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Pigeonhole principle: If m > n, there is no injection f : m → n.

View this as a problem:

(m ̸↪→ n)

Given an instance f : m → n,

a solution is any pair i < j < m such that f (i) = f (j).

Another relevant problem:
For fixed k , define:

idk

Given an instance j ∈ [k],

a solution is j itself.
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Uniformly computable reductions between problems

A problem P is strongly Weihrauch reducible to a problem Q if there is a
forward functional Φ and a backward functional Ψ such that:

Given a name p for a P-instance,

Φ(p)

names a Q-instance.

Given a name q for any Q-solution of Φ(p),

Ψ(q)

names a P-solution to the P-instance named by p.

We write P ≤sW Q.

P is Weihrauch reducible to Q if the above holds with Ψ(q) replaced by
Ψ(p, q). We write P ≤W Q.
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Basic facts

Proposition

id2 <sW id3 <sW . . .

Proposition

For each n, (n + 1 ̸↪→ n) ≥W (n + 2 ̸↪→ n) ≥W . . .

Proposition

For each n, (n + 1 ̸↪→ n) ≡sW id(n+1
2 )

.

≤: Φ(f ) = ⟨i , j⟩, where i < j is the least pair such that f (i) = f (j).
Ψ(⟨i , j⟩) = {i , j}.

≥: For each pair i < j , there is a function Φ(⟨i , j⟩) : n + 1 → n such that
i < j is the unique pair with f (i) = f (j).
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m ≥ n2: The edge of idk ’s relevance

Proposition

id2 ≤sW (n2 ̸↪→ n) but id2 ̸≤sW (n2 + 1 ̸↪→ n).

Φ(1): Arrange n2 as an n × n grid and partition using vertical lines.
Φ(2): Partition using horizontal lines instead.
Ψ({i , j}): Return 1 if i and j lie in the same vertical line, otherwise return
2.

Proof by contradiction: Given any two functions Φ(1),Φ(2) : n2 + 1 → n,
there is some pair i ̸= j such that

Φ(1)(i) = Φ(1)(j) and Φ(2)(i) = Φ(2)(j).

(Apply pigeonhole twice.) So Ψ({i , j}) equals both 1 and 2.
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More on m = n2: Orthogonal Latin squares

Picture from The 36 officers problem by Marianne Freiberger, published in Plus (terrible coloring by me)

The above shows id2+2 = id4 ≤sW (16 ̸↪→ 4):

Each of the two Latin squares on the left yields a partition of 16 into
4 classes (of size 4)

We get two more partitions by considering columns and rows
respectively

From a solution (i.e., 2 out of 16 small squares) we can uniquely
reconstruct which partition it “came from”
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More on m = n2: Mutually orthogonal Latin squares
The arguments on the previous slide can be extended as follows:

Given k many n × n Latin squares which are mutually orthogonal, we
can build a reduction from idk+2 to (n2 ̸↪→ n).

Given a reduction from idk+2 to (n2 ̸↪→ n), we can read off k
mutually orthogonal n × n Latin squares.

Theorem

idk+2 ≤sW (n2 ̸↪→ n) if and only if there are k mutually orthogonal Latin
squares of order n.

The number of mutually orthogonal Latin squares which may exist is
unknown, for many values of n.

Corollary

idn+1 ≤sW (n2 ̸↪→ n) if and only if there is a finite affine plane of order n.

For many values of n, it is unknown whether there exists a finite affine
plane of order n.
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m ≤ 2n: Reductions using graph packings

A perfect matching on 2n vertices corresponds to a function 2n → n.

Proposition

id2n−1 ≤sW (2n ̸↪→ n).

Key fact: K2n can be decomposed into
2n − 1 perfect matchings.

1-factorization of K8, David Eppstein

Similar results (of the form idk ≤sW (m ̸↪→ n) for n + 1 ≤ m ≤ 2n) can be
obtained using:

decompositions of Km into almost perfect matchings

decompositions of Km into Hamiltonian cycles.
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m = qn, q ≤ n: Resolvable combinatorial designs

A resolvable balanced incomplete block design (RBIBD(m, q)) is a family
of distinct q-subsets (blocks) of [m] such that:

each pair of distinct numbers from [m] is contained in exactly 1 block

the set of blocks can be partitioned into partitions of [m] (each called
a parallel class).

