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Abstract The Benjamini-Hochberg procedure (BH) controls the false discovery rate
(FDR), and on a large dataset optimizes signal discovery subject to this control. However
it applies a common p-value rejection threshold that precludes it from taking advantage of
index information of the null hypotheses, making it suboptimal for detecting clustered sig-
nals. We propose a double application of the BH procedure on two-level hierarchical and
related datasets, the first application to identify p-value batches, and a second application
on each identified batch for null hypotheses rejections. We propose a mixture model on
two tiers to model signal clustering, and show that on this model, the double application
reduces FDR and maintains the power of BH. We show that the doubly applied BH satis-
fies an average FDR control. Benjamini and Bogomolov (J R Stat Soc Ser B 76:297–318,
2014) considered a more general class of procedures and error criterions, and showed aver-
age FDR control under dependency assumptions different from ours. Their proof is also
technically different. We end the paper with a description of Yekutieli’s (J Am Stat Assoc
103:309–316, 2008) procedure on hierarchical datasets, and a proposed hybrid of the double
BH procedure and Yekutieli’s procedure that combines the strengths of both.
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1 Introduction

Benjamini and Hochberg (BH) (1995) initiated the study of false discovery rate (FDR)
control when they showed that FDR control is achieved by Simes’ procedure (Simes 1986),
which relaxes the p-value rejection threshold when there is a large proportion of small p-
values. Based on this principle, when there is a large cluster of small p-values, the threshold
should also be relaxed, but only locally around the cluster. This is the motivation behind the
double application of the BH procedure, the first time globally on batches of p-values, the
second time locally within each batch identified in the first application.

Large sample estimation in FDR control, brought forth by the introduction of the two-
groups mixture model, has played a critical role in the understanding and improvements
of the BH procedure. The incorporation of false null proportion estimation into the BH
procedure by Storey (2002, 2003), results in increased signal discovery within the stated
FDR constraint. Genovese and Wasserman (2002) applied large sample theory to show that
the BH procedure is an asymptotically optimal distribution-free method and Chi (2007)
provided limiting asymptotics of the BH procedure under the mixture model. Efron and
Zhang (2011) used the mixture model to estimate local false discovery rates and applied
them to DNA copy number datasets. A separate line of development is in adaptations of the
BH procedure and FDR measures to hierarchical and spatial datasets (Benjamini and Heller
2007; Pacifico et al. 2004; Yekutieli 2008). Related to this is the recent interest in the use
of the hidden Markov model to model and analyze signal clustering in spatial datasets (Chi
2011; Sun and Cai 2009; Wu 2008). Multi-stage designs have also been considered recently
(Zehetmayer et al. 2008).

We investigate here the hierarchical datasets studied in Yekutieli (2008) (and applied
in Reiner-Benaim et al. 2007), focusing on the two-level special case and introducing
a mixture model on two tiers to understand the effect that signal clustering has on the
occurrence of false discoveries in these datasets. The set of p-values is partitioned into
disjoint subsets, and we refer to the p-values in a subset as a batch of p-values. The BH
is applied twice, firstly between batches, followed by within batches. The mixture model
on two tiers is introduced in Section 2, and on it we perform a large sample comparison
of the operating characteristics of the doubly applied BH versus the standard BH. From
this comparison, we conclude that repeating the BH increases its positive predictive value
(i.e. reduces false discoveries) and maintains sensitivity (power). A recent paper by Ben-
jamini and Bogomolov (2014) considered a wide class of procedures on two-level datasets,
of which the double BH can be considered a special case. However no power analysis
was done there. One of the main contributions of this paper is coming up with a mixture
model on two tiers to help us differentiate and analyze competing procedures on two-level
datasets.

In Section 3 the doubly applied BH is shown to satisfy an average FDR constraint.
The average is over all batches identified in the first application of BH. Benjamini and
Bogomolov (2014) considered a wider class of procedures and provided a more general
error control result. Our dependency assumptions are however quite different, and the tech-
niques used in our proof are also different. In Section 4 we combine the strengths of the
double BH and Yekutieli’s (2008) procedure, on a hybrid procedure that is more relaxed
for within-batch p-value rejection. This is useful for applications in which identification of
signals within batches is of interest. The theoretical predictions of Sections 2–4 are vali-
dated on a simulation study in Section 4. In Section 5 the application of the doubly applied
BH is illustrated on a copy number dataset. The main paper ends with a short discussion in
Section 6. The proofs are consolidated in the appendices.
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2 Methodology

