Reductions and (resolvable) combinatorial designs

Goh Jun Le Joint work with David Belanger, Damir Dzhafarov (ongoing)

Asian Logic Conference, Tianjin, China Oct 2023

Pigeonhole principle: If m > n, there is no injection $f : m \rightarrow n$.

View this as a problem:

 $(m \not\leftrightarrow n)$

- Given an instance $f: m \rightarrow n$,
- a solution is any pair i < j < m such that f(i) = f(j).

Another relevant problem: For fixed k, define:

id_k

- Given an instance $j \in [k]$,
- a solution is j itself.

Uniformly computable reductions between problems

A problem P is strongly Weihrauch reducible to a problem Q if there is a forward functional Φ and a backward functional Ψ such that:

• Given a name *p* for a P-instance,

$\Phi(p)$

names a Q-instance.

• Given a name q for any Q-solution of $\Phi(p)$,

$\Psi(q)$

names a P-solution to the P-instance named by p. We write $P \leq_{sW} Q$.

P is Weihrauch reducible to Q if the above holds with $\Psi(q)$ replaced by $\Psi(p,q)$. We write $P \leq_W Q$.

Basic facts

Proposition

 $\operatorname{id}_2 <_{\mathrm{sW}} \operatorname{id}_3 <_{\mathrm{sW}} \ldots$

Proposition

For each n, $(n + 1 \not\hookrightarrow n) \ge_{\mathrm{W}} (n + 2 \not\hookrightarrow n) \ge_{\mathrm{W}} \ldots$

Proposition

For each n,
$$(n + 1 \not\leftrightarrow n) \equiv_{\mathrm{sW}} \mathrm{id}_{\binom{n+1}{2}}$$
.

 $\leq: \Phi(f) = \langle i, j \rangle, \text{ where } i < j \text{ is the least pair such that } f(i) = f(j). \\ \Psi(\langle i, j \rangle) = \{i, j\}.$

≥: For each pair i < j, there is a function $\Phi(\langle i, j \rangle)$: $n + 1 \rightarrow n$ such that i < j is the unique pair with f(i) = f(j).

$m \ge n^2$: The edge of id_k 's relevance

Proposition

$$\operatorname{id}_2 \leq_{\mathrm{sW}} (n^2 \not\hookrightarrow n) \text{ but } \operatorname{id}_2 \not\leq_{\mathrm{sW}} (n^2 + 1 \not\hookrightarrow n).$$

 $\Phi(1)$: Arrange n^2 as an $n \times n$ grid and partition using vertical lines. $\Phi(2)$: Partition using horizontal lines instead. $\Psi(\{i, j\})$: Return 1 if *i* and *j* lie in the same vertical line, otherwise return 2.

Proof by contradiction: Given any two functions $\Phi(1), \Phi(2) : n^2 + 1 \rightarrow n$, there is some pair $i \neq j$ such that

$$\Phi(1)(i) = \Phi(1)(j)$$
 and $\Phi(2)(i) = \Phi(2)(j)$.

(Apply pigeonhole twice.) So $\Psi(\{i, j\})$ equals both 1 and 2.

More on $m = n^2$: Orthogonal Latin squares

Picture from The 36 officers problem by Marianne Freiberger, published in Plus (terrible coloring by me)

The above shows $id_{2+2} = id_4 \leq_{sW} (16 \not\hookrightarrow 4)$:

- Each of the two Latin squares on the left yields a partition of 16 into 4 classes (of size 4)
- We get two more partitions by considering columns and rows respectively
- From a solution (i.e., 2 out of 16 small squares) we can uniquely reconstruct which partition it "came from"

More on $m = n^2$: Mutually orthogonal Latin squares

The arguments on the previous slide can be extended as follows:

- Given k many $n \times n$ Latin squares which are mutually orthogonal, we can build a reduction from id_{k+2} to $(n^2 \nleftrightarrow n)$.
- Given a reduction from id_{k+2} to $(n^2 \nleftrightarrow n)$, we can read off k mutually orthogonal $n \times n$ Latin squares.

Theorem

 $\mathrm{id}_{k+2} \leq_{\mathrm{sW}} (n^2 \not\hookrightarrow n)$ if and only if there are k mutually orthogonal Latin squares of order n.

The number of mutually orthogonal Latin squares which may exist is unknown, for many values of n.

