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From Sequential Detection to Biology and Back”
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Abstract: Professor Siegmund has provided a unified treatment of change-point problems in
sequential detection and fixed-sample DNA/protein sequence analysis and other biological
applications via boundary-crossing probabilities and likelihood-based procedures. Our
discussion elaborates further on this theme and moves beyond biology to engineering and
finance.
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1. INTRODUCTION

We begin by congratulating Professor Siegmund on his very insightful and elegant
paper that starts with a brief review of the early history of sequential change-point
detection and moves on to “the continuously increasing scope of scientific problems
having change-point or change-point-like characteristics,” thereby pointing to
directions “for new research, and common basic principles [that] provide the
foundation for a continuously expanding theoretical framework,” which has been
motivated by “the diversity of applications.” Our discussion will elaborate on
this continuously expanding theoretical framework for change-point methodology,
motivated by the application domains in which we have worked.
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2. FAULT DETECTION IN STOCHASTIC SYSTEMS

While Page’s (1954) cumulative sum (CUSUM) rule for detecting a change from
a baseline density f�0 to a post-change density f�1 has a recursive formula for
updating the likelihood ratio detection statistics, there are no recursive formulas for
updating generalized likelihood ratio (GLR) detection statistics that do not assume
the post-change parameter to be known. For fault detection in engineering systems
involving multidimensional parameters that may undergo changes when faults
occur, “practical implementation of the GLR algorithm is not always possible”
(Basseville and Nikiforov, 1993, p. 369) because of real-time computational
constraints for on-line fault detection. To reduce the computational burden of the
GLR scheme, which grows to infinity with n and involves maximization of the log-
likelihood over � ∈ � for each possible change time k between 1 and n, Willsky and
Jones (1976) proposed to use a window-limited GLR scheme with a stopping rule
of the form

NW = inf

{
n > Ñ � max

M̃≤n−k+1≤M

sup
�∈�

[
n∑

i=k

log
(
f��Xi �X1� � � � � Xi−1�

f0�Xi �X1� � � � � Xi−1�

)]
≥ c�

}
� (2.1)

but did not indicate how M� M̃ , and c� should be chosen. The performance of
(2.1) was subsequently found to be quite sensitive to these choices. As noted in
Lai (1995, Section 3.2), the Siegmund-Venkatraman (1995) paper referenced by
Professor Siegmund provided an important clue to address this issue.

Siegmund and Venkatraman gave a definitive asymptotic analysis of Barnard’s
GLR scheme for the case in which Xi are independent N��� 1� random variables.
In this normal case, the GLR statistics in (2.1) have a simple explicit form given in
Section 1.2 of Professor Siegmund’s paper. In addition, normal random walks yield
explicit asymptotic formulas for the associated boundary-crossing probabilities and
expected stopping times (average run length, ARL). Making use of these formulas
developed by Siegmund and Venkatraman, Lai (1995) showed that in the normal
case for which M̃ can be chosen to be 1, if M ∼ a log � is chosen to achieve an ARL
of � under the baseline model f0, then the window-limited scheme is asymptotically
efficient for the detection of changes that are larger than

√
2/a, with an asymptotic

detection delay of �2 log ��/�2. However, for a change magnitude smaller than
√
2/a,

the asymptotic detection delay is of order � and the scheme is inefficient. This is
resolved by the consideration of geometrically increasing window sizes � = 	
bjM� �
j = 1� 2� � � � �, where b > 1 and 
·� is the greatest integer function. Then, for a
stopping rule of the form N = min�NW� ÑW �, where

ÑW = inf
{
n � max

k�n−k+1∈�

�Xk + · · · + Xn�

2/2�n− k+ 1�� ≥ c�

}
�

a detection delay of not more than 2b log �/�2 is achieved uniformly for ��� ≤√
2/a. Lai (1998) extended these window-limited GLR detection rules to general

stochastic systems and proved their asymptotic optimality under not only Lordon’s
criterion or the Bayesian criterion pioneered by Shiryaev (see Section 2 of Professor
Siegmund’s paper) but also other criteria that are more suitable for dependent
time series/control systems data. To determine the threshold c� in complex
stochastic systems, one has to use Monte Carlo simulations as tractable analytical
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approximations are not available. As noted by Lai (1995, Section 3.3) and Chan and
Zhang (2007), although the baseline ARL is too large to simulate, one can relate it
to the probability of false alarm for these window-limited GLR detection rules via

E0�Tc� ≈ m/P0�Tc ≤ m� (2.2)

for large m and simulate P0�Tc ≤ m� by importance sampling instead.