We start out by first considering ordered p-values p(1) ≤ · · · ≤ p(n) of n null hypotheses.
The BH procedure for identifying signals, i.e. false null hypotheses, at a control level of α,
is as follows:

BH procedure

1. Let q = min1≤j≤n(np(j)/j) be the BH-adjusted p-value.
2. (a) If q > α, then let R = 0.

(b) If q ≤ α, then let R = max{j : np(j)/j ≤ α}.
3. Reject the null hypotheses corresponding to the R smallest p-values (i.e. those with

p-values not more than αR/n).

Let n0 be the number of p-values belonging to true null hypotheses and assume that these
p-values are independent and uniformly distributed. If n0 = n, then P(R > 0) = α, see
Seeger (1968) or Simes (1986), i.e. the family-wise Type I error rate is controlled weakly at
level α. Let V be the number of true null rejected by BH and let R ∨ 1 = max(R, 1). It was
shown in Benjamini and Hochberg (1995) that when the p-values are independent, the BH
procedure guarantees that

FDR := E

(
V

R ∨ 1

)
= αn0

n
≤ α. (1)

Since n0 ≤ n, FDR is indeed controlled at level α.
In this paper, we consider a slightly more complicated two-level set-up, with the n null

hypotheses pre-allocated to m batches, ki null hypotheses in batch i for 1 ≤ i ≤ m. Hence
n = k1 + · · · + km. In the discussion in Section 6, we shall touch on extensions to datasets
with even more complicated indexing. Let Ri be the number of rejected null hypotheses
in batch i, and Vi the corresponding number of rejected true null, when the BH is applied.
Hence R = ∑m

i=1 Ri and V = ∑m
i=1 Vi . On this two-level set-up, our interest is in the

following alternative, the focus of this paper.
Double BH (dBH) procedure

1. For i = 1, . . . , m: Let pi,(1) ≤ · · · ≤ pi,(ki ) be the ordered p-values in batch i. The
BH-adjusted p-value of the ith batch is defined to be

p∗
i = min

1≤j≤ki

(kipi,(j)/j). (2)

2. Let p∗
(1) ≤ · · · ≤ p∗

(m) be the ordered BH-adjusted batch p-values. We define the
Simes-type combined p-value to be

p∗ = min
1≤i≤m

(mp∗
(i)/i).

3. (a) If p∗ > α: Let S∗ = 0. Reject no null hypotheses and end here.
(b) If p∗ ≤ α: Let S∗ = max{i : mp∗

(i)/i ≤ α} and α∗ = αS∗/m.
For i = 1, . . . , m:

i If p∗
i > α∗: Do not reject any null hypothesis from batch i and let R∗

i =
0.

ii If p∗
i ≤ α∗: Let

R∗
i = max{j : kipi,(j)/j ≤ α∗}.

Reject the null hypotheses corresponding to the R∗
i smallest p-values in

batch i.
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It can be easily checked that the dBH rejects null hypotheses from exactly S∗ batches.
Let there be ki0 true null hypotheses from batch i (hence n0 = ∑m

i=1 ki0), and let V ∗
i of

them be rejected by dBH. Let R∗ = ∑m
i=1 R∗

i and V ∗ = ∑m
i=1 V ∗

i .
If n0 = n, then by induction P(R∗ > 0) = α, so as in BH, we have weak Type I

error rate control. In addition, as will be shown in Section 3, dBH controls the average FDR
(instead of the FDR for BH) at level α. That is,

aveFDR := E

⎛
⎝ 1

S∗ ∨ 1

∑
i:R∗

i >0

V ∗
i

R∗
i

⎞
⎠ ≤ α. (3)

We call this average FDR control because the number of terms summed in Eq. 3 is S∗. The
implication of such a control will be discussed in Section 3. When there is only m = 1
batch, Eq. 3 reduces to Eq. 1, the usual FDR control. The identified batches with p-values
p∗

i ≤ α are known as selected family of hypotheses in Benjamini and Bogomolov (2014),
where more general classes of procedures and error criteria are considered.

