). Let K be the total

number of arms played. The first term in the expansion of rn(ζ) approximates

E(
∑K−1

k=1

∑nk

t=1 Xkt) whereas the second term approximates E(
∑nK

t=1 XKt).

Lemma 1. Let ζn be such that v(ζn) =
λ
n
. We have

inf
ζ>0

rn(ζ) = rn(ζn) = nζn.

Proof. Since Eg(ζ − µ1|µ1 ≤ ζ) = v(ζ)
p(ζ)

, it follows from (5.1) that

rn(ζ) =
λ

p(ζ)
+ nζ − nv(ζ)

p(ζ)
. (5.2)

It follows from d
dζ
v(ζ) = p(ζ) and d

dζ
p(ζ) = g(ζ) that

d
dζ
rn(ζ) =

g(ζ)[nv(ζ)−λ]
p2(ζ)

.
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Since v is continuous and strictly increasing when it is positive, the root to

v(ζ) = λ
n
exists, and Lemma 1 follows from solving d

dζ
rn(ζ) = 0. ⊓⊔

Consider:

(A1) There exists α > 0 and β > 0 such that g(µ) ∼ αµβ−1 as µ → 0.

Under (A1), p(ζ) =
∫ ζ

0
g(µ)dµ ∼ α

β
ζβ and v(ζ) =

∫ ζ

0
p(µ)dµ ∼ α

β(β+1)
ζβ+1 as

ζ → 0, hence v(ζn) ∼ λ
n
for

ζn ∼ Cn− 1
β+1 , where C = (λβ(β+1)

α
)

1
β+1 . (5.3)

In Lemma 2 below we state the regret lower bound. We assume there that:

(A2) There exists a1 > 0 such that Pµ(X > 0) ≥ a1min(µ, 1) for all µ.

We need this assumption to avoid having bad arms that are played a large

number of times because their losses are mostly zeros but can be very big

when positive.

Lemma 2. Under (A1) and (A2), all infinite arms bandit algorithms have

regret satisfying

Rn ≥ [1 + o(1)]nζn ∼ Cn
β

β+1 as n → ∞. (5.4)

Lemma 2 is proved in the supplementary document.

Example 1. Consider X
d∼ Bernoulli(µ). Condition (A2) holds with

a1 = 1. If g is uniform on (0,1), then (A1) holds with α = β = 1. Since
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λ = 1, by (5.3), ζn ∼
√

2
n
. Lemma 2 says that Rn ≥ [1 + o(1)]

√
2n, agreeing

with Theorem 3 of Berry et al. (1997).

Bonald and Proutière (2013) showed (5.4) in their Lemma 3 for Bernoulli

rewards under (A1), and showed that their two-target algorithm gets close

to the regret lower bound when f is large. It will be shown in Theorem 1

that the lower bound in (5.4) is achieved by CBT for rewards that need not

be Bernoulli.

5.2 Optimality of CBT

We state the optimality of CBT in Theorem 1, after describing below

the conditions on discrete rewards under (B1) and continuous rewards under

(B2) for which the theorem holds. Let Mµ(θ) = Eµe
θX .

(B1) The rewards are integer-valued. For 0 < δ ≤ 1, there exists θδ > 0 such

that for µ > 0 and 0 ≤ θ ≤ θδ,

Mµ(θ) ≤ e(1+δ)θµ, (5.5)

Mµ(−θ) ≤ e−(1−δ)θµ. (5.6)

In addition,

Pµ(X > 0) ≤ a2µ for some a2 > 0, (5.7)

EµX
4 = O(µ) as µ → 0. (5.8)
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(B2) The rewards are continuous random variables satisfying

sup
µ>0

Pµ(X ≤ γµ) → 0 as γ → 0. (5.9)

Moreover (5.8) holds and for 0 < δ ≤ 1, there exists τδ > 0 such that for

0 < θµ ≤ τδ,

Mµ(θ) ≤ e(1+δ)θµ, (5.10)

Mµ(−θ) ≤ e−(1−δ)θµ. (5.11)

In addition for each t ≥ 1, there exists ξt > 0 such that

sup
µ≤ξt

Pµ(σ̂
2
t ≤ γµ2) → 0 as γ → 0, (5.12)

where σ̂2
t = t−1

∑t
u=1(Xu − X̄t)

2 and X̄t = t−1
∑t

u=1Xu for i.i.d. Xu
d∼ Fµ.

