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Pigeonhole principle: If m > n, there is no injection f : m — n.

View this as a problem:

(m % n)
@ Given an instance f : m — n,

@ a solution is any pair i < j < m such that f(i) = f(j).

Another relevant problem:
For fixed k, define:

idy
e Given an instance j € [k],

@ a solution is j itself.
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Uniformly computable reductions between problems

A problem P is strongly Weihrauch reducible to a problem Q if there is a
forward functional ® and a backward functional W such that:

@ Given a name p for a P-instance,

®(p)

names a Q-instance.

@ Given a name q for any Q-solution of ®(p),

V(q)

names a P-solution to the P-instance named by p.
We write P <,w Q.

P is Weihrauch reducible to Q if the above holds with W(gq) replaced by
V(p, q). We write P <yw Q.
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Basic facts

Proposition
idy <gw id3 <gw - ..

Proposition
Foreachn, (n+1% n)>w (n+2% n) >w ...

Proposition
For each n, (n+ 1 % n) =w id(n+1).
2

<: ®(f) = (i,j), where i < j is the least pair such that f(i) = f(j).

V(i) = {i.J}-

>: For each pair i < j, there is a function ®((i,j)) : n+ 1 — n such that
i < j is the unique pair with (i) = f(j).
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m > n?: The edge of idy’s relevance

Proposition
idy <gw (n2 §L> n) but id» ﬁsw (n2 +1 ‘7L> n). J

®(1): Arrange n? as an n x n grid and partition using vertical lines.

®(2): Partition using horizontal lines instead.

W({i,j}): Return 1 if i and j lie in the same vertical line, otherwise return
2.

Proof by contradiction: Given any two functions ®(1),®(2) : n> +1 — n,
there is some pair i # j such that

o(1)(7) = ¢(1)(j) and  ®(2)(7) = (2)())-

(Apply pigeonhole twice.) So W({/, }) equals both 1 and 2.
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More on m = n?: Orthogonal Latin squares

i 2131 4 AlB|C|D Al | B2 | C3 | D4
2 |1 4 13 c|D|aAa|B C2|D1l | A4 |B3
3141 2 i DlC|B | A i D3| C4| Bl | A2
4 13|21 BlA|[D]|C B4 | A3 | D2 | C1

Picture from The 36 officers problem by Marianne Freiberger, published in Plus (terrible coloring by me)

The above shows idajo = ids <qw (16 4 4):

@ Each of the two Latin squares on the left yields a partition of 16 into
4 classes (of size 4)

@ We get two more partitions by considering columns and rows
respectively

@ From a solution (i.e., 2 out of 16 small squares) we can uniquely
reconstruct which partition it “came from”
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More on m = n?: Mutually orthogonal Latin squares
The arguments on the previous slide can be extended as follows:

@ Given k many n x n Latin squares which are mutually orthogonal, we
can build a reduction from idy 5 to (n? & n).

e Given a reduction from idx2 to (n? ¥ n), we can read off k
mutually orthogonal n x n Latin squares.

Theorem

idxy2 <sw (n? % n) if and only if there are k mutually orthogonal Latin
squares of order n.

The number of mutually orthogonal Latin squares which may exist is
unknown, for many values of n.

Corollary
idny 1 <sw (n? % n) if and only if there is a finite affine plane of order n. J

For many values of n, it is unknown whether there exists a finite affine
plane of order n.
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m < 2n: Reductions using graph packings

A perfect matching on 2n vertices corresponds to a function 2n — n.

Proposition
idzn_l SsW (2/7 ‘7L> n).

Key fact: Kp, can be decomposed into
2n — 1 perfect matchings.

1-factorization of Kg, David Eppstein

Similar results (of the form idx <qw (m < n) for n+1 < m < 2n) can be

obtained using:
@ decompositions of K, into almost perfect matchings

@ decompositions of K, into Hamiltonian cycles.
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https://commons.wikimedia.org/w/index.php?curid=15982357

m = gn, g < n: Resolvable combinatorial designs
A resolvable balanced incomplete block design (RBIBD(m, q)) is a family
of distinct g-subsets (blocks) of [m] such that:

@ each pair of distinct numbers from [m] is contained in exactly 1 block

@ the set of blocks can be partitioned into partitions of [m] (each called
a parallel class).

Example

A decomposition of K, into perfect matchings is an RBIBD(2n,2) where
each perfect matching is a parallel class.

Proposition
If there is some RBIBD(gn, q), then idan—1 <sw (gn ¥ n).
q—1

(Elementary arguments prove that if there is some RBIBD(gn, g), then
g—1|gn—1and g <n.)
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A counting lemma

Using convexity we can prove:

Lemma

Each function f : qn — n has at least n(§) solutions. Furthermore, if f
has exactly n(§) solutions, then |f~1(j)| = q for every j < n.

Theorem
There exists some RBIBD(qn, q) if and only if idgn—1 <qw (gn ¥ n).
q—1

The theorem generalizes our corollary on affine planes (which is the
extreme case g = n).

The other extreme (g = 2) is the result which was proved by decomposing
Ka,, into perfect matchings.
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More applications of the counting lemma

qn—1
-1 -

Lemma
idg Lsw (gn < n) as long as k > J

q

Similar methods yield analogous nonreductions for (m %+ n) even if n does
not divide m.

Corollary
For all n >3, (n+2 % n) <sw id(n+1) =(n+1% n).
2

Corollary

(2n+1 % n) <gw (2n % n).
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So we know at least
(for n > 3):

vV VvV IV V
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Jump of (m < n): Motivations from reverse math

Theorem (Dimitracopoulos, Paris 1986; Hirst 1987)
Over RCAg, TFAE:

e The infinite pigeonhole principle
o (Vn)(there is no X3 injection f : n+1 — n).