2.1 The Two-Groups Mixture Model

Let F0 be the Uniform(0,1) distribution, representing the p-value distribution of a true
null hypothesis, and let F1 be the p-value distribution of a false null hypothesis. Let Pπ

denote the probability measure under which n0, the number of true null, is distributed as
Binomial(n, 1 − π ). Under Pπ , the n p-values are independent and identically distributed
(i.i.d.) from the mixture distribution Fπ = (1 − π)F0 + πF1. For ease of exposition, we
shall assume that F1 is continuous, and we shall also assume that

lim
x→0+

F1(x)

x
= ∞. (4)

For 0 < α < 1 and π > 0, let xα,π be the largest solution in x in

(1 − π)x + πF1(x)

x
= α−1

(
equivalently

F1(x)

x
= α−1 − 1

π
+ 1

)
. (5)

The existence of xα,π is guaranteed by Eq. 4 since limx→1 F1(x)/x = 1 and F1 is con-
tinuous. By large sample theory (Glivenko-Cantelli Lemma), xα,π is the weak limit of the
p-value rejection threshold of BH cf. Genovese and Wasserman (2002), that is,

αR/n
p→ xα,π as n → ∞, (6)

provided that there exists ε0 > 0 such that

F1(xα,π − ε)

xα,π − ε
>

α−1 − 1

π
+ 1 for 0 < ε < ε0. (7)

The sensitivity of a multiple comparison procedure refers to the proportion of signals
picked up by the procedure, while its positive predictive value (ppv) refers to the proportion
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of hypotheses it rejects that are true discoveries. In other words, 1-ppv is the false discovery
proportion. By Eqs. 5–7, details in Appendix A, as n → ∞,

sensitivity(BH) = R − V

n − n0

p→ F1(xα,π ), (8)

1 − ppv(BH) = V

R ∨ 1
p→ α(1 − π). (9)

2.2 The (Two-Groups) Mixture Model on two Tiers

We introduce now the mixture model on two tiers, which extends the two-groups mixture
model to a two-level hierarchical dataset. The mixture model on two tiers is a signal cluster-
ing model that we will use to analyze multiple comparison procedures. Consider a dataset
with n = mk null hypotheses indexed into m batches, with each batch containing exactly
k null hypotheses. We define a batch to be defective if it has a positive expected propor-
tion of false null hypotheses, and non-defective otherwise. The set of defective batches, or
more specifically the set of their indices, is denoted by D. Let π be the expected propor-
tion of false null hypotheses within the whole dataset. We assume that a batch is defective
with positive probability λ (≥ π ), and within each defective batch, p-values are generated
as i.i.d. Fπ/λ[= (1−π/λ)F0+ (π/λ)F1]. For non-defective batches, p-values are generated
as i.i.d. F0. Since each p-value is distributed marginally as Fπ , when m → ∞ and k → ∞,
(8) and (9) hold. The terminologies of “batch” and “defective/non-defective” are borrowed
from the quality control literature, to avoid clashes with the use of “group”, which has quite
different meanings in the FDR literature.

Efron (2008) introduced the separate-class model which contains two classes of null
hypotheses having different expected proportions of false null. Our consideration here is in
a sense a special case with one of the classes having zero expected proportion of false null.
However in Efron (2008) it is known which class each null hypothesis belongs to, whereas
here it is not. This is an important distinction and therefore to avoid confusing comparisons
of procedures, we do not label this model as a special case of the separate-class model.

Theorem 1 Consider the mixture model on two tiers with false null proportion π and
defective batch proportion λ. Under (7), as m → ∞ and k → ∞,

sensitivity(dBH) = R∗ − V ∗

n − n0

p→ F1(xα,π ), (10)

1 − ppv(dBH) = V ∗

R∗ ∨ 1
p→ α(λ − π)

1 − α + αλ
(11)

[< α(1 − π) when λ < 1].

What is interesting and somewhat surprising in the comparison of BH versus dBH in
Eqs. 8 and 10, is that dBH has the same asymptotic sensitivity as BH. That is, dBH provides
no improvement in sensitivity despite the clustering of signals. The comparison of Eq. 9
with Eq. 12 however shows that applying dBH results in higher ppv, that is, fewer false
discoveries.

The lack of sensitivity improvement of dBH over BH is due to the strictness of dBH
in rejecting null hypotheses within batches. A within-batch control level of α∗ = αS∗/m

(as opposed to α), where S∗ (as defined in the dBH procedure) is the number of batches
identified in the first application of dBH, is applied. Recall that a batch is identified if its
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batch p-value p∗
i does not exceed α∗. Let W ∗ of the identified batches be non-defective and

recall that V ∗
i is the number of false discoveries in batch i for 1 ≤ i ≤ m.