Theorem 1. Assume (A1), (A2) and either (B1) or (B2). For CBT with

threshold ζn satisfying (5.3) and bn, cn satisfying (4.1),

Rn ∼ nζn as n → ∞. (5.13)

Theorem 1 says that CBT is optimal as it attains the lower bound given

in Lemma 2. In the examples below we show that the regularity conditions

(A2), (B1) and (B2) are reasonable and checkable. The proof of Theorem 1

and the checking details in Examples 3–5 are in the supplementary document.
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Example 2. If X
d∼ Bernoulli(µ) under Pµ, then

Mµ(θ) = 1− µ+ µeθ ≤ exp[µ(eθ − 1)].

Hence (5.5) and (5.6) hold with θδ > 0 satisfying

eθδ − 1 ≤ θδ(1 + δ) and e−θδ − 1 ≤ −θδ(1− δ).

In addition (5.7) holds with a2 = 1, and (5.8) holds because EµX
4 = µ.

Condition (A2) holds with a1 = 1.

Example 3. Let Fµ be a distribution with support on 0, . . . , I for some

positive integer I > 1 and having mean µ. Condition (A2) holds with a1 =

I−1 and (B1) holds as well.

Example 4. Let Fµ be the Poisson distribution with mean µ. Condition

(A2) holds with a1 = 1− e−1 and (B1) holds as well.

Example 5. Let Z be a continuous non-negative random variable with

mean 1, and with Eeτ0Z < ∞ for some τ0 > 0. Let Fµ be the distribution of

µZ. Condition (A2) holds with a1 = 1 and (B2) holds as well.

6 Methodology for unknown priors

The optimal implementation of CBT, in particular the computation of the

optimal target ζn, assumes knowledge of how g(µ) behaves for µ near 0. For g
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unknown we will rely on Theorem 1 to motivate an empirical implementation

of CBT.

What is striking about (5.13) is that it relates the optimal target ζn to

Rn

n
, and moreover this relation does not depend on either the prior g or the

reward distributions. We suggest therefore, in an empirical implementation

of CBT, to apply targets

ζ(m) := S′
m

n
, (6.1)

where S ′
m is the sum of the losses Xkt over the first m trials.

In the beginning with m small, ζ(m) underestimates the optimal target,

but this will only encourage exploration, which is the right strategy at the

beginning. As m increases ζ(m) gets closer to the optimal target, and empir-

ical CBT behaves like CBT when deciding whether to play an arm further.

A key difference between CBT and empirical CBT is that empirical CBT de-

cides from among all played arms which to play further whereas CBT plays

the arms sequentially.

Empirical CBT

Notation: When there are m total rewards, let nk(m) denote the number

of rewards from arm k and let Km denote the number of arms played.
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For m = 0, play arm 1. Hence K1 = 1, n1(1) = 1 and nk(1) = 0 for

k > 1.

For m = 1, . . . , n− 1:

1. If min1≤k≤Km Lknk(m) ≤ ζ(m), then play the arm k minimizing Lknk(m)

at trial m+ 1.

2. If min1≤k≤Km Lknk(m) > ζ(m), then play a new arm Km + 1 at trial

m+ 1.

Empirical CBT, unlike CBT, does not achieve the smallest regret. This

is because when a good arm (that is an arm with µk below optimal target)

appears early, we are not sure whether this is due to good fortune or that the

prior is disposed towards arms with small µk, so we explore more arms before

we are certain and play the good arm for the remaining trials. Similarly when

no good arm appears after many trials, we may conclude that the prior is

disposed towards arms with large µk, and play an arm with µk above the

optimal target for the remaining trials, even though it is advantageous to

explore further.

As the analysis of the regret of empirical CBT is complicated, we consider

an idealized version of empirical CBT in the supplementary document and
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derive its asymptotic regret there, to give us a sense of the additional regret

when applying CBT empirically.

In the idealized version of empirical CBT, µk is revealed after the first

positive loss of arm k is observed. The number of arms played is the smallest

K satisfying

min
1≤k≤K

µk ≤ Kλ
n
,

and exploitation of the best arm begins after µ1, . . . , µK have been revealed.

The idealized empirical CBT is like the idealized algorithm described in the

beginning of Section 5.1, but with a target ζ = kλ
n
, after k arms have been

played. This is because λ is the mean of the first positive loss of each arm,

so after k arms have been played the sum of losses has mean kλ. The ide-

alized empirical CBT is a simplification of empirical CBT that captures the

additional regret of empirical CBT over CBT when applying a target that

does not depend on the prior.

