Interior operators in the Weihrauch lattice

Jun Le GOH

Organized by Department of Mathematics, Nazarbayev University and Mathematical Center, Akademgorodok

Jun Le GOH (NUS)

Interior operators in the Weihrauch lattic

Weihrauch reducibility on problems

Goal: Classify the computational content of mathematical theorems

- Formalize mathematical statements as multivalued functions on represented spaces a.k.a. problems
- **2** Compare them using the preorder Weihrauch reducibility \leq_W :

roughly, $f \leq_W g$ if there is a (uniformly) computable procedure for solving f, which queries g exactly once

Choose an element not in the range of p using pigeonhole:

Features of the quotient structure (i.e., Weihrauch degrees)

Rich structure: Medvedev degrees embed

Many algebraic operations:

Join, meet, parallel product, compositional product, ...

Many "benchmark" problems:

Problem	Instance	Solution(s)
id	A real	That real
$\mathrm{C}_{\mathbb{N}}$	$oldsymbol{ ho}:\mathbb{N} o\mathbb{N}$ not onto	$i \notin \operatorname{range}(p)$
WKL	Infinite tree in $2^{<\mathbb{N}}$	Infinite path
WWKL	Positive measure tree in $2^{<\mathbb{N}}$	Infinite path
lim	Convergent sequence in $\mathbb{N}^{\mathbb{N}}$	The limit
$\mathbf{C}_{\mathbb{N}^{\mathbb{N}}}$	Infinite tree in $\mathbb{N}^{<\mathbb{N}}$	Infinite path

3/16

Closure and interior operators

In a partial order (P, \leq) , a closure operator $C : P \rightarrow P$ satisfies:

- *f* ≤ *C*(*f*)
- if $f \leq g$, then $C(f) \leq C(g)$
- CC(f) = C(f)

An interior operator satisfies $f \ge C(f)$ instead.

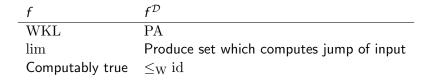
Computing C(f) helps us make sense of f. Ideally C(f) is well-behaved since it enjoys a closure property (unlike f).

Closure operator on Weihrauch degrees(Countable) parallelizationBrattka, Gherardi '11Finite parallelizationPauly '10DiamondNeumann, Pauly '18Unbounded finite parallelizationSoldà, Valenti '23

I. Expanding the solution set

Upper Turing cone version of *f* (Brattka '21):

$$f^{\mathcal{D}}(p) = \{x \in \mathbb{N}^{\mathbb{N}} \mid x ext{ computes some } f ext{-solution to } p\}$$



II. Dualizing a closure operator

The parallelization \hat{f} of $f :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}$ is defined by

$$\widehat{f}((x_n)_{n\in\mathbb{N}})=\big\{(y_n)_n\in\mathbf{Y}^{\mathbb{N}}\mid y_n\in f(x_n) ext{ for all } nig\}.$$

Stashing (Brattka '21) has same domain as \hat{f} but with solution sets

$$\{(y_n)_n \in \overline{\mathbf{Y}}^{\mathbb{N}} \mid y_n \in f(x_n) \text{ for some } n\}.$$

 $\overline{\mathbf{Y}}$ is the completion of \mathbf{Y} (Dzhafarov '19; Brattka, Gherardi '20).

II. Dualizing a closure operator

Brattka '21:

$$\{(y_n)_n \in \mathbf{Y}^{\mathbb{N}} \mid y_n \in f(x_n) \text{ for some } n\}.$$



Theorem (Brattka '21)
Stashing of
$$\hat{f} \equiv_{W}$$
 Upper Turing cone version of \hat{f} .

For other problems few examples of stashings have been characterized.

Jun Le GOH (NUS)

III. Residual of a binary operator

Brattka, Pauly '18:

 $h \star g$ is the compositional product of h and g (intuitively, apply g then h).

Implication is the right co-residual of *:

$$(h \rightarrow f) \equiv_{\mathrm{W}} \min_{\leq_{\mathrm{W}}} \{g \mid f \leq_{\mathrm{W}} h \star g\}$$

•
$$(h \rightarrow f) \leq_{\mathrm{W}} f$$

• If
$$f_0 \leq_{\mathrm{W}} f_1$$
, then $(h
ightarrow f_0) \leq_{\mathrm{W}} (h
ightarrow f_1)$

Observation

If $h \star h \equiv_{W} h$, then $f \mapsto (h \to f)$ is an interior operator.