Theorem 2 Under the assumptions of Theorem 1, as m → ∞ and k → ∞,

W ∗

S∗ ∨ 1
p→ α(1 − λ), (12)

1

S∗ ∨ 1

∑
i∈D

V ∗
i

R∗
i ∨ 1

p→ α(λ − π). (13)

Equation 12 says that the dBH controls the

batch FDR := E

(
W ∗

S∗ ∨ 1

)

asymptotically. Equation 13 says that the average FDR in the defective batches is so small
that when added to Eq. 12, the control at level α is still satisfied asymptotically. In con-
trast when BH is applied, batch FDR is in general not controlled. This makes batch-based
inference difficult. We shall illustrate this point in Example 1 below. The proofs of Theo-
rems 1 and 2 are given in Appendices B and C respectively. Note that whereas Benjamini
and Bogomolov (2014) in their Theorem 1 and Section 5 have already shown such batch
FDR and average FDR control, Theorem 2 provides stronger conclusions as the decomposi-
tion in Eqs. 12 and 13 for the mixture model on two tiers allows us to appreciate the relative
contributions to the average FDR from the defective and non-defective batches.

3 Batch and Average FDR Control

In this section, we shall only assume that the true null p-values are independent, as opposed
to having a more restricted mixture model. We shall show in Theorem 3 that the average
FDR control of dBH at level α, as hinted by Eqs. 12 and 13, holds in general. Benjamini and
Bogomolov (2014, Theorem 3) extended (14) below to a wider class of testing procedures
and error criterions, albeit with the requirement that the set of all the p-values is positive
regression dependent on the subset of true null hypotheses. Our Theorem 3 requires only that
the true null p-values are i.i.d. Whereas Benjamini and Bogomolov applied the techniques
developed in Benjamini and Yekutieli (2001, 2005), we extend the reverse-time martingale
argument of Storey et al. (2004) to prove Theorem 3, see Appendix D.

Theorem 3 If the true null hypotheses have i.i.d. Uniform(0, 1) p-values, then the average
FDR

E

⎛
⎝ 1

S∗ ∨ 1

∑
i:R∗

i >0

V ∗
i

R∗
i

⎞
⎠

[
= E

(
W ∗

S∗ ∨ 1

)
+ E

(
1

S∗ ∨ 1

∑
i∈D

V ∗
i

R∗
i ∨ 1

)]

= α

m

m∑
i=1

ki0

ki

(≤ α), (14)

where ki0 refers to the number of true null hypotheses in batch i.
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Example 1 Consider m = 100 batches, each containing k = 1000 null hypotheses. Let the
p-value of the j th null hypothesis in batch i be given by

pij =
{

Φ(Zij − 4) if i = 1,
Φ(Zij ) if i > 1,

where Zij are i.i.d. standard normal random variables and Φ is the distribution function of
the standard normal. Thus only batch 1 contains false null hypotheses. From Fig. 1 left, we
see that when the BH is applied at control level α = .1, there are many batches containing
rejected null hypotheses. In contrast, we see from Fig. 1 right that dBH applied at the same
control level rejects only null hypotheses from batch 1.

4 Yekutieli’s Procedure for Hierarchical Datasets

Yekutieli (2008) proposed an extension of BH for application on multi-level hierarchical
datasets. For comparison purposes, we focus the discussion of his procedure on the batch
set-up, a two-level special case.

YEK procedure

1. Let p(1) ≤ · · · ≤ p(n) be the ordered p-values of the n null hypotheses in the m batches
and let the BH-adjusted p-value q = min1≤j≤n(np(j)/j).

2. (a) If q > α, then reject no null hypotheses and end here.
(b) If q ≤ α, then for i = 1, . . . , m:

i Let pi,(1) ≤ · · · ≤ pi,(ki ) be the ordered p-values of the null hypotheses
in batch i.

ii As in Eq. 2, let the BH-adjusted batch p-value p∗
i =

min1≤j≤ki
(kipi,(j)/j).

iii If p∗
i > α, then let RY

i = 0 and reject no null hypotheses in batch i.
iv If p∗

i ≤ α, then define

RY
i = max{j : kipi,(j)/j ≤ α},

and reject the null hypotheses correponding to the RY
i smallest p-values

in batch i.