3. FROM SEQUENTIAL TO FIXED-SAMPLE CHANGE-POINT
DETECTION

The close connection between sequential and fixed-sample change-point problems
is pointed out in Section 1.2 of Professor Siegmund’s paper, in which Section 3
contains a number of fixed-sample problems that are related to the sequential
problems in Section 2. Because of the “non-regular” nature of GLR scan statistics
in fixed-sample problems, the usual 2-approximations for GLR statistics to test
under the null hypothesis of no change-points in the sample are invalid. Chan
and Lai (2003) have developed a general theory that connects the asymptotic
distributions of sequential and fixed-sample change-point problems in the context of
nonlinear functions of Markov random walks, motivated by the sequential detection
applications in the preceding section. Consider a d-dimensional Markov random
walk Sn and let g � �d → � be a smooth function. Let

Mn = max
1≤i<j≤n�j−i∈Jn

�j − i�g��Sj − Si�/�j − i���

Tc = inf	n � max
k<n�n−k∈J�c�

�n− k�g��Sn − Sk�/�n− k�� > c��

where Jn and J�c� are certain subsets of 	1� 2� � � � �. The special case of independent
and identically distributed univariate observations, g�x� = x and Jn = J�c� =
	1� 2� � � � � corresponds to the CUSUM and that with g�x� = x2/2 to Barnard’s test.
Making use of saddlepoint approximations for Markov random walks, Chan and
Lai (2003) showed that there exist q ∈ 	0� 1� � � � � d� and positive constants r and �

depending on g such that under the null hypothesis of no change-points,

��c/r�q/2e−c/rTc ⇒ Exp�1�� (3.1)

whereas Mn has a corresponding Gumbel-type limiting distribution given by

P	Mn − r
log n+ �q/2� log log n� ≤ t� → exp�−�e−t/r �� (3.2)

Using the connection P�Tc ≤ n� = P�Mn > c� between Tc and Mn, they first proved
(3.2) and then used the result to prove (3.1). Section 3.2 of Professor Siegmund’s
paper discusses this connection in the special case of g�x� = x and relates Page’s
CUSUM rule for Tc in this case to the Karlin-Dembo-Kawabata statistic Mn for
testing high-scoring segments in a protein sequence.
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4. RANDOM FIELDS AND BOUNDARY-CROSSING PROBABILITIES

Section 3.1 of Professor Siegmund’s paper discusses applications of the Hotelling-
Weyl formula, for the volume of a tube around a smooth closed curve or more
general manifold to fixed-sample change-point testing problems in signal detection.
Integration over tubular neighborhoods of extremal manifolds also arises in
extending Laplace’s method for asymptotic evaluation of integrals in the derivation
of (3.2) and in boundary-crossing probabilities for GLR test and detection statistics
and for asymptotically Gaussian random fields; see Chan and Lai (2000, 2003) and
Chan and Lai (2006), respectively.

Professor Siegmund’s overshoot correction for the scan statistic in linkage
analysis mentioned in his Section 3.3 provides a powerful method for boundary-
crossing probability computations for a variety of biological applications. Examples
include the scoring of word counts in biomolecular sequences (Chan and Zhang,
2007) and of template patterns in neural spike trains (Chan and Loh, 2007); see also
Chan et al. (2008).