Jun Le GOH (NUS)

III. Residual of a binary operator

$$(h \rightarrow f) \equiv_{\mathrm{W}} \min_{\leq_{\mathrm{W}}} \{g \mid f \leq_{\mathrm{W}} h \star g\}$$

Examples of h such that $h \star h \equiv_{W} h$ (Brattka, de Brecht, Pauly '12; Brattka, Gherardi, Hölzl '15, Soldà, Valenti '23, Brattka '23):

$$\mathrm{C}^{(n)}_{\mathbb{N}}, \hspace{0.2cm} \mathrm{K}^{(n)}_{\mathbb{N}}, \hspace{0.2cm} \mathrm{MLR}, \hspace{0.2cm} \mathrm{WWKL}, \hspace{0.2cm} \mathrm{WKL}, \hspace{0.2cm} \mathrm{UC}_{\mathbb{N}^{\mathbb{N}}}, \hspace{0.2cm} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}}.$$

Theorem (Brattka, Hendtlass, Kreuzer '17; Brattka, Pauly '18)

•
$$C_{\mathbb{N}}^{(n)} \to WKL \equiv_W PA$$
 for every $n \ge 1$. (Open for $n = 0$.)

• $C_{\mathbb{N}} \to WWKL \equiv_W MLR.$

 $\begin{array}{l} \mbox{Proposition (Dzhafarov, G., Hirschfeldt, Patey, Pauly '20)}\\ \label{eq:CN} C_{\mathbb{N}} \rightarrow RT_2^2 \equiv_W RT_2^2 \mbox{ with finite error.} \end{array}$

IV. Max over restricted codomain

For some represented spaces \mathbf{X} , this max exists:

 $\max_{\leq_{\mathrm{W}}} \{ g \leq_{\mathrm{W}} f \mid g \text{ has codomain } X \}$

 $\mathbf{X} = \mathbb{N}$: First-order part ¹f (Dzhafarov, Solomon, Yokoyama '23)

f	^{1}f	
lim	$\mathrm{C}_{\mathbb{N}}$	Brattka, Gherardi, Marcone '12
WKL, WWKL	$\mathrm{K}_{\mathbb{N}}$	Dzhafarov, Solomon, Yokoyama '23
MLR	id	Brattka, Pauly '18
$\mathrm{C}_{\mathbb{N}} o h$	$\leq_{\mathrm{W}} \mathrm{id}$	"
Any $g^{\mathcal{D}}$	$\leq_{\mathrm{W}} \mathrm{id}$	
DS	$\Pi_1^1\text{-}\mathrm{Bound}$	G., Pauly, Valenti '21

 $\mathbf{X} = k$: k-finitary part (Cipriani, Pauly '23)

Question

For which other \mathbf{X} is this defined/useful?

V. Max over single-valued functions

Deterministic part (G., Pauly, Valenti '21):

 $\operatorname{Det}(f) \equiv_{\operatorname{W}} \max_{\leq_{\operatorname{W}}} \{g \leq_{\operatorname{W}} f \mid g \text{ single-valued, codomain } \mathbb{N}^{\mathbb{N}}\}$

f	$\operatorname{Det}(f)$	
WKL	id	Gherardi, Marcone '09
List a countable closed $A\subseteq 2^{\mathbb{N}}$	\lim	Kihara, Marcone, Pauly '20
$\mathrm{C}_{\mathbb{N}^{\mathbb{N}}}$	$\mathrm{UC}_{\mathbb{N}^{\mathbb{N}}}$	"
DS	lim	G., Pauly, Valenti '21

Being single-valued is not a degree-theoretic property.

We say f is deterministic if it is equivalent to a single-valued problem with codomain $\mathbb{N}^{\mathbb{N}}$.

Max over single-valued functions with restricted codomain

G., Pauly, Valenti '21:

 $\operatorname{Det}_{\mathbf{X}}(f) \equiv_{\operatorname{W}} \max_{\leq_{\operatorname{W}}} \{g \leq_{\operatorname{W}} f \mid g \text{ single-valued, codomain } \mathbf{X}\}$

Proposition

¹Det $(f) \equiv_{\mathrm{W}} \mathrm{Det}_{\mathbb{N}}(f) \leq_{\mathrm{W}} \mathrm{Det}^{1}(f).$

It follows that $f \mapsto {}^{1}\mathrm{Det}(f)$ is an interior operator. Furthermore:

$$^{1}\text{Det}(f) \equiv_{W} \text{Det}^{1}\text{Det}(f) \equiv_{W} ^{1}\text{Det}^{1}(f) \equiv_{W} \dots$$

Question

Is it possible to have ${}^{1}\mathrm{Det}(f) <_{\mathrm{W}} \mathrm{Det}^{1}(f)$?

Jun Le GOH (NUS)

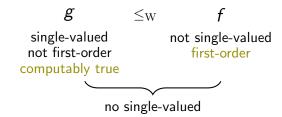
Is it possible to have ${}^{1}\text{Det}(f) <_{W} \text{Det}^{1}(f)$?

Equivalently:

Is there a first-order problem f such that Det(f) is not first-order?

Suppose we had such an f and let g denote Det(f).