Step 1 of YEK plays the important role of ensuring weak Type I error rate control at
level α. YEK is excellent for detecting clustered signals. This is formalized in the following.
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Fig. 1 Number (truncated to 5) of rejected null hypotheses when BH and dBH are applied at control level
α = .1. There are 100 batches of 1000 null hypotheses each and only batch 1 contains false null
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Note that by Eq. 5, assumption (15) below is satisfied if F1(x)/x is monotone decreasing
on (xα,π/λ − ε0, xα,π/λ].

Theorem 4 Consider the mixture model on two tiers with false null proportion π and
defective batch proportion λ. Assume that there exists ε0 > 0 such that

F1(xα,π/λ − ε)

xα,π/λ − ε
>

α−1 − 1

π/λ
+ 1 for 0 < ε < ε0. (15)

Then as m → ∞ and k → ∞,

sensitivity(YEK)
p→ F1(xα,π/λ), (16)

1 − ppv(YEK)
p→ α(1 − π/λ). (17)

In the comparison of Eq. 10 with Eq. 16, we see that the asymptotic sensitivity of dBH
is less than that of YEK, for xα,π/λ > xα,π when λ < 1. However YEK does not provide
batch FDR control, whereas Theorem 3 says that dBH does. The lack of batch control by
YEK is illustrated by the following.

Example 2 Consider m = n with ki = 1 for 1 ≤ i ≤ m. If the BH-adjusted p-value q ≤ α,
then all null hypotheses with p-values not exceeding α, as opposed to αR/n for BH, are
rejected by YEK. FDR is not controlled by YEK and since each p-value constitutes a batch,
batch FDR is not controlled as well.

The nice thing about the dBH versus YEK comparison above is that it teaches us how
to combine the strength of dBH (batch FDR control) with that of YEK (higher sensitivity).
The resulting hybrid is described below.

YEK–dBH procedure
Execute steps 1 and 2 of dBH, as laid out in Section 2. Replace step 3 of dBH by the

following.

3. (a) If p∗ > α: Let S∗ = 0. Reject no null hypotheses and end here.

(b) If p∗ ≤ α: Let S∗ = max
{
i : mp∗

(i)/i ≤ α
}
and α∗ = αS∗/m.

For i = 1, . . . , m:

i If p∗
i > α∗, then do not reject any null hypotheses from batch i and let

R∗Y
i = 0.

ii If p∗
i ≤ α∗, then let

R∗Y
i = max{j : kipi,(j)/j ≤ α},

and reject the null hypotheses corresponding to theR∗Y
i smallest p-values

in batch i.

The set of batches containing rejected null that is identified by dBH and YEK–dBH is
identical. Hence for dBH and YEK–dBH, the number of non-defective batches that have
been identified for null hypotheses rejections is W ∗, and their batch FDR are identical as
well. On the mixture model on two tiers, the asymptotic sensitivity and false discovery
proportion of YEK and YEK–dBH are identical, see Eqs. 16–19.
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Theorem 5 (a) The YEK–dBH procedure controls the batch FDR at level α. That is, under
the assumption that the true null hypotheses have i.i.d. Uniform(0,1) p-values,

E

(
W ∗

S∗ ∨ 1

)
≤ α.

(b) On the mixture model on two tiers, with false null proportion π and defective batch
proportion λ, if Eq. 15 holds, then

sensitivity(YEK–dBH)
p→ F1(xα,π/λ), (18)

1 − ppv(YEK–dBH)
p→ α(1 − π/λ). (19)

Example 3 Consider n = 322 null hypotheses that are divided into m = 32 batches, with
each batch containing k = 32 null hypotheses. Let m1 of the batches contain k1 false
null hypotheses each. This is the set of defective batches denoted by D. Let the remain-
ing batches contain only true null hypotheses. The false null p-values are distributed as
2�(−|Z + 3|), where Z ∼ N(0, 1).

Figure 2 summarizes the performances of BH, dBH, YEK and YEK–dBH on a simula-
tion study involving 1000 Monte Carlo repetitions for each plotted point. Figure 2 top left
shows that YEK and YEK–dBH have comparable sensitivity. Figure 2 top right and bottom
left show that the FDR and batch FDR of YEK–dBH are significantly smaller than that of
YEK, when there is signal clustering. Figure 2 also shows that of the four procedures only
BH controls FDR (top right), that dBH and YEK–dBH both control batch FDR (bottom
left), and that dBH controls average FDR (bottom right), at the specified control level of
α = .2.

