Reductions and (resolvable) combinatorial designs

Goh Jun Le
Joint work with David Belanger, Damir Dzhafarov (ongoing)

Asian Logic Conference, Tianjin, China Oct 2023

Pigeonhole principle: If $m>n$, there is no injection $f: m \rightarrow n$.

View this as a problem:
$(m \nLeftarrow n)$

- Given an instance $f: m \rightarrow n$,
- a solution is any pair $i<j<m$ such that $f(i)=f(j)$.

Another relevant problem:
For fixed k, define:
id_{k}

- Given an instance $j \in[k]$,
- a solution is j itself.

Uniformly computable reductions between problems

A problem P is strongly Weihrauch reducible to a problem Q if there is a forward functional Φ and a backward functional Ψ such that:

- Given a name p for a P-instance,

$$
\Phi(p)
$$

names a Q-instance.

- Given a name q for any Q-solution of $\Phi(p)$,

$$
\Psi(q)
$$

names a P -solution to the P -instance named by p.
We write $\mathrm{P} \leq_{\mathrm{sW}} \mathrm{Q}$.
P is Weihrauch reducible to Q if the above holds with $\Psi(q)$ replaced by $\Psi(p, q)$. We write $\mathrm{P} \leq_{W} \mathrm{Q}$.

Basic facts

Proposition

 $\mathrm{id}_{2}<_{\mathrm{sW}} \mathrm{id}_{3}<_{\mathrm{sW}} \ldots$
Proposition

For each $n,(n+1 \nrightarrow n) \geq \mathrm{W}(n+2 \nrightarrow n) \geq \mathrm{W} \cdots$

Proposition

For each $n,(n+1 \nrightarrow n) \equiv_{\mathrm{sW}} \mathrm{id}_{\binom{n+1}{2}}$.
$\leq: \Phi(f)=\langle i, j\rangle$, where $i<j$ is the least pair such that $f(i)=f(j)$. $\Psi(\langle i, j\rangle)=\{i, j\}$.
\geq : For each pair $i<j$, there is a function $\Phi(\langle i, j\rangle): n+1 \rightarrow n$ such that $i<j$ is the unique pair with $f(i)=f(j)$.
$m \geq n^{2}$: The edge of id_{k} 's relevance

Proposition

 $\mathrm{id}_{2} \leq_{\mathrm{sW}}\left(n^{2} \nrightarrow n\right)$ but $\mathrm{id}_{2} \not_{\mathrm{sW}}\left(n^{2}+1 \nrightarrow n\right)$.$\Phi(1)$: Arrange n^{2} as an $n \times n$ grid and partition using vertical lines. $\Phi(2)$: Partition using horizontal lines instead. $\Psi(\{i, j\})$: Return 1 if i and j lie in the same vertical line, otherwise return 2.

Proof by contradiction: Given any two functions $\Phi(1), \Phi(2): n^{2}+1 \rightarrow n$, there is some pair $i \neq j$ such that

$$
\Phi(1)(i)=\Phi(1)(j) \quad \text { and } \quad \Phi(2)(i)=\Phi(2)(j) .
$$

(Apply pigeonhole twice.) So $\Psi(\{i, j\})$ equals both 1 and 2 .

More on $m=n^{2}$: Orthogonal Latin squares

1	2	3	4					
2	1	4	3					
3	4	1	2					
4	3	2	1	$+$	A	B	C	D
:---	:---	:---	:---					
C	D	A	B					
D	C	B	A					
B	A	D	C					
A1	B2	C3	D4					
C2	D1	A4	B3					
D3	C4	B1	A2					
B4	A3	D2	C1					

Picture from The 36 officers problem by Marianne Freiberger, published in Plus (terrible coloring by me)

The above shows $\mathrm{id}_{2+2}=\mathrm{id}_{4} \leq_{\mathrm{sW}}(16 \nrightarrow 4)$:

- Each of the two Latin squares on the left yields a partition of 16 into 4 classes (of size 4)
- We get two more partitions by considering columns and rows respectively
- From a solution (i.e., 2 out of 16 small squares) we can uniquely reconstruct which partition it "came from"

More on $m=n^{2}$: Mutually orthogonal Latin squares

The arguments on the previous slide can be extended as follows:

- Given k many $n \times n$ Latin squares which are mutually orthogonal, we can build a reduction from id_{k+2} to $\left(n^{2} \hookrightarrow n\right)$.
- Given a reduction from id_{k+2} to ($n^{2} \hookrightarrow n$), we can read off k mutually orthogonal $n \times n$ Latin squares.

Theorem

$\mathrm{id}_{k+2} \leq_{\mathrm{sW}}\left(n^{2} \nrightarrow n\right)$ if and only if there are k mutually orthogonal Latin squares of order n.

The number of mutually orthogonal Latin squares which may exist is unknown, for many values of n.

Corollary

$\mathrm{id}_{n+1} \leq_{\mathrm{sW}}\left(n^{2} \nrightarrow n\right)$ if and only if there is a finite affine plane of order n.
For many values of n, it is unknown whether there exists a finite affine plane of order n.

$m \leq 2 n$: Reductions using graph packings

A perfect matching on $2 n$ vertices corresponds to a function $2 n \rightarrow n$.

Proposition
 $\mathrm{id}_{2 n-1} \leq_{\mathrm{sW}}(2 n \nLeftarrow n)$.

Key fact: $K_{2 n}$ can be decomposed into $2 n-1$ perfect matchings.

1-factorization of K_{8}, David Eppstein

Similar results (of the form $\operatorname{id}_{k} \leq_{\mathrm{sW}}(m \nprec n)$ for $\left.n+1 \leq m \leq 2 n\right)$ can be obtained using:

- decompositions of K_{m} into almost perfect matchings
- decompositions of K_{m} into Hamiltonian cycles.
$m=q n, q \leq n$: Resolvable combinatorial designs
A resolvable balanced incomplete block design $(\operatorname{RBIBD}(m, q))$ is a family of distinct q-subsets (blocks) of [m] such that:
- each pair of distinct numbers from [m] is contained in exactly 1 block
- the set of blocks can be partitioned into partitions of [m] (each called a parallel class).

Example

A decomposition of $K_{2 n}$ into perfect matchings is an $\operatorname{RBIBD}(2 n, 2)$ where each perfect matching is a parallel class.

Proposition
 If there is some $\operatorname{RBIBD}(q n, q)$, then $\operatorname{id}_{\frac{q n-1}{q-1}} \leq_{\mathrm{sW}}(q n \nmid n)$.

(Elementary arguments prove that if there is some $\operatorname{RBIBD}(q n, q)$, then $q-1 \mid q n-1$ and $q \leq n$.)

A counting lemma

Using convexity we can prove:

Lemma

Each function $f: q n \rightarrow n$ has at least $n\binom{q}{2}$ solutions. Furthermore, if f has exactly $n\binom{q}{2}$ solutions, then $\left|f^{-1}(j)\right|=q$ for every $j<n$.

Theorem

There exists some $\operatorname{RBIBD}(q n, q)$ if and only if $\mathrm{id}_{\frac{q n-1}{q-1}} \leq_{\mathrm{sW}}(q n \nLeftarrow n)$.

The theorem generalizes our corollary on affine planes (which is the extreme case $q=n$).

The other extreme $(q=2)$ is the result which was proved by decomposing $K_{2 n}$ into perfect matchings.

More applications of the counting lemma

Lemma
$\mathrm{id}_{k} Z_{\mathrm{sw}}(q n \nrightarrow n)$ as long as $k>\frac{q n-1}{q-1}$.
Similar methods yield analogous nonreductions for ($m \nLeftarrow n$) even if n does not divide m.