Corollary

 $\operatorname{id}_{n+1} \leq_{\mathrm{sW}} (n^2 \not\hookrightarrow n)$ if and only if there is a finite affine plane of order n.

For many values of n, it is unknown whether there exists a finite affine plane of order n.

D. Belanger, D. Dzhafarov, J. L. Goh*

$m \leq 2n$: Reductions using graph packings

A perfect matching on 2n vertices corresponds to a function $2n \rightarrow n$.

Proposition $\operatorname{id}_{2n-1} \leq_{\mathrm{sW}} (2n \not\leftrightarrow n).$

Key fact: K_{2n} can be decomposed into 2n-1 perfect matchings.

1-factorization of K_8 , David Eppstein

Similar results (of the form $id_k \leq_{sW} (m \nleftrightarrow n)$ for $n + 1 \leq m \leq 2n$) can be obtained using:

- decompositions of K_m into almost perfect matchings
- decompositions of K_m into Hamiltonian cycles.

 $m = qn, q \leq n$: Resolvable combinatorial designs

A resolvable balanced incomplete block design (RBIBD(m, q)) is a family of distinct q-subsets (blocks) of [m] such that:

- each pair of distinct numbers from [m] is contained in exactly 1 block
- the set of blocks can be partitioned into partitions of [m] (each called a parallel class).

Example

A decomposition of K_{2n} into perfect matchings is an RBIBD(2n, 2) where each perfect matching is a parallel class.

Proposition

If there is some
$$\mathsf{RBIBD}(qn, q)$$
, then $\operatorname{id}_{\frac{qn-1}{q-1}} \leq_{\mathrm{sW}} (qn \not\leftrightarrow n)$.

(Elementary arguments prove that if there is some RBIBD(qn, q), then $q-1 \mid qn-1$ and $q \leq n$.)

A counting lemma

Using convexity we can prove:

Lemma

Each function $f : qn \rightarrow n$ has at least $n\binom{q}{2}$ solutions. Furthermore, if f has exactly $n\binom{q}{2}$ solutions, then $|f^{-1}(j)| = q$ for every j < n.

Theorem

There exists some RBIBD(qn, q) if and only if $\operatorname{id}_{\frac{qn-1}{q-1}} \leq_{sW} (qn \not\leftrightarrow n)$.

The theorem generalizes our corollary on affine planes (which is the extreme case q = n).

The other extreme (q = 2) is the result which was proved by decomposing K_{2n} into perfect matchings.

More applications of the counting lemma

Lemma

$$\mathrm{id}_k \not\leq_{\mathrm{sW}} (qn \not\hookrightarrow n)$$
 as long as $k > rac{qn-1}{q-1}$.

Similar methods yield analogous nonreductions for $(m \not\leftrightarrow n)$ even if *n* does not divide *m*.

Corollary

For all
$$n \ge 3$$
, $(n + 2 \not\leftrightarrow n) <_{sW} id_{\binom{n+1}{2}} \equiv (n + 1 \not\leftrightarrow n)$.

Corollary

 $(2n+1 \not\hookrightarrow n) <_{sW} (2n \not\hookrightarrow n).$

So we know at least (for $n \ge 3$):

$$(n + 1 \not\leftrightarrow n)$$

> $(n + 2 \not\leftrightarrow n)$
> $(2n \not\leftrightarrow n)$
> $(2n + 1 \not\leftrightarrow n)$
> $(n^2 \not\leftrightarrow n)$
> $(n^2 + 1 \not\leftrightarrow n)$
> ...

Jump of $(m \not\leftrightarrow n)$: Motivations from reverse math

Theorem (Dimitracopoulos, Paris 1986; Hirst 1987) *Over* RCA₀, *TFAE*:

- The infinite pigeonhole principle
- $(\forall n)$ (there is no Σ_2^0 injection $f : n + 1 \rightarrow n$).

Theorem (Belanger, Chong, Wang, Wong, Yang 2021) Over RCA_0 ,

> $(\forall n)(there is no \Sigma_2^0 injection f : 2n \to n)$ $\nvdash (\forall n)(there is no \Sigma_2^0 injection f : n + 1 \to n).$

They proved that $(\forall n)$ (there is no Σ_2^0 injection $f : 2n \to n$) characterizes the first-order theory of a variant of weak weak König's lemma.