Theorem (Belanger, Chong, Wang, Wong, Yang 2021)
Over RCAy,

(Vn)(there is no X3 injection f : 2n — n)

¥ (Vn)(there is no X3 injection f : n+1 — n).

They proved that (Vn)(there is no ¥9 injection f : 2n — n) characterizes
the first-order theory of a variant of weak weak Konig's lemma.
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Definition (Brattka, Gherardi, Marcone 2011)

For any problem P, the jump of P, denoted P/, is the problem whose:

@ instances are limit approximations to names of P-instances

@ solutions are P-solutions to the limit P-instance.

Example

id), =qw limg.

Proposition (Brattka, Gherardi, Marcone 2011)
For all problems P and Q, if P <sw Q, then P’ <,w Q.

The converse holds, but with continuous sW-reducibility <f:

Theorem (essentially Brattka, Holzl, Kuyper 2017)
IfP £8 Q, then P’ 25, Q.
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Lifting our previous results

All reductions 1dk <sw (m < n) lift to limy <gw (m ¥ n)’, even
lime <w (m % n)’. Same for nonreductions.

Theorem

TFAE:
Q limg <w (m < n)
Q limy <sw (m % n)’
Q limy <&y (m % n)
Q idx <G (m % n)
Q idx <sw (m % n)

(1) = (2): Next slide.

(3) = (4): Apply the theorem of Brattka, Holzl, Kuyper.

(4) = (5): Given a reduction, the forward and backward functionals are
automatically continuous.

(5) = (2): Apply the proposition of Brattka, Gherardi, Marcone.
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Upgrading <w to <sw

Definition (Dorais, Dzhafarov, Hirst, Mileti, Shafer 2016)

A problem P is finitely tolerant if there is a partial computable function T
such that given any two P-instances with finite difference, a bound after

which they agree, and a P-solution of one of the instances, T computes a
solution for the other.

Examples include RT}, COH, limx.

Lemma (Dzhafarov, G., Hirschfeldt, Patey, Pauly 2020)
Suppose
@ all P- and Q-solutions lie in a fixed finite set

@ any finite modification of a P-instance is still a P-instance
o P is finitely tolerant.

Then if P <y Q, we have P <,w Q.

Apply the lemma with P = limy and Q = (m < n)'.
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Weihrauch degree of (m & n)’: m=n*+1
Recall: idy Zew (n® +1 % n). So limy £w (n® +1 % n)’. More is true:

All-or-unique choice AoUCy is Cy restricted to {k} U{{i} : i € k}.

Fact

AoUCy <w limy (LPO, even). J
Proposition

AOUC(n;rl)+1 Lw (n2 + 15 n)’. J

Our AoUC-instance pretends to be “all” until ¥ commits on “enough”
pairs, then diagonalizes against W's outputs on said pairs. We can arrange
“enough” so that some pair persists as a solution after diagonalization.
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Weihrauch degree of (m + n)’: m = n® and more

All-or-co-unique choice ACCy is Ci [ {k} U {k — {i} : i < k}.
Co =w ACCy >w ACCs >w ... (Weihrauch)

Proposition
ACCy <w (nk*1 <4 n)" but ACCy %Lw (n 1414 n). J

So we have separations at n3, n*, ..., in addition to n+ 1, 2n, n*:
Corollary

For all £ >3, (n® + 1% n) <w (n < n)'.
Therefore, (n® +1 # n) <gsw (n % n).
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Fun sidenote

Could we perhaps prove the nonreductions
AOUC(miny y Ew (n® + 1% n)
ACCy Zw (n*T1 1 4 n)
by lifting some nonreduction of the form
P Zaw (n* +1 % n)?

No: AOUC(n+1)+1 and ACCy do not bound any noncomputable P’.
2

(The same is true more generally of LPO.)
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An adhoc reduction: C3 <w (8 + 2)’

From before we know Cy <w (8 < 2)'. We improve this to

Theorem
Cs <w (84 2)". J

For each initial segment of a given name for a Csz-instance, we represent
the information so far as a string:

() (nothing has entered the complement so far), or
a (a has entered the complement), or
ab (a has entered the complement, followed by b)

ab is different from bal
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Definition of ® witnessing C3 <y (8 > 2)’

/ \ fi = (1256)(3478
fir = fo = (1278)(3456

0 fo = (1234)(5678)
(3478)
! (3456)
f3 = fi3 = (1458)(2367)

(2468)

(2457)

(2358)

/ \ /\ /\ f = f3o = (1357)(2468
12 21

31 32 f3 = (1368)(2457
f1 = (1467)(2358
What should W(p,{1,7}) do?
e {1,7} is a solution of fi, 1, f, f32, f31.
@ So W(p,{1,7}) can wait for the first number to appear in p.
o If the first number is 1 or 2, W can answer 3.

o If the first number is 3, ¥ knows that a second number (1 or 2) will
appear in p. So W can wait for the second number and answer
accordingly. Thanks!
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Definition of W(p, {/, j}) witnessing C3 <y (8 > 2)’
{i,j}  Possible lim®(p)  W's action

{1,2}y fy, A, f2, fu Output 3
11,3} fy, h, f2, f3 Output 1
{1,4} £y, £, fi3, fa1 Output 2

{1,5} A, f3, fi3, h, f32 1in p — output 2
2or3in p — output 1
{1,6} £, fa3, f31 lor3in p — output 2
2in p — output 1
{1,7} fi2, fo1, f, f32, 31 1 or 2 in p — output 3
31 in p — output 2
32 in p — output 1
{1,8} fi2, fa1, f3, f13, b3 3in p — output 1
12 or 21 in p — output 3
13 in p — output 2
23 in p — output 1
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