Theorem 2. The idealized empirical CBT has regret

R′
n ∼ Iβnζn, (6.2)

where Iβ = ( 1
β+1

)
1

β+1 (2− 1
(β+1)2

)Γ(2− β
β+1

) and Γ(u) =
∫∞
0

xu−1e−xdx.

The constant Iβ increases with β, with I0 = 1 and limβ→∞ Iβ = 2. The

increase is quite slow so that for reasonable values of β it is closer to 1 than
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2. For example I1 = 1.10, I3 = 1.24 and I5 = 1.36. Equation (6.2) says that

empirical CBT should have regret not more than 36% over the baseline lower

bound when β ≤ 5. This agrees with the simulation outcomes in Section 7.

7 Numerical studies

We study arms with Bernoulli rewards in Example 6 and arms with

unspecified reward distributions in Example 7. In our simulations 10,000

datasets are generated for each entry in Tables 1–4, and standard errors

are placed after the ± sign. In both CBT and empirical CBT, we select

bn = cn = log log n. Aziz (2019) performed numerical studies involving vari-

ous infinite arms bandit algorithms, including CBT and empirical CBT, with

the objective of finding the arm with the best mean. There is also an ap-

plication of infinite arms bandit there on an online dataset involving voting

responses to 3795 proposed captions of a cartoon, on a New Yorker website.

Example 6. We consider Bernoulli rewards with uniform prior g(µ) = 1,

as well as the Beta priors g(µ) = 3µ2 [i.e. Beta(3,1)], g(µ) = 15
16
µ2(1− µ)−

1
2

[i.e. Beta(3,1
2
)], g(µ) = 5µ4 [i.e. Beta(5,1)] and g(µ) = 315

256
µ4(1 − µ)−

1
2 [i.e.

Beta(5,1
2
)].

We see from Tables 1–3 that the two-target algorithm does better with
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Regret

n =100 n =1000 n =10,000 n =100,000

CBT ζ =
√
2/n 14.6±0.1 51.5±0.3 162±1 504±3

empirical 15.6±0.1 54.0±0.3 172±1 531±3

Berry et al. 1-failure 21.8±0.1 152.0±0.6 1123±4 8955±28

√
n-run 19.1±0.2 74.7±0.7 260±3 844±9

√
n-run (non-recall) 15.4±0.1 57.7±0.4 193±1 618±4

n
1
2 log n-learning 18.7±0.1 84.4±0.6 311±3 1060±9

Two-target f = 3 15.2±0.1 52.7±0.3 167±1 534±3

f = 6 16.3±0.1 55.8±0.4 165±1 511±3

f = 9 17.5±0.1 58.8±0.4 173±1 514±3

UCB-F K = ⌊
√
n/2⌋ 39.2±0.1 206.4±0.4 1204±1 4432±5

Lower bound
√
2n 14.1 44.7 141 447

Table 1: Regrets for Bernoulli rewards with uniform prior.

f = 3 at smaller n, and f = 6 or 9 at larger n. CBT is the best performer uni-

formly over sample size and prior, and empirical CBT is competitive against

two-target with f fixed.

Even though CBT outperforms empirical CBT, its optimal target ζ de-

pends on the prior. On the other hand when applying empirical CBT, the

same algorithm is used for all priors here and on the URL dataset in Exam-

ple 7 with unspecified prior. Hence though it seems that empirical CBT is
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Regret

Beta(3, 1) Beta(3, 1
2
) Beta(5, 1) Beta(5, 1

2
)

CBT ζ = Cn− 1
β+1 284.2±0.9 363.0±1.0 474.0±1.0 554.3±1.1

empirical 299.6±0.9 382.2±1.1 509.6±1.0 592.7±1.0

n
1

β+1 -run non-recall 346.3±1.3 445.7±1.7 546.5±1.4 658.8±1.6

Two-target f = 3 310.7±1.1 390.8±1.3 510.3±1.3 592.1±1.3

f = 6 301.2±1.2 385.9±1.4 520.9±1.5 619.5±1.6

f = 9 311.0±1.3 400.1±1.6 545.3±1.6 649.6±1.7

UCB-F 649.5±0.3 779.2±0.3 774.0±0.3 867.6±0.2

Lower bound Cn
β

β+1 251.5 336.4 426.3 538.5

Table 2: Regrets for Bernoulli rewards with Beta priors at n = 1000.

numerically comparable to two-target and inferior to CBT, in applications

where prior is unknown or incorrectly specified, it can perform much better.

