A theorem of Halin and hyperarithmetic analysis

Jun Le Goh joint with James Barnes, Richard A. Shore

Cornell University

ASL 2019 North American Annual Meeting, New York, NY May 2019

Theorem (Halin, 1965)

If a graph contains k many disjoint rays for every $k \in \omega$, then it contains infinitely many disjoint rays.

- Graph can be directed or undirected
- \blacktriangleright Rays are infinite paths indexed by ω
- Disjoint means vertex-disjoint

Compactness? Not quite; rays are not first-order objects.

Two formalizations in second-order arithmetic:

IRT: $\forall G(\forall k \exists X [X \text{ is a disjoint set of } k \text{ many rays in } G]$ $\rightarrow \exists X [X \text{ is an infinite disjoint set of rays in } G])$ WIRT: $\forall G(\exists (X_k)_k \forall k [X_k \text{ is a disjoint set of } k \text{ many rays in } G]$ $\rightarrow \exists X [X \text{ is an infinite disjoint set of rays in } G]).$

WIRT is provable in ACA₀

Theorem (essentially Andreae's proof of Halin's theorem)

Given a graph G and a sequence $(X_k)_k$ where each X_k is a set of k disjoint rays, $(G \oplus (X_k)_k)'$ uniformly computes an infinite disjoint set of rays.

Sketch.

At the beginning of stage n, we have constructed disjoint rays R_0^n, \ldots, R_{n-1}^n and committed to $R_0^n \upharpoonright n, \ldots, R_{n-1}^n \upharpoonright 1$.

Fix a large set of disjoint rays S_j from the given sequence. Discard all S_j 's which intersect our commitment.

For those R_i^n 's which do not intersect too many S_j 's, define $R_i^{n+1} = R_i^n$ and discard the S_j 's intersecting them.

For those R_i^n 's which intersect many S_j 's, we put appropriate initial segments of them and of the S_j 's into a finite graph. Apply Menger's theorem to reroute the initial segments of the R_i^n 's.

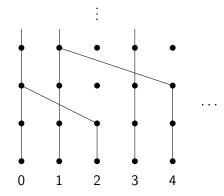
A priority argument shows that

Theorem

WIRT is not provable in RCA₀. TODO: Close this gap!

The above proof applies to a special case of WIRT:

Given a c.e. equivalence relation with infinitely many classes, compute an infinite independent set.



Hyperarithmetic reduction

The hyperarithmetic sets are a natural extension of the arithmetic sets into the transfinite:

Theorem (Kleene)

For $X \subseteq \omega$, TFAE:

- X is computable in some jump hierarchy along a computable well-ordering;
- X is Δ_1^1 -definable (without parameters).

If either (both) of the above conditions hold, we say that X is *hyperarithmetic*.

 HYP denotes the set of all hyperarithmetic sets.

We can relativize the above to define HYP(Y), the set of all sets which are hyperarithmetic in Y.

$\omega\text{-models}$ of second-order arithmetic

For some systems in reverse math, their ω -models have nice computability-theoretic characterizations.

Theory	ω -models
RCA ₀	closed under \oplus and Turing reduction
ACA_0	closed under \oplus and jump
	closed under \oplus and hyp reduction

Every ω -model of ATR₀ is closed under \oplus and hyp reduction, but HYP is not a model of ATR₀ because of pseudo-well-orderings! van Wesep (1977) showed that there is **no theory** whose ω -models are exactly those closed under \oplus and hyp reduction.

Definition (Steel 1978, Montalbán 2006)

T is a theory of hyp analysis if:

- 1. every ω -model of \mathcal{T} is closed under \oplus and hyp reduction;
- 2. for every $Y \subseteq \omega$, HYP(Y) is a model of T.

Definition (Steel 1978, Montalbán 2006)

T is a theory of hyp analysis if:

- 1. every ω -model of T is closed under \oplus and hyp reduction;
- 2. for every $Y \subseteq \omega$, HYP(Y) is a model of T.

