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Inseparable pairs of sets

There are disjoint coanalytic sets of reals which cannot be
separated by any Borel set. A well-known example:

I WF: well-founded trees on ω

I UB: trees on ω with a unique branch

Our results imply that more is true:

Theorem
Any (co)analytic set which separates WF and UB is complete
(co)analytic.

The above follows from analytic determinacy, but we do not
assume any determinacy.

We have similar results for a variety of pointclasses. To prove
them, we turn to recursion theory.
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Creative subsets of ω

Definition (Post, 1940s)

A Σ0
1 set C ⊆ ω is creative if there is some recursive f : ω → ω

such that for each x ∈ ω:

Wx and C are disjoint ⇒ f (x) /∈ C ∪Wx .

Here Wx is the x-th Σ0
1 subset of ω. (We call x an index for Wx .)

Creativeness effectivizes “C is not ∆0
1”:

I Wx threatens to show that C is Σ0
1;

I f (x) is an effectively produced witness which defeats Wx .

Example

{x ∈ ω : x ∈Wx} is creative, as witnessed by f (x) = x .



Creative ⇔ complete

Definition (Post, 1940s)

A Σ0
1 set C ⊆ ω is creative if there is some recursive f : ω → ω

such that for each x ∈ ω:

Wx and C are disjoint ⇒ f (x) /∈ C ∪Wx .

Here Wx is the x-th Σ0
1 subset of ω.

Definition
A Σ0

1 set C ⊆ ω is complete for Σ0
1 if for every Σ0

1 set D ⊆ ω,
there is some recursive f : ω → ω such that x ∈ D ⇔ f (x) ∈ C .

Theorem (Myhill, 1955)

Creative ⇔ complete for Σ0
1.

(⇒) This uses the recursion theorem.

(⇐) Creativeness is preserved under reduction.



Onward to pairs of subsets of ω

Definition (Kleene, 1950s)

A pair (A,B) of Σ0
1 subsets of ω is effectively inseparable if

there is some recursive f : ω2 → ω such that for each x , y ∈ ω:

Wx ⊇ A and Wy ⊇ B are disjoint ⇒ f (x , y) /∈Wx ∪Wy .

Effective inseparability effectivizes “(A,B) has no ∆0
1 separating

set”:

I Wx and Wy together threaten to define a ∆0
1 separating set;

I f (x , y) is an effectively produced witness which defeats the
pair (Wx ,Wy ).



Effectively inseparable ⇔ complete for pairs

Just as creativeness is equivalent to completeness, effective
inseparability is equivalent to the following notion:

Definition
A pair of disjoint Σ0

1 sets (A,B) is complete for Σ0
1 pairs if for

every pair of disjoint Σ0
1 sets (C ,D), there is some recursive

f : ω → ω such that

x ∈ C ⇔ f (x) ∈ A and x ∈ D ⇔ f (x) ∈ B.

Theorem (Smullyan, 1961)

Effectively inseparable ⇔ complete for Σ0
1 pairs.

(⇒) This uses Smullyan’s double recursion theorem.

(⇐) Fix a pair of effectively inseparable sets. Effective
inseparability is preserved under reduction.



Sets which separate complete pairs are complete

Corollary (folklore?)

Suppose that (A,B) is complete for Σ0
1 pairs. If C is a Σ0

1 set
which separates A and B, then C is complete for Σ0

1.
Similarly, if C is a Π0

1 set which separates A and B, then C is
complete for Π0

1.

Proof of first statement.
By Smullyan’s theorem, (A,B) is effectively inseparable.
This implies that C is creative: WLOG A ⊆ C ⊆ B. Given
Wx ⊆ C , apply effective inseparability of (A,B) to the disjoint Σ0

1

sets
C ⊇ A and Wx ∪ B ⊇ B.

By Myhill’s theorem, C is complete for Σ0
1.

I do not know a proof of this result which does not use the
recursion theorem.



Π1
1 subsets of ω

The goal now is to carry out the previous analysis in other settings.
Let’s start with Π1

1 subsets of ω.

Definition (G.)

A Π1
1 set C ⊆ ω is creative for Π1

1 if there is some recursive
f : ω → ω such that for each x ∈ ω:

Gx and C are disjoint ⇒ f (x) /∈ C ∪ Gx .

Here Gx is the x-th Π1
1 subset of ω.

A Π1
1 set C ⊆ ω is complete for Π1

1 if for every Π1
1 set D ⊆ ω,

there is some recursive f : ω → ω such that x ∈ D ⇔ f (x) ∈ C .