Corollary

For all $n \geq 3,(n+2 \nrightarrow n) \ll_{\text {sW }} \operatorname{id}_{\binom{n+1}{2}} \equiv(n+1 \nrightarrow n)$.
Corollary
$(2 n+1 \nrightarrow n)<\mathrm{sW}(2 n \nrightarrow n)$.

$$
\begin{aligned}
& (n+1 \nLeftarrow n) \\
> & (n+2 \nrightarrow n) \\
\geq & (2 n \nLeftarrow n) \\
> & (2 n+1 \nrightarrow n) \\
\geq & \left(n^{2} \nLeftarrow n\right) \\
> & \left(n^{2}+1 \nrightarrow n\right) \\
\geq & \cdots
\end{aligned}
$$

Jump of $(m \nLeftarrow n)$: Motivations from reverse math
Theorem (Dimitracopoulos, Paris 1986; Hirst 1987)
Over RCA_{0}, TFAE:

- The infinite pigeonhole principle
- $(\forall n)\left(\right.$ there is no Σ_{2}^{0} injection $\left.f: n+1 \rightarrow n\right)$.

Theorem (Belanger, Chong, Wang, Wong, Yang 2021)
Over RCA_{0},

$$
\begin{gathered}
(\forall n)\left(\text { there is no } \Sigma_{2}^{0} \text { injection } f: 2 n \rightarrow n\right) \\
\nvdash(\forall n)\left(\text { there is no } \Sigma_{2}^{0} \text { injection } f: n+1 \rightarrow n\right) .
\end{gathered}
$$

They proved that $(\forall n)$ (there is no Σ_{2}^{0} injection $\left.f: 2 n \rightarrow n\right)$ characterizes the first-order theory of a variant of weak weak König's lemma.

Definition (Brattka, Gherardi, Marcone 2011)
For any problem P , the jump of P , denoted P^{\prime}, is the problem whose:

- instances are limit approximations to names of P-instances
- solutions are P -solutions to the limit P -instance.

> Example $\mathrm{id}_{k}^{\prime} \equiv_{\mathrm{sW}} \lim _{k}$

Proposition (Brattka, Gherardi, Marcone 2011)
For all problems P and Q , if $\mathrm{P} \leq_{s W} \mathrm{Q}$, then $\mathrm{P}^{\prime} \leq_{s W} \mathrm{Q}^{\prime}$.
The converse holds, but with continuous sW -reducibility $\leq_{\mathrm{sW}}^{\mathrm{c}}$:

> Theorem (essentially Brattka, Hölzl, Kuyper 2017) If $\mathrm{P} \not{Z}_{\mathrm{sW}}^{\mathrm{c}} \mathrm{Q}$, then $\mathrm{P}^{\prime} \mathbb{Z}_{\mathrm{sW}}^{\mathrm{c}} \mathrm{Q}^{\prime}$.

Lifting our previous results

All reductions $\mathrm{id}_{k} \leq_{\mathrm{sW}}(m \nrightarrow n)$ lift to $\lim _{k} \leq_{\mathrm{sW}}(m \nrightarrow n)^{\prime}$, even $\lim _{k} \leq_{\mathrm{W}}(m \nsim n)^{\prime}$. Same for nonreductions.

Theorem

TFAE:
(1) $\lim _{k} \leq \mathrm{W}(m \nrightarrow n)^{\prime}$
(2) $\lim _{k} \leq_{s W}(m \nLeftarrow n)^{\prime}$
(3) $\lim _{k} \leq_{\mathrm{sW}}^{\mathrm{c}}(m \nrightarrow n)^{\prime}$
(9) $\mathrm{id}_{k} \leq_{\mathrm{sW}}^{\mathrm{c}}(m \nrightarrow n)$
(5) $\mathrm{id}_{k} \leq_{\mathrm{sW}}(m \nLeftarrow n)$
$(1) \Rightarrow(2):$ Next slide.
$(3) \Rightarrow(4)$: Apply the theorem of Brattka, Hölzl, Kuyper.
$(4) \Rightarrow(5)$: Given a reduction, the forward and backward functionals are automatically continuous.
$(5) \Rightarrow(2)$: Apply the proposition of Brattka, Gherardi, Marcone.