Example

A decomposition of K2n into perfect matchings is an RBIBD(2n, 2) where
each perfect matching is a parallel class.

Proposition

If there is some RBIBD(qn, q), then id qn−1
q−1

≤sW (qn ̸↪→ n).

(Elementary arguments prove that if there is some RBIBD(qn, q), then

q − 1 | qn − 1 and q ≤ n.)
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A counting lemma

Using convexity we can prove:

Lemma

Each function f : qn → n has at least n
(q
2

)
solutions. Furthermore, if f

has exactly n
(q
2

)
solutions, then |f −1(j)| = q for every j < n.

Theorem

There exists some RBIBD(qn, q) if and only if id qn−1
q−1

≤sW (qn ̸↪→ n).

The theorem generalizes our corollary on affine planes (which is the
extreme case q = n).

The other extreme (q = 2) is the result which was proved by decomposing
K2n into perfect matchings.
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More applications of the counting lemma

Lemma

idk ̸≤sW (qn ̸↪→ n) as long as k > qn−1
q−1 .

Similar methods yield analogous nonreductions for (m ̸↪→ n) even if n does
not divide m.

Corollary

For all n ≥ 3, (n + 2 ̸↪→ n) <sW id(n+1
2 )

≡ (n + 1 ̸↪→ n).

Corollary

(2n + 1 ̸↪→ n) <sW (2n ̸↪→ n).
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So we know at least
(for n ≥ 3):

(n + 1 ̸↪→ n)

> (n + 2 ̸↪→ n)

≥ (2n ̸↪→ n)

> (2n + 1 ̸↪→ n)

≥ (n2 ̸↪→ n)

> (n2 + 1 ̸↪→ n)

≥ . . .
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Jump of (m ̸↪→ n): Motivations from reverse math

Theorem (Dimitracopoulos, Paris 1986; Hirst 1987)

Over RCA0, TFAE:

The infinite pigeonhole principle

(∀n)(there is no Σ0
2 injection f : n + 1 → n).

Theorem (Belanger, Chong, Wang, Wong, Yang 2021)

Over RCA0,

(∀n)(there is no Σ0
2 injection f : 2n → n)

⊬ (∀n)(there is no Σ0
2 injection f : n + 1 → n).

They proved that (∀n)(there is no Σ0
2 injection f : 2n → n) characterizes

the first-order theory of a variant of weak weak König’s lemma.
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Definition (Brattka, Gherardi, Marcone 2011)

For any problem P, the jump of P, denoted P′, is the problem whose:

instances are limit approximations to names of P-instances

solutions are P-solutions to the limit P-instance.

Example

id′k ≡sW limk .

Proposition (Brattka, Gherardi, Marcone 2011)

For all problems P and Q, if P ≤sW Q, then P′ ≤sW Q′.

The converse holds, but with continuous sW-reducibility ≤c
sW:

Theorem (essentially Brattka, Hölzl, Kuyper 2017)

If P ̸≤c
sW Q, then P′ ̸≤c

sW Q′.
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Lifting our previous results

All reductions idk ≤sW (m ̸↪→ n) lift to limk ≤sW (m ̸↪→ n)′, even
limk ≤W (m ̸↪→ n)′. Same for nonreductions.

Theorem

TFAE:

1 limk ≤W (m ̸↪→ n)′

2 limk ≤sW (m ̸↪→ n)′

3 limk ≤c
sW (m ̸↪→ n)′

4 idk ≤c
sW (m ̸↪→ n)

5 idk ≤sW (m ̸↪→ n)

(1) ⇒ (2): Next slide.
(3) ⇒ (4): Apply the theorem of Brattka, Hölzl, Kuyper.
(4) ⇒ (5): Given a reduction, the forward and backward functionals are
automatically continuous.
(5) ⇒ (2): Apply the proposition of Brattka, Gherardi, Marcone.
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Upgrading ≤W to ≤sW

Definition (Dorais, Dzhafarov, Hirst, Mileti, Shafer 2016)

A problem P is finitely tolerant if there is a partial computable function T
such that given any two P-instances with finite difference, a bound after
which they agree, and a P-solution of one of the instances, T computes a
solution for the other.

Examples include RTn
k , COH, limX .