Definition (Brattka, Gherardi, Marcone 2011)

For any problem P, the jump of P, denoted P', is the problem whose:

- instances are limit approximations to names of P-instances
- solutions are P-solutions to the limit P-instance.

Example

 $\operatorname{id}_k' \equiv_{\mathrm{sW}} \lim_{k \to \infty} k$.

Proposition (Brattka, Gherardi, Marcone 2011)

For all problems P and Q, if $P \leq_{sW} Q$, then $P' \leq_{sW} Q'$.

The converse holds, but with continuous sW-reducibility \leq_{sW}^{c} :

Theorem (essentially Brattka, Hölzl, Kuyper 2017)

If $P \not\leq_{sW}^{c} Q$, then $P' \not\leq_{sW}^{c} Q'$.

Lifting our previous results

All reductions $\operatorname{id}_k \leq_{\mathrm{sW}} (m \not\leftrightarrow n)$ lift to $\lim_k \leq_{\mathrm{sW}} (m \not\leftrightarrow n)'$, even $\lim_k \leq_{\mathrm{W}} (m \not\leftrightarrow n)'$. Same for nonreductions.

Theorem

TFAE:

- $Iim_k \leq_{\mathrm{W}} (m \not\hookrightarrow n)'$
- $2 \lim_k \leq_{\mathrm{sW}} (m \not\hookrightarrow n)'$
- $\textbf{3} \ \lim_k \leq^{\mathrm{c}}_{\mathrm{sW}} (\textit{m} \not\hookrightarrow \textit{n})'$
- $\ \, {\rm id}_k \leq^{\rm c}_{\rm sW} (m \not\hookrightarrow n)$
- $I id_k \leq_{\mathrm{sW}} (m \not\hookrightarrow n)$

(1) \Rightarrow (2): Next slide.

 $(3) \Rightarrow (4)$: Apply the theorem of Brattka, Hölzl, Kuyper.

(4) \Rightarrow (5): Given a reduction, the forward and backward functionals are automatically continuous.

(5) \Rightarrow (2): Apply the proposition of Brattka, Gherardi, Marcone.

Upgrading \leq_W to \leq_{sW}

Definition (Dorais, Dzhafarov, Hirst, Mileti, Shafer 2016)

A problem P is finitely tolerant if there is a partial computable function T such that given any two P-instances with finite difference, a bound after which they agree, and a P-solution of one of the instances, T computes a solution for the other.

Lemma (Dzhafarov, G., Hirschfeldt, Patey, Pauly 2020)

Suppose

- all P- and Q-solutions lie in a fixed finite set
- any finite modification of a P-instance is still a P-instance
- P is finitely tolerant.

Then if $P \leq_W Q$, we have $P \leq_{sW} Q$.

Apply the lemma with $P = \lim_k \text{ and } Q = (m \not\leftrightarrow n)'$.

Weihrauch degree of $(m \nleftrightarrow n)'$: $m = n^2 + 1$

Recall: $id_2 \not\leq_{sW} (n^2 + 1 \not\leftrightarrow n)$. So $\lim_2 \not\leq_W (n^2 + 1 \not\leftrightarrow n)'$. More is true:

All-or-unique choice AoUC_k is C_k restricted to $\{k\} \cup \{\{i\} : i \in k\}$.

Fact AoUC_k $<_{\rm W}$ lim₂ (LPO, even).

Proposition

$$\operatorname{AoUC}_{\binom{n+1}{2}+1} \not\leq_{\mathrm{W}} (n^2 + 1 \not\hookrightarrow n)'.$$

Our AoUC-instance pretends to be "all" until Ψ commits on "enough" pairs, then diagonalizes against Ψ 's outputs on said pairs. We can arrange "enough" so that some pair persists as a solution after diagonalization.