5 FDR Analysis of Copy Number Aberrations

We illustrate here the application of dBH on the copy number aberrations (CNA) of chro-
mosome 1 of 207 glioblastoma subjects, in a dataset taken from The Cancer Genome Atlas
(TCGA) Project (The Cancer Genome Atlas 2008). The aberrations, differences in copy
numbers from the usual number of two, occur due to mutations of the chromosomes. Read-
ings from n = 42075 probes are taken from chromosome 1 of each subject, the objective
being to identify mutations that affect the onset of glioblastoma. The multi-subject aspect of
the study enables differentiation between passenger mutations, which are random events not
contributing to the onset of cancer, from driver mutations, which reside in ‘cancer genes’
and confer growth advantage to the cancer cell (Greenman et al. 2007; Haber and Settle-
man 2007). For example, neurofibromin 1 is a known human glioblastoma suppressor gene,
and its influence on the development of glioblastoma is detectable by negative CNA close
to this gene in multiple glioblastoma subjects. On the other hand the influence of AKT3, a
protein which promotes tumor cell survival and development, is detectable by positive CNA
in multiple tumor subjects.

Efron and Zhang (2011) proposed the estimation of local false discovery rates (fdr) on
multi-subject copy number datasets, by assuming a two-groups mixture model. The fdr was
estimated at each probe using information from the readings of all subjects at that probe. The
maximum fdr estimate was used as a summary statistic, with critical thresholds simulated
via block bootstrap. Positive and negative CNA were dealt with separately due to their
different scientific implications. Their study on the dataset was successful in identifying
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Fig. 2 Analysis of four multiple comparison procedures on 32 batches of 32 null hypotheses each, with m1
defective batches each containing k1 false null hypotheses, and the remaining batches containing only true
null. Clustered signals are associated with small m1 and large k1. The plots above are based on (m1, k1) =
(32, 1), (16,2), (8,4), (4,8), (2,16), (1,32), with control level set to α = .2

a short interval of probes 8850–8900 housing the cancer genes FAF1 and CDKN2C. The
number of subjects there with significant negative CNA was estimated to be around 10.

5.1 Application of BH

Unlike in Efron and Zhang (2011), we apply the more powerful higher-criticism test (cf.
Donoho and Jin 2004) to summarize the information on each probe across subjects. Let
� = 207 be the number of subjects and Zih, 1 ≤ h ≤ �, the z-scores at probe i. The
higher-criticism test statistic at probe i is

HCi = sup
z:Φ̄(z)≥�−1

#{h : Zih ≥ z} − �Φ̄(z)√
�Φ(z)[1 − Φ(z)] , (20)

where Φ̄(z) = 1 − Φ(z) is the upper tail probability of the standard normal. Let pi be the
one-sided p-value of HCi , which is estimated from 106 Monte Carlo repetitions.

We apply BH on p1, . . . , pn at control level α = .01. The number of rejected subjects
at probe i, when pi is significantly small, is given by the value of #{h : Zih ≥ z} when the
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argument in (20) is maximized. Figure 3 top left plots the number of rejections on the whole
chromosome, and Fig. 3 bottom left the number on the segment 8600–9000. We see that like
in Efron and Zhang (2011), the interval 8850–8900 is highlighted with around 10 subjects
estimated to have significant negative CNA. The figure on the bottom left also indicates that
at probes 8900+, there may be up to 30 subjects with significant negative CNA. This feature
is missing in the plots given in Efron and Zhang (2011).

5.2 Application of dBH

We apply dBH on the p-values by grouping them into m = 210 batches of 200 consecutive
p-values each, except for the last batch, which has 275 p-values. The batch division here
is based on the notion that a gene that is linked to cancer is likely to affect all probes
nearby, thereby resulting in the clustering of probe signals. Therefore edge effects aside,
the batching captures the idea of first localizing the source of the link within a stretch of
chromosomes (identifying a batch), before pin-pointing it more precisely (rejecting within
an identified batch). As in Section 5.1, a control level of α = .01 is applied. For easy
comparisons, we place the outputs for dBH to the right of the outputs of BH in Fig. 3. We
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Fig. 3 Number of subjects with significant negative CNA on the full chromosome using BH and dBH. The
cancer genes FAF1 and CDKN2C are located within probes 8850–8900
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see from the comparisons that using BH twice results in less noisy output, in general on
the full chromosome, and in particular on the shorter segment. The identified signal in the
segment of biological interest (probes 8850–8900+) is not reduced when dBH is applied.
These observations are consistent with the theoretical expectations arising from Eqs. 8–12.