Since $g \leq_W f$ and f is first-order, g is computably true, i.e. $g(p) \leq_T p$ for all $p \in dom(g)$.



First-order closure (G., Pauly, Valenti in preparation)

Dzhafarov, Solomon, Yokoyama '23 showed that every problem which is computably true is below some first-order problem.

Theorem

If g is computably true, then

$$\min_{\leq_{\mathrm{W}}} \{ f \geq_{\mathrm{W}} g \mid f \text{ is first-order} \}$$

exists and is represented by g^1 : dom $(g) \rightrightarrows \mathbb{N}$, defined by

$$g^1(p) = \{e \in \mathbb{N} \mid \Phi_e(p) \in g(p)\}.$$

Corollary

If g is computably true, single-valued with codomain $\mathbb{N}^{\mathbb{N}}$, and g^1 is not deterministic, then $\operatorname{Det}(g^1)$ is not first-order.

Proof. $g \leq_W \text{Det}(g^1) <_W g^1$ so $\text{Det}(g^1)$ is not first-order.

First-order closure (G., Pauly, Valenti in preparation)

Corollary

If g is computably true, single-valued with codomain $\mathbb{N}^{\mathbb{N}}$, and g^1 is not deterministic, then $\operatorname{Det}(g^1)$ is not first-order.

By diagonalization, we can construct a sequence of computable reals $(g_n)_{n\in\mathbb{N}}$ such that if we define $g:\mathbb{N}\to\mathbb{N}^\mathbb{N}$ by

$$g(n) = g_n,$$

then

$$g^1(n) = \{e \in \mathbb{N} \mid \Phi_e(n) = g_n\}$$

is not deterministic.

 g^1 is first-order but $Det(g^1)$ is not.

Thanks!

Brattka, On the complexity of learning programs, in: Della Vedova, Dundua, Lempp, Manea (eds.), Unity of Logic and Computation, vol. 13967 of Lecture Notes in Computer Science, Springer, Cham (2023) 166-177

Cipriani, Pauly, Embeddability of graphs and Weihrauch degrees, arXiv 2305.00935 (2023)

Dzhafarov, Solomon, Yokoyama, On the first-order parts of problems in the Weihrauch degrees, arXiv 2301.12733 (2023) Soldà, Valenti, Algebraic properties of the first-order part of a problem, Annals of Pure and Applied Logic 174:7 (2023) 103270

Brattka, Stashing-Parallelization Pentagons, Logical Methods in Computer Science 17:4 (2021) 20:1-20:29

Goh, Pauly, Valenti, Finding descending sequences through ill-founded linear orders, The Journal of Symbolic Logic 86:2 (2021) 817-854

Brattka, Gherardi, Weihrauch Goes Brouwerian, The Journal of Symbolic Logic 85:4 (2020) 1614-1653

Dzhafarov, Goh, Hirschfeldt, Patey, Pauly, Ramsey's theorem and products in the Weihrauch degrees, Computability 9:2 (2020) 85-110

Kihara, Marcone, Pauly, Searching for an analogue of $\rm ATR_0$ in the Weihrauch lattice, Journal of Symbolic Logic 85:3 (2020) 1006-1043

Dzhafarov, Joins in the strong Weihrauch degrees, Mathematical Research Letters 26:3 (2019) 749-767

Brattka, Pauly, On the Algebraic Structure of Weihrauch Degrees, Logical Methods in Computer Science 14:4:4 (2018) 1-36

Neumann, Pauly, A topological view on algebraic computation models, Journal of Complexity 44:Supplement C (2018) 1-22

Brattka, Hendtlass, Kreuzer, On the Uniform Computational Content of Computability Theory, Theory of Computing Systems 61:4 (2017) 1376-1426

Brattka, Gherardi, Hölzl, Probabilistic Computability and Choice, Information and Computation 242 (2015) 249-286

Brattka, de Brecht, Pauly, Closed Choice and a Uniform Low Basis Theorem, Annals of Pure and Applied Logic 163 (2012) 986-1008

Brattka, Gherardi, Marcone, The Bolzano-Weierstrass Theorem is the Jump of Weak König's Lemma, Annals of Pure and Applied Logic 163 (2012) 623-655

Brattka, Gherardi, Weihrauch Degrees, Omniscience Principles and Weak Computability, The Journal of Symbolic Logic 76:1 (2011) 143-176

Pauly, On the (semi)lattices induced by continuous reducibilities, Mathematical Logic Quarterly 56:5 (2010) 488-502

Gherardi, Marcone, How Incomputable is the Separable Hahn-Banach Theorem?, Notre Dame Journal of Formal Logic 50:4 (2009) 393-425

Dekker, Myhill, Some theorems on classes of recursively enumerable sets, Transactions of the American Mathematical Society 89 (1958) 25-59