Upgrading \leq_{W} to \leq_{sW}

Definition (Dorais, Dzhafarov, Hirst, Mileti, Shafer 2016)

A problem P is finitely tolerant if there is a partial computable function T such that given any two P -instances with finite difference, a bound after which they agree, and a P-solution of one of the instances, T computes a solution for the other.

Examples include $\mathrm{RT}_{k}^{n}, \mathrm{COH}, \lim _{X}$.

Lemma (Dzhafarov, G., Hirschfeldt, Patey, Pauly 2020)

Suppose

- all P- and Q-solutions lie in a fixed finite set
- any finite modification of a P-instance is still a P-instance
- P is finitely tolerant.

Then if $\mathrm{P} \leq_{W} \mathrm{Q}$, we have $\mathrm{P} \leq_{\mathrm{sW}} \mathrm{Q}$.
Apply the lemma with $\mathrm{P}=\lim _{k}$ and $\mathrm{Q}=(m \nsim n)^{\prime}$.

Weihrauch degree of $(m \nrightarrow n)^{\prime}: m=n^{2}+1$
Recall: $\operatorname{id}_{2} \not_{\mathrm{sW}}\left(n^{2}+1 \nrightarrow n\right)$. So $\lim _{2} \not_{\mathrm{W}}\left(n^{2}+1 \nrightarrow n\right)^{\prime}$. More is true:
All-or-unique choice $\mathrm{Ao}_{\mathrm{ol}}^{\boldsymbol{k}} \mathrm{C}_{\text {is }} \mathrm{C}_{k}$ restricted to $\{k\} \cup\{\{i\}: i \in k\}$.

Fact

$\mathrm{AoUC}_{k}<\mathrm{w} \lim _{2}$ (LPO, even).

Proposition

$\operatorname{AoUC}_{\binom{n+1}{2}+1} \mathbb{Z W}_{\mathrm{W}}\left(n^{2}+1 \nrightarrow n\right)^{\prime}$.
Our AoUC-instance pretends to be "all" until Ψ commits on "enough" pairs, then diagonalizes against Ψ 's outputs on said pairs. We can arrange "enough" so that some pair persists as a solution after diagonalization.

Weihrauch degree of $(m \nLeftarrow n)^{\prime}: m=n^{3}$ and more

All-or-co-unique choice ACC_{k} is $\mathrm{C}_{k} \upharpoonright\{k\} \cup\{k-\{i\}: i<k\}$.

$$
\mathrm{C}_{2} \equiv_{\mathrm{W}} \mathrm{ACC}_{2}>_{\mathrm{W}} \mathrm{ACC}_{3}>_{\mathrm{W}} \ldots \quad \text { (Weihrauch) }
$$

Proposition

$\mathrm{ACC}_{k} \leq_{\mathrm{W}}\left(n^{k+1} \nrightarrow n\right)^{\prime}$ but $\mathrm{ACC}_{k} \not \mathbb{Z}_{\mathrm{W}}\left(n^{k+1}+1 \nrightarrow n\right)^{\prime}$.

So we have separations at n^{3}, n^{4}, \ldots, in addition to $n+1,2 n, n^{2}$:

Corollary

For all $\ell \geq 3,\left(n^{\ell}+1 \nLeftarrow n\right)^{\prime}<_{W}\left(n^{\ell} \nLeftarrow n\right)^{\prime}$.
Therefore, $\left(n^{\ell}+1 \nLeftarrow n\right)<_{\mathrm{sW}}\left(n^{\ell} \nrightarrow n\right)$.