5.3 Comparison of BH vs dBH

We see from Fig. 3 that significant probes come in clustered stretches. One possible expla-
nation for this is that proximity to the gene of interest is critical in the presence of a signal.
The dBH procedure takes advantage of this feature by re-organizing the one-dimensional
spatial dataset into a two-level hierarchical dataset, with BH applied to first highlight short
segments of probes, which are subsequently investigated by a second round of BH. In the
application of just one round of BH, the clustering information is wasted and the follow-up
investigation, with scattered false discoveries, is tricky.

6 Discussion

We show here that on two-level hierarchical datasets, the dBH procedure achieves both
batch FDR and average FDR control. To understand the operating characteristics of dBH,
we consider further the mixture model on two tiers to show that at the same control level,
dBH improves upon BH by reducing the number of false discoveries while maintaining
sensitivity. To achieve higher sensitivity, we propose a hybrid of dBH and Yekutieli’s pro-
cedure that combines the strengths of both. It should be emphasized however that (as our
simulation studies show) FDR control is not guaranteed on the procedures proposed here.

In principle we can deal with hierarchical datasets containing three or more levels by
applying BH repeatedly. Further studies are needed on this multi-level procedure to under-
stand the more complex dynamics involved. A potential pay-off would be a procedure that
can detect signals of multiple scales, when applied on spatial datasets.

Appendix

In the proofs below, we write Un

p∼ Vn to mean that Un/Vn
p→ 1 as n → ∞.

A Proofs of Eqs. 8 and 9

Since αR/n is the p-value rejection threshold when there are n null hypotheses, by Eq. 6
and the weak law of large numbers,

asymptotic sensitivity = lim
n→∞ Pn{hypothesis rejected|false null} = F1(xα,π ), (21)

and Eq. 8 holds. Since xα,π is the solution of Eq. 5,

asymptotic ppv = lim
n→∞ Pn{hypothesis false null|rejected} (22)

= πF1(xα,π )

πF1(xα,π ) + (1 − π)xα,π

= 1 − α(1 − π),

and Eq. 9 holds as well.
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B Proof of Theorem 1

The asymptotic sensitivity of dBH is the asymptotic within-batch sensitivity of a defective
batch. Since the within-batch false null proportion in a defective batch is π/λ, and the
within-batch control level is α∗, by the arguments in Eq. 21,

sensitivity(dBH)
p∼ F1(xα∗,π/λ),

and Eq. 10 follows from

xα∗,π/λ
p→ xα,π as m → ∞, k → ∞. (23)

To show Eq. 23, first note that by Eq. 4,

p∗
i

p→ 0 for i ∈ D,

keeping in mind that the distribution of p∗
i is identical over i ∈ D. For i �∈ D, p∗

i is
distributed as Uniform(0,1). Hence the set of batch p-values is asymptotically a mixture of
random variables having point mass at 0, with Uniform(0,1) random variables, in the ratio
λ : (1 − λ). By the arguments leading to Eq. 6, αS∗/m(= α∗) converges in probability to
the solution in x of

F ∗(x)

x
= α−1 − 1

λ
+ 1,

where F ∗ is the distribution function of the point mass at 0. In other words,

(α∗)−1 p→ α−1 − 1

λ
+ 1. (24)

By Eqs. 5 and 24,

F1(xα∗,π/λ)

xα∗,π/λ

= (α∗)−1 − 1

π/λ
+ 1

p→ α−1 − 1

π
+ 1 = F1(xα,π )

xα,π

. (25)

We then apply the regularity condition (7) to check that Eq. 23 follows from Eq. 25.
Because

∑
i �∈D R∗

i = op(n), the asymptotic ppv of dBH is equal to the asymptotic
within-batch ppv of a defective batch. The within-batch control level is α∗ and the false null
proportion of a defective batch is π/λ. Hence by the arguments in Eq. 22, the asymptotic
ppv of dBH is 1 − α∗(1 − π/λ). Replacing α∗ by its asymptotic value αλ

1−α+αλ
, see Eq. 24,

provides us with the weak convergence part of Eq. 12. The inequality part of Eq. 12 can be
easily verified.