Weihrauch degree of $(m \nleftrightarrow n)'$: $m = n^3$ and more

All-or-co-unique choice ACC_k is $C_k \upharpoonright \{k\} \cup \{k - \{i\} : i < k\}$.

$$\mathsf{C}_2 \equiv_{\mathrm{W}} \mathsf{ACC}_2 >_{\mathrm{W}} \mathsf{ACC}_3 >_{\mathrm{W}} \dots \qquad (\mathsf{Weihrauch})$$

Proposition

 $ACC_k \leq_W (n^{k+1} \not\hookrightarrow n)' \text{ but } ACC_k \not\leq_W (n^{k+1} + 1 \not\hookrightarrow n)'.$

So we have separations at n^3 , n^4 , ..., in addition to n + 1, 2n, n^2 :

Corollary

$$\begin{array}{l} \text{For all } \ell \geq 3, \ (n^{\ell} + 1 \not\hookrightarrow n)' <_{\mathrm{W}} (n^{\ell} \not\hookrightarrow n)'. \\ \text{Therefore, } (n^{\ell} + 1 \not\hookrightarrow n) <_{\mathrm{sW}} (n^{\ell} \not\hookrightarrow n). \end{array}$$

Fun sidenote

Could we perhaps prove the nonreductions

$$\begin{array}{l} \operatorname{AoUC}_{\binom{n+1}{2}+1} \not\leq_{\mathrm{W}} (n^2 + 1 \not\hookrightarrow n)' \\ \operatorname{ACC}_k \not\leq_{\mathrm{W}} (n^{k+1} + 1 \not\hookrightarrow n)' \end{array}$$

by lifting some nonreduction of the form

$$\mathsf{P} \not\leq_{\mathrm{sW}} (n^k + 1 \not\hookrightarrow n)?$$

No: AoUC $\binom{n+1}{2}+1$ and ACC_k do not bound any noncomputable P'.

(The same is true more generally of LPO.)

An adhoc reduction: $C_3 \leq_W (8 \not\leftrightarrow 2)'$

From before we know $C_2 \leq_{\mathrm{W}} (8 \not\hookrightarrow 2)'$. We improve this to

Theorem $C_3 \leq_W (8 \not\leftrightarrow 2)'.$

For each initial segment of a given name for a C_3 -instance, we represent the information so far as a string:

 \emptyset (nothing has entered the complement so far), or

a (a has entered the complement), or

ab (a has entered the complement, followed by b) ab is different from ba!

Definition of Φ witnessing $C_3 \leq_{\mathrm{W}} (8 \not\hookrightarrow 2)'$

 $f_{\emptyset} = (1234)(5678)$ $f_{1} = (1256)(3478)$ $f_{12} = f_{21} = (1278)(3456)$ $f_{3} = f_{13} = (1458)(2367)$ $f_{2} = f_{32} = (1357)(2468)$ $f_{23} = (1368)(2457)$ $f_{31} = (1467)(2358)$

What should $\Psi(p, \{1, 7\})$ do?

- $\{1,7\}$ is a solution of f_{12} , f_{21} , f_2 , f_{32} , f_{31} .
- So $\Psi(p, \{1, 7\})$ can wait for the first number to appear in p.
- If the first number is 1 or 2, Ψ can answer 3.
- If the first number is 3, Ψ knows that a second number (1 or 2) will appear in p. So Ψ can wait for the second number and answer accordingly.

Definition of $\Psi(p, \{i, j\})$ witnessing $C_3 \leq_W (8 \not\hookrightarrow 2)'$

$\{i, j\}$	Possible lim $\Phi(p)$	Ψ 's action
$\{1,2\}$	$f_{\emptyset}, f_{1}, f_{12}, f_{21}$	Output 3
$\{1, 3\}$	$f_{\emptyset}, f_2, f_{32}, f_{23}$	Output 1
$\{1,4\}$	$f_{\emptyset}, f_{3}, f_{13}, f_{31}$	Output 2
$\{1,5\}$	$f_1, f_3, f_{13}, f_2, f_{32}$	$1 \hspace{.1cm}$ in $\hspace{.05cm} ho ightarrow$ output 2
		2 or 3 in $ ho ightarrow$ output 1
$\{1,6\}$	f ₁ , f ₂₃ , f ₃₁	1 or 3 in $ ho ightarrow$ output 2
		2 in $ ho ightarrow$ output 1
$\{1,7\}$	$f_{12}, f_{21}, f_2, f_{32}, f_{31}$	1 or 2 in $ ho ightarrow$ output 3
		31 in $p ightarrow$ output 2
		32 in $ ho ightarrow$ output 1
$\{1, 8\}$	$f_{12}, f_{21}, f_3, f_{13}, f_{23}$	3 in $ ho ightarrow$ output 1
		12 or 21 in $ ho ightarrow$ output 3
		13 in $ ho ightarrow$ output 2
		23 in $ ho ightarrow$ output 1