Fun sidenote

Could we perhaps prove the nonreductions

$$
\begin{aligned}
\operatorname{AoUC}_{\binom{n+1}{2}+1} & \not \mathrm{LW}_{\mathrm{W}}\left(n^{2}+1 \nrightarrow n\right)^{\prime} \\
\mathrm{ACC}_{k} & \not \mathbb{Z}_{\mathrm{W}}\left(n^{k+1}+1 \nrightarrow n\right)^{\prime}
\end{aligned}
$$

by lifting some nonreduction of the form

$$
\mathrm{P} \not \mathbb{L}_{\mathrm{sW}}\left(n^{k}+1 \nLeftarrow n\right) ?
$$

No: $\operatorname{AoUC}\binom{n+1}{2}+1$ and ACC_{k} do not bound any noncomputable P^{\prime}.
(The same is true more generally of LPO.)

An adhoc reduction: $C_{3} \leq_{W}(8 \nLeftarrow 2)^{\prime}$

From before we know $\mathrm{C}_{2} \leq_{\mathrm{W}}(8 \nrightarrow 2)^{\prime}$. We improve this to
Theorem
$\mathrm{C}_{3} \leq \mathrm{W}(8 \nrightarrow 2)^{\prime}$.

For each initial segment of a given name for a C_{3}-instance, we represent the information so far as a string:
\emptyset (nothing has entered the complement so far), or
a (a has entered the complement), or
$a b$ (a has entered the complement, followed by b) $a b$ is different from $b a$!

Definition of Φ witnessing $C_{3} \leq_{W}(8 \nLeftarrow 2)^{\prime}$

$$
\begin{aligned}
f_{\emptyset} & =(1234)(5678) \\
f_{1} & =(1256)(3478) \\
f_{12}=f_{21} & =(1278)(3456) \\
f_{3}=f_{13} & =(1458)(2367) \\
f_{2}=f_{32} & =(1357)(2468) \\
f_{23} & =(1368)(2457) \\
f_{31} & =(1467)(2358)
\end{aligned}
$$

What should $\Psi(p,\{1,7\})$ do?

- $\{1,7\}$ is a solution of $f_{12}, f_{21}, f_{2}, f_{32}, f_{31}$.
- So $\Psi(p,\{1,7\})$ can wait for the first number to appear in p.
- If the first number is 1 or $2, \Psi$ can answer 3 .
- If the first number is $3, \Psi$ knows that a second number (1 or 2) will appear in p. So ψ can wait for the second number and answer accordingly.

Definition of $\Psi(p,\{i, j\})$ witnessing $C_{3} \leq_{W}(8 \nLeftarrow 2)^{\prime}$
$\{i, j\} \quad$ Possible $\lim \Phi(p) \quad \Psi$'s action

$\{1,2\}$	$f_{6}, f_{1}, f_{12}, f_{21}$	Output 3
$\{1,3\}$	$f_{6}, f_{2}, f_{32}, f_{23}$	Output 1
$\{1,4\}$	$f_{\emptyset}, f_{3}, f_{13}, f_{31}$	Output 2

$\{1,5\} \quad f_{1}, f_{3}, f_{13}, f_{2}, f_{32} \quad 1$ in $p \rightarrow$ output 2
2 or 3 in $p \rightarrow$ output 1
$\{1,6\} \quad f_{1}, f_{23}, f_{31} \quad 1$ or 3 in $p \rightarrow$ output 2
2 in $p \rightarrow$ output 1
$\{1,7\} \quad f_{12}, f_{21}, f_{2}, f_{32}, f_{31} \quad 1$ or 2 in $p \rightarrow$ output 3
31 in $p \rightarrow$ output 2
32 in $p \rightarrow$ output 1
$\{1,8\} \quad f_{12}, f_{21}, f_{3}, f_{13}, f_{23} \quad 3$ in $p \rightarrow$ output 1
12 or 21 in $p \rightarrow$ output 3
13 in $p \rightarrow$ output 2
23 in $p \rightarrow$ output 1