C Proof of Theorem 2

For i �∈ D, the p-values pi1, . . . , piki
are i.i.d. Uniform(0,1) and hence the BH-adjusted

batch p-value p∗
i is Uniform(0,1), cf. Simes (1986). Moreover, since {pij : i �∈ D, 1 ≤ j ≤

ki} are independent, {p∗
i : i �∈ D} are independent as well. The relation (12) is then (9)

applied on the batch p-values, with λ the probability that a batch is defective (false null),
S∗ the number of identified (rejected) batches, and W ∗ the number of incorrectly identified
(rejected true null) batches.

To show Eq. 13, we first note that by Eq. 4, p∗ is asymptotically 0 and hence by step
3(b) of dBH,

Pπ,λ(S
∗ > 0, α∗ = αS∗/m) → 1. (26)
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Since #D ∼ Binomial(m, λ)
p∼ mλ, by Eq. 26,

#D

S∗ ∨ 1

p∼ #D

S∗
p∼ αλ

α∗ . (27)

We are able to conclude (13) after multiplying (27) with

1

#D

∑
i∈D

V ∗
i

R∗
i ∨ 1

p∼ α∗(1 − π/λ). (28)

To see (28), note that the within-batch control level is α∗ and the false null proportion of
a (defective) batch i ∈ D is π/λ. So by the arguments in Eq. 22,

1 − (ppv of batch i) = V ∗
i

R∗
i ∨ 1

p∼ α∗(1 − π/λ), i ∈ D,

and Eq. 28 follows.

D Proof of Theorem 3

The first equality of (14) follows from V ∗
i = R∗

i for i �∈ D and
∑

i �∈D 1{R∗
i >0} = W ∗. To

obtain the inequality part, assume without loss of generality that {pij : 1 ≤ i ≤ m, 1 ≤
j ≤ ki0} are the [i.i.d. Uniform(0,1)] true null p-values, and that the false null p-values
{pij : 1 ≤ i ≤ m, ki0 + 1 ≤ j ≤ ki} are known and positive. For i = 1, . . . , m and u = r�,
with 1 ≤ � ≤ ki and 1 ≤ r ≤ m, define

Vi(u) = #{j ≤ ki0 : pij ≤ αu/(mki)}. (29)

Double BH can be viewed as proceeding in the following manner.

1. Initialize with r = m.
2. Apply BH separately on each batch at control level αr

m
. Let Sr (≤ Sr+1 when r < m) be

the number of batches having one or more rejections.
3. (a) If Sr = r , then let S∗ = r and end here.

(b) If Sr < r , then decrease r by 1 and repeat step 2.

For 1 ≤ i ≤ m, the number of null hypotheses rejected in batch i at step S∗ is R∗
i , and

the corresponding p-value rejection threshold there is τi/(mki), where

τi = (S∗ ∨ 1)(R∗
i ∨ 1). (30)

By Doob’s optional sampling theorem and Eq. 29,

E

(
Vi(τi)

τi

)
= E

(
Vi(mki)

mki

)
= αki0

mki

. (31)

Sum (31) over i to get

E

(
m∑

i=1

Vi(τi)

τi

)
= α

m

m∑
i=1

ki0

ki

≤ α. (32)

Substitute Eq. 30 into Eq. 32 and replace Vi(τi) by V ∗
i for 1 ≤ i ≤ m to obtain the second

equality and inequality part of Eq. 14.
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E Proof of Theorem 4 and 5

Since π > 0, by Eq. 4 and the weak law of large numbers, with asymptotic probability 1,
q ≤ α and within-batch rejection proceeds. For YEK, the within-batch control level is α

and within a defective batch, the false null proportion is π/λ. The asymptotic sensitivity
of YEK is the asymptotic within-batch sensitivity of a defective batch, which is F1(xα,π/λ)

[(16) shown]. The asymptotic ppv of YEK is likewise the asymptotic within-batch ppv of a
defective batch, which is α(1−π/λ) [(17) shown]. Since

∑
i �∈D RY

i = op(n), the rejections
from non-defective batches are asymptotically negligible.

Theorem 4(a) follows easily from Eq. 14. In contrast to dBH, the within-batch control
level of YEK–dBH is α (as opposed to α∗), and hence as in YEK, the asymptotic sensitivity
and ppv of YEK–dBH are is the same as that of YEK [(18) and (19) shown].
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