Lemma (Dzhafarov, G., Hirschfeldt, Patey, Pauly 2020)

Suppose

all P- and Q-solutions lie in a fixed finite set

any finite modification of a P-instance is still a P-instance

P is finitely tolerant.

Then if P ≤W Q, we have P ≤sW Q.

Apply the lemma with P = limk and Q = (m ̸↪→ n)′.
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Weihrauch degree of (m ̸↪→ n)′: m = n2 + 1

Recall: id2 ̸≤sW (n2 + 1 ̸↪→ n). So lim2 ̸≤W (n2 + 1 ̸↪→ n)′. More is true:

All-or-unique choice AoUCk is Ck restricted to {k} ∪ {{i} : i ∈ k}.

Fact

AoUCk <W lim2 (LPO, even).

Proposition

AoUC(n+1
2 )+1 ̸≤W (n2 + 1 ̸↪→ n)′.

Our AoUC-instance pretends to be “all” until Ψ commits on “enough”
pairs, then diagonalizes against Ψ’s outputs on said pairs. We can arrange
“enough” so that some pair persists as a solution after diagonalization.
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Weihrauch degree of (m ̸↪→ n)′: m = n3 and more

All-or-co-unique choice ACCk is Ck ↾ {k} ∪ {k − {i} : i < k}.

C2 ≡W ACC2 >W ACC3 >W . . . (Weihrauch)

Proposition

ACCk ≤W (nk+1 ̸↪→ n)′ but ACCk ̸≤W (nk+1 + 1 ̸↪→ n)′.

So we have separations at n3, n4, . . . , in addition to n + 1, 2n, n2:

Corollary

For all ℓ ≥ 3, (nℓ + 1 ̸↪→ n)′ <W (nℓ ̸↪→ n)′.
Therefore, (nℓ + 1 ̸↪→ n) <sW (nℓ ̸↪→ n).
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Fun sidenote

Could we perhaps prove the nonreductions

AoUC(n+1
2 )+1 ̸≤W (n2 + 1 ̸↪→ n)′

ACCk ̸≤W (nk+1 + 1 ̸↪→ n)′

by lifting some nonreduction of the form

P ̸≤sW (nk + 1 ̸↪→ n)?

No: AoUC(n+1
2 )+1 and ACCk do not bound any noncomputable P′.

(The same is true more generally of LPO.)
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An adhoc reduction: C3 ≤W (8 ̸↪→ 2)′

From before we know C2 ≤W (8 ̸↪→ 2)′. We improve this to

Theorem

C3 ≤W (8 ̸↪→ 2)′.

For each initial segment of a given name for a C3-instance, we represent
the information so far as a string:

∅ (nothing has entered the complement so far), or

a (a has entered the complement), or

ab (a has entered the complement, followed by b)

ab is different from ba!
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Definition of Φ witnessing C3 ≤W (8 ̸↪→ 2)′

∅

1

12 13

2

21 23

3

31 32

f∅ = (1234)(5678)

f1 = (1256)(3478)

f12 = f21 = (1278)(3456)

f3 = f13 = (1458)(2367)

f2 = f32 = (1357)(2468)

f23 = (1368)(2457)

f31 = (1467)(2358)
What should Ψ(p, {1, 7}) do?

{1, 7} is a solution of f12, f21, f2, f32, f31.

So Ψ(p, {1, 7}) can wait for the first number to appear in p.

If the first number is 1 or 2, Ψ can answer 3.

If the first number is 3, Ψ knows that a second number (1 or 2) will
appear in p. So Ψ can wait for the second number and answer
accordingly. Thanks!
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Definition of Ψ(p, {i , j}) witnessing C3 ≤W (8 ̸↪→ 2)′

{i , j} Possible limΦ(p) Ψ’s action

{1, 2} f∅, f1, f12, f21 Output 3
{1, 3} f∅, f2, f32, f23 Output 1
{1, 4} f∅, f3, f13, f31 Output 2
{1, 5} f1, f3, f13, f2, f32 1 in p → output 2

2 or 3 in p → output 1
{1, 6} f1, f23, f31 1 or 3 in p → output 2

2 in p → output 1
{1, 7} f12, f21, f2, f32, f31 1 or 2 in p → output 3

31 in p → output 2
32 in p → output 1

{1, 8} f12, f21, f3, f13, f23 3 in p → output 1
12 or 21 in p → output 3
13 in p → output 2
23 in p → output 1

...
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