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Theorem (Halin, 1965)

If a graph contains k many disjoint rays for every k ∈ ω,
then it contains infinitely many disjoint rays.

I Graph can be directed or undirected

I Rays are infinite paths indexed by ω

I Disjoint means vertex-disjoint

Compactness? Not quite; rays are not first-order objects.

Two formalizations in second-order arithmetic:

IRT: ∀G (∀k∃X [X is a disjoint set of k many rays in G ]
→ ∃X [X is an infinite disjoint set of rays in G ])

WIRT: ∀G (∃(Xk)k∀k[Xk is a disjoint set of k many rays in G ]
→ ∃X [X is an infinite disjoint set of rays in G ]).



WIRT is provable in ACA0

Theorem (essentially Andreae’s proof of Halin’s theorem)

Given a graph G and a sequence (Xk)k where each Xk is a set of k
disjoint rays, (G ⊕ (Xk)k)′ uniformly computes an infinite disjoint
set of rays.

Sketch.
At the beginning of stage n, we have constructed disjoint rays
Rn
0 , . . . ,R

n
n−1 and committed to Rn

0 � n, . . . ,R
n
n−1 � 1.

Fix a large set of disjoint rays Sj from the given sequence. Discard
all Sj ’s which intersect our commitment.

For those Rn
i ’s which do not intersect too many Sj ’s, define

Rn+1
i = Rn

i and discard the Sj ’s intersecting them.

For those Rn
i ’s which intersect many Sj ’s, we put appropriate initial

segments of them and of the Sj ’s into a finite graph. Apply
Menger’s theorem to reroute the initial segments of the Rn

i ’s.



A priority argument shows that

Theorem
WIRT is not provable in RCA0. TODO: Close this gap!

The above proof applies to a special case of WIRT:

Given a c.e. equivalence relation with infinitely many
classes, compute an infinite independent set.
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Hyperarithmetic reduction

The hyperarithmetic sets are a natural extension of the arithmetic
sets into the transfinite:

Theorem (Kleene)

For X ⊆ ω, TFAE:

I X is computable in some jump hierarchy along a computable
well-ordering;

I X is ∆1
1-definable (without parameters).

If either (both) of the above conditions hold, we say that X is
hyperarithmetic.

HYP denotes the set of all hyperarithmetic sets.

We can relativize the above to define HYP(Y ), the set of all sets
which are hyperarithmetic in Y .



ω-models of second-order arithmetic

For some systems in reverse math, their ω-models have nice
computability-theoretic characterizations.

Theory ω-models
RCA0 closed under ⊕ and Turing reduction
ACA0 closed under ⊕ and jump

closed under ⊕ and hyp reduction

Every ω-model of ATR0 is closed under ⊕ and hyp reduction,
but HYP is not a model of ATR0 because of pseudo-well-orderings!
van Wesep (1977) showed that there is no theory whose ω-models
are exactly those closed under ⊕ and hyp reduction.

Definition (Steel 1978, Montalbán 2006)

T is a theory of hyp analysis if:

1. every ω-model of T is closed under ⊕ and hyp reduction;

2. for every Y ⊆ ω, HYP(Y ) is a model of T .



Definition (Steel 1978, Montalbán 2006)

T is a theory of hyp analysis if:

1. every ω-model of T is closed under ⊕ and hyp reduction;

2. for every Y ⊆ ω, HYP(Y ) is a model of T .

Examples abound:

Σ1
1-AC0: ∀n∃Yϕ(n,Y )→ ∃(Zn)n∀nϕ(n,Zn),

where ϕ(n,Y ) is arithmetic.

∆1
1-CA0: ∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ψ(n)),

where ϕ(n) is Σ1
1 and ψ(n) is Π1

1.

unique-Σ1
1-AC0: ∀n∃!Yϕ(n,Y )→ ∃(Zn)n∀nϕ(n,Zn),

where ϕ(n,Y ) is arithmetic.

But all known examples except one (a theorem of Jullien on
indecomposable scattered linear orderings, studied by Montalbán)
are defined using notions from logic.



A new natural theory of hyperarithmetic analysis

IRT: ∀G (∀k∃X [X is a disjoint set of k many rays in G ]
→ ∃X [X is an infinite disjoint set of rays in G ])

WIRT: ∀G (∃(Xk)k∀k[Xk is a disjoint set of k many rays in G ]
→ ∃X [X is an infinite disjoint set of rays in G ]).

Theorem (Barnes, G., Shore)

IRT is a theorem of hyperarithmetic analysis.

Proof that Σ1
1-AC0 implies IRT.

Given G satisfying the premise of IRT, use Σ1
1-AC0 to choose a

sequence (Xk)k where each Xk is a set of k disjoint rays. Then
apply WIRT, which is provable in ACA0.

This shows that for every Y ⊆ ω, HYP(Y ) is a model of IRT.



IRT: ∀G (∀k∃X [X is a disjoint set of k many rays in G ]
→ ∃X [X is an infinite disjoint set of rays in G ])

Proof that IΣ1
1 + IRT implies unique-Σ1

1-choice.

Unique-Σ1
1-choice can be reformulated as:

Given a sequence (Tn)n of subtrees of ω<ω, each of which
has a unique path Pn, the sequence (Pn)n exists.

Think of the sequence (Tn)n as a graph G . Using IΣ1
1, we can

show that G is an instance of IRT.

Apply IRT to G to obtain an infinite disjoint set of rays.
This gives us a sequence of infinitely many distinct Pn.

Instead, apply IRT to the cumulative product of Tn’s.

This shows that every ω-model of (RCA0+)IRT is closed under ⊕
and hyp reduction.



A Σ1
1 axiom of finite choice

finite-Σ1
1-AC0: ∀n∃ finitely many Yϕ(n,Y )→ ∃(Zn)n∀nϕ(n,Zn),

where ϕ(n,Y ) is arithmetic.

Theorem (Barnes, G., Shore)

IΣ1
1 + IRT implies finite-Σ1

1-AC0.

Both IRT and finite-Σ1
1-AC0 are related to another theorem of hyp

analysis called ABW (studied by Friedman 1975 and Conidis 2012).

Separations? Steel (1978) used forcing with tagged trees to
show that ∆1

1-CA0 does not imply Σ1
1-AC0. We add locks to his

forcing to show that

Theorem (G.)

∆1
1-CA0 does not imply finite-Σ1

1-AC0.



Thanks!

Σ1
1-AC

Π1
1-SEP

∆1
1-CA

INDEC

unique-Σ1
1-AC

IRT

finite-Σ1
1-AC

|

Figure: Partial zoo of theories of hyp analysis (assuming IΣ1
1)