5. ALTERNATIVE TO THE SCAN STATISTIC: SHIRYAEV OR PAGE?

Page’s CUSUM and Barnard’s GLR detection rules take the maximum, over all
candidate change times k, of the likelihood ratio or generalized likelihood ratio
statistics. Shiryaev’s detection rule involves the sum of the likelihood ratios over all
candidate change times k. The test statistic in Professor Siegmund’s change-point
model for aligned copy number variation involves both sums and maxima, with the
sums in his equation (3.4) to accumulate scores within the cohort of size N and
over candidate change-points in the interval �s� t�, and the maximum taken over the
unknown parameters �i to yield the statistic Z�s� t� in his equation (3.5), and also
over s and t in the test statistic maxt≤m�m0≤t−s≤m1

Z�s� t� in his equation (3.7). Note
that the scores Ui�s� t� for subject i are not directly summed over 1 ≤ i ≤ N in his
equation (3.5) but are first transformed by

f�U� = log
1− p0 + p0 exp�U
2/2��

in order to downweight “weak” scores, as these scores are likely to be noisy when
the true proportion of signals is small and they can overwhelm the actual signals if
the transformation is not applied. The choice of p0 is left to the user, and Professor
Siegmund has shown via extensive simulation studies in his 2010 and 2011 papers
with Yakir, Zhang, Ji and Li the robustness of their procedure with respect to p0

that ranges between 0.01 and 0.25 in these studies. As p0 → 1, the right-hand side
of his equation (3.5) converges to a sum of untransformed GLR statistics. On the
other hand, as p0 → 0, since

f�U� = p0
exp�U
2/2�− 1+ o�1���

the right-hand side of his equation (3.5) is asymptotically equivalent to p0N
multiplied by the average likelihood ratio N−1 ∑N

i=1 exp
U
2
i �s� t�/2�.

The average likelihood ratio statistic has detection properties that are closely
related to the scan statistic. Chan (2009) analyzed the average likelihood ratio
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statistic and found it to have slightly more detection power than the scan statistic,
which is not surprising given that it was developed to maximize detection power.
An added bonus is that the tail probability of the average likelihood ratio statistic
is robust against the correlations among individual scores that may not be known
precisely. Chan and Walther (2013) have recently shown that a properly weighted
average likelihood ratio achieves asymptotic optimality in the context of multiple-
scale signal detection, very much like scan statistics that are appropriately modified
to deal with the multiple scales. Optimality is in the sense of asymptotic power 1 at
the smallest possible detectable signal. Might there be a similar result for Professor
Siegmund’s setting; that is, is there a smallest value of p0 for which his test has
asymptotic power 1? This minimum value would depend on the total length m of
the sequence and the number N of profiles, which are given, and signal strengths �i
that can be queried from genetics experts.

6. MULTIPLE CHANGE-POINTS AND SEQUENTIAL SURVEILLANCE

In his Sections 3.4 and 3.5, Professor Siegmund has used the frequentist multiple
change-point model of Olshen et al. and their circular binary segmentation (CBS)
algorithm. Lai et al. (2008) introduced a simple stochastic segmentation model
and applied the associated empirical Bayes procedure as an alternative to the CBS
algorithm. Lai and Xing (2011) further refined this approach in the setting of
multiparameter families and developed explicit recursive formulas for the empirical
Bayes estimates of the piecewise constant parameters. They also showed how the
empirical Bayes approach, with its computationally attractive recursive estimators,
can be used to address the frequentist problem of segmentation and demonstrated
its advantages over the CBS algorithm in terms of computational speed and
segmentation accuracy. Chen et al. (2011) and Xing et al. (2012) recently applied
this empirical Bayes approach to DNA and protein sequence analysis and obtained
very promising results.

Lai and Xing (2013a) used the empirical Bayes approach to develop a stochastic
change-point ARX-GARCH model (autoregressive model with exogenous inputs
and generalized autoregressive conditional heteroskedastic errors) that provides
substantial improvements of Lai and Xing’s structural change model introduced as
an alternative to long memory in financial time series and referenced in Professor
Siegmund’s paper. The empirical Bayes approach can also be readily extended
to sequential surveillance that involves multiple change-points in multiple time
series, as shown in the forthcoming book by Lai and Xing (2013b) on active risk
management in response to the Dodd-Frank Act and the new Basel III regulations
for bank supervision. While there are some similarities to sequential detection of
changes in multiple sequences in Section 4 of Professor Siegmund’s paper, empirical
Bayes modeling is heavily used in these financial time series data.
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