Examples abound:

$$\begin{split} \Sigma_1^{1}-\mathsf{AC}_0 &: \forall n \exists Y \varphi(n, Y) \to \exists (Z_n)_n \forall n \varphi(n, Z_n), \\ & \text{where } \varphi(n, Y) \text{ is arithmetic.} \\ \Delta_1^{1}-\mathsf{CA}_0 &: \forall n(\varphi(n) \leftrightarrow \psi(n)) \to \exists X \forall n(n \in X \leftrightarrow \psi(n)), \\ & \text{where } \varphi(n) \text{ is } \Sigma_1^{1} \text{ and } \psi(n) \text{ is } \Pi_1^{1}. \\ \text{unique-} \Sigma_1^{1}-\mathsf{AC}_0 &: \forall n \exists ! Y \varphi(n, Y) \to \exists (Z_n)_n \forall n \varphi(n, Z_n), \\ & \text{where } \varphi(n, Y) \text{ is arithmetic.} \end{split}$$

But all known examples **except one** (a theorem of Jullien on indecomposable scattered linear orderings, studied by Montalbán) are defined using notions from logic.

A new natural theory of hyperarithmetic analysis

IRT: $\forall G(\forall k \exists X[X \text{ is a disjoint set of } k \text{ many rays in } G]$ $\rightarrow \exists X[X \text{ is an infinite disjoint set of rays in } G])$ WIRT: $\forall G(\exists (X_k)_k \forall k[X_k \text{ is a disjoint set of } k \text{ many rays in } G]$ $\rightarrow \exists X[X \text{ is an infinite disjoint set of rays in } G]).$

Theorem (Barnes, G., Shore)

IRT is a theorem of hyperarithmetic analysis.

Proof that Σ_1^1 -AC₀ implies IRT.

Given *G* satisfying the premise of IRT, use Σ_1^1 -AC₀ to choose a sequence $(X_k)_k$ where each X_k is a set of *k* disjoint rays. Then apply WIRT, which is provable in ACA₀.

This shows that for every $Y \subseteq \omega$, HYP(Y) is a model of IRT.

IRT: $\forall G (\forall k \exists X [X \text{ is a disjoint set of } k \text{ many rays in } G]$ $\rightarrow \exists X [X \text{ is an infinite disjoint set of rays in } G])$

Proof that $I\Sigma_1^1 + IRT$ implies unique- Σ_1^1 -choice.

Unique- Σ_1^1 -choice can be reformulated as:

Given a sequence $(T_n)_n$ of subtrees of $\omega^{<\omega}$, each of which has a unique path P_n , the sequence $(P_n)_n$ exists.

Think of the sequence $(T_n)_n$ as a graph G. Using $I\Sigma_1^1$, we can show that G is an instance of IRT.

Apply IRT to G to obtain an infinite disjoint set of rays. This gives us a sequence of infinitely many distinct P_n .

Instead, apply IRT to the cumulative product of T_n 's.

This shows that every ω -model of $(RCA_0+)IRT$ is closed under \oplus and hyp reduction.

(::) (.)(

A Σ_1^1 axiom of finite choice

finite- Σ_1^1 -AC₀: $\forall n \exists$ finitely many $Y \varphi(n, Y) \rightarrow \exists (Z_n)_n \forall n \varphi(n, Z_n)$, where $\varphi(n, Y)$ is arithmetic.

Theorem (Barnes, G., Shore) $I\Sigma_1^1 + IRT$ implies finite- Σ_1^1 -AC₀.

Both IRT and finite- Σ_1^1 -AC₀ are related to another theorem of hyp analysis called ABW (studied by Friedman 1975 and Conidis 2012).

Separations? Steel (1978) used forcing with tagged trees to show that $\Delta_1^1\text{-}CA_0$ does not imply $\Sigma_1^1\text{-}AC_0$. We add locks to his forcing to show that

Theorem (G.)

 Δ_1^1 -CA₀ does not imply finite- Σ_1^1 -AC₀.

Thanks!

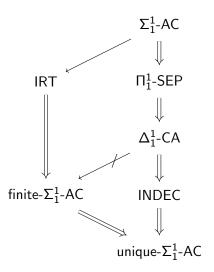


Figure: Partial zoo of theories of hyp analysis (assuming $I\Sigma_1^1$)