For the uniform prior, the best performing among the algorithms in Berry

et al. (1997) is the non-recalling
√
n-run algorithm. For UCB-F [cf. Wang et

al. (2008)], the selection of K = ⌊(β
α
)

1
β+1 ( n

β+1
)

β
β+1 ⌋ (∼ 1

p(ζn)
) and “exploration

sequence” Em =
√
logm works well.

Example 7. We consider the URL dataset studied in Vermorel and

Mohri (2005), where a POKER algorithm for dealing with large number

of arms is proposed. We reproduce part of their Table 1 in our Table 4,
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Regret (×10)

Beta(3, 1) Beta(3, 1
2
) Beta(5, 1) Beta(5, 1

2
)

CBT ζ = Cn− 1
β+1 866±3 1127±4 2122±5 2569±6

empirical 1004±3 1318±4 2547±5 3149±6

n
1

β+1 -run non-recall 1476±7 1713±8 3874±13 4142±13

Two-target f = 3 1159±5 1501±6 2973±9 3559±11

f = 6 990±4 1308±5 2527±7 3060±9

f = 9 957±4 1257±5 2429±7 2992±9

UCB-F 3739±3 4522±4 6488±4 7499±5

Lower bound Cn
β

β+1 795 1064 1979 2499

Table 3: Regrets (×10) for Bernoulli rewards with Beta priors at n=100,000.

Regret

Algorithm ϵ n =130 n =1300

emp. CBT 212±2 123.8±0.6

POKER 203 132

ϵ-greedy 0.05 733 431

ϵ-first 0.15 725 411

ϵ-decreasing 1.0 738 411

Table 4: Average regret Rn/n.

together with new simulations on empirical CBT. The dataset consists of the

retrieval latency of 760 university home-pages, in milliseconds, with a sample

24

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



size of more than 1300 for each home-page. The numbers in the dataset

correspond to the non-negative losses Xkt. The dataset can be downloaded

from “sourceforge.net/projects/bandit”.

In our simulations the losses are randomly permuted within home-page

in each run. At n = 130 POKER performs better than empirical CBT

whereas at n = 1300 empirical CBT performs better. The other algorithms

are uniformly worse than both POKER and empirical CBT.

The algorithm ϵ-first refers to exploring the first ϵn losses, with random

selection of the arms to be played. This is followed by pure exploitation for

the remaining (1 − ϵ)n losses, on the “best” arm (with the smallest mean

loss). The algorithm ϵ-greedy refers to selecting, in each trial, a random arm

with probability ϵ, and the best arm with the remaining 1−ϵ probability. The

algorithm ϵ-decreasing is like ϵ-greedy except that in themth trial, we select a

random arm with probability min(1, ϵ
m
), and the best arm otherwise. Both ϵ-

greedy and ϵ-decreasing are disadvantaged by not making use of information

on the total number of trials. Vermorel and Mohri also ran simulations on

more complicated strategies like LeastTaken, SoftMax, Exp3, GaussMatch

and IntEstim, with average regret ranging from 276–747 at n = 130 and

189–599 at n = 1300.
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8 Conclusion

CBT optimizes the regret in the infinite arms bandit problem when it

is possible for an arm to have reward mean arbitrarily close to the upper

bound of the rewards. This optimality is over all bandit algorithms and does

not require knowledge of the reward distribution for a given arm mean. It

depends however on the correct selection of a target value that is computed

from an assumed prior.

Empirical CBT is like CBT with the key difference that it computes the

target value empirically. Though not optimal, it performs well in numerical

studies and is more practical as it can be applied without assuming a prior.

We suggest here two extensions of CBT and empirical CBT for future

work. The first is to handle the situation of sample size not known in advance.

Bonald and Proutière (2013) have a version of two-target that they believe to

be optimal for Bernoulli rewards, when sample size is not known in advance.

The second extension is to incorporate covariate information in the com-

putation of confidence bounds, leading to recommended arms that are spe-

cific to subgroups of the population. Modern developments in the finite-arms

bandit literature has centered on the handling of covariate information, see

for example Goldenshluger and Zeevi (2013), Perchet and Rigollet (2013),
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Slivkins (2014), Wang, Kulkarni and Poor (2005) and Yang and Zhu (2002).

When number of arms is comparable to or larger than sample size, an infinite-

arms approach is more appropriate and will provide strategies that differ from

a finite-arms framework.

9 Supplementary materials

The proofs of Lemma 2 and Theorems 1 and 2, as well as the verifications

of (A2), (B1) and (B2) in Examples 3–5 are in the supplementary document.
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