Theorem (G.)

Creative for Π1
1 ⇔ complete for Π1

1.

The main point here is that the Π1
1 subsets of ω have a “good”

parametrization.



Pairs of Π1
1 subsets of ω

Similarly, one can define the notions:

I effectively inseparable for Π1
1; and

I complete for Π1
1 pairs

and prove that they are equivalent.

To prove (⇑), one needs the existence of a pair of Π1
1 subsets of ω

which is effectively inseparable for Π1
1.

Such a pair can be constructed using the fact that Π1
1 subsets of ω

have the reduction property.

The above equivalence is slightly inadequate for our intended
applications. To see why, let’s consider a pair of Π1

1 sets which we
hope to prove is complete.



A natural complete pair of Π1
1 subsets of ω

wf: the set of indices for recursive well-founded trees on ω

hb: the set of indices for recursive trees on ω with some
hyperarithmetic branch

Theorem (G.)

(wf,hb) is complete for Π1
1 pairs.

Sketch.
Given disjoint Π1

1 sets (A,B), fix reductions f and g from A and B
to wf respectively. Given any x ∈ ω, consider the recursive tree
whose branches are strict-order-preserving embeddings from
Tf (x) to Tg(x) (joined with Skolem functions).
If x ∈ B, then Tf (x) is ill-founded and Tg(x) is well-founded, so
there is no strict-order-preserving embedding.
If x ∈ A, then Tf (x) is well-founded and Tg(x) is ill-founded, so
there is a hyperarithmetic strict-order-preserving embedding.

NB: This sketch does not address the case where x /∈ A ∪ B!



Semi-completeness for pairs

Definition
A pair (A,B) of Π1

1 subsets of ω is semi-complete for Π1
1 pairs if

for any pair C ,D of disjoint Π1
1 subsets of ω, there is some total

recursive function f : ω → ω such that

x ∈ C ⇒ f (x) ∈ A and x ∈ D ⇒ f (x) ∈ B.

The previous slide sketched a proof that (wf,hb) is semi-complete
for Π1

1 pairs. But this is equivalent to completeness:

Theorem (G.)

Let (A,B) be a pair of disjoint Π1
1 subsets of ω. TFAE:

1. (A,B) is effectively inseparable for Π1
1;

2. (A,B) is complete for Π1
1;

3. (A,B) is semi-complete for Π1
1.

The point behind (3) ⇒ (1) is that a “semi-reduction” preserves
effective inseparability. (Smullyan proved an analog of this for Σ0

1.)



What about trees with a unique branch?

ub: the set of indices for recursive trees on ω which have a unique
branch

We shall show that (wf, ub) is complete for Π1
1 pairs.

ub ⊂ hb, so every separating set for (wf,hb) also separates
(wf,ub). Therefore if (wf, ub) is inseparable, so is (wf,hb).

We will indirectly reduce (wf,hb) to (wf, ub) by considering
Turing jump hierarchies along countable linear orderings.

Turing jump hierarchies are in fact my primary motivation for this
work.



Turing jump hierarchies on countable linear orderings

Given any real, the (Turing) jump operator produces a more
complicated real (wrt Turing reducibility).

Jump hierarchies can be obtained by iterating the jump operator
along a countable well-ordering. At limit stages, one collects all
previous results of the iteration using the (effective) join.

More generally, one can define what it means to be a jump
hierarchy along any countable linear ordering. (There are a few
ways to define this, but they are equivalent for our present
purposes.)

There are jump hierarchies along ill-founded linear orderings
because:

I “L supports some jump hierarchy” is a Σ1
1 property of L

I “L is a well-ordering” is not Σ1
1.



A question, answered by Harrington

Which linear orderings support a jump hierarchy? Specifically:

Question
Is the set of indices for recursive linear orderings which support a
jump hierarchy complete for Σ1

1?

The above question arose in my investigation of the computational
strength of problems relating to jump hierarchies
(a bit on that later).

Theorem (Harrington 2017, unpublished)

Yes.

Harrington’s proof was clever, ad hoc, and relied heavily on the
recursion theorem.

The present work was directly inspired by Harrington’s proof.



Well-orderings and linear orderings with hyperarithmetic
descending sequences

In order to derive Harrington’s result, we consider

wo: the set of indices for recursive well-orderings;

hds: the set of indices for recursive linear orderings with a
hyperarithmetic descending sequence.

H. Friedman showed that

well-ordering⇒ supports a jump hierarchy⇒ no hyp desc. seq.

Theorem (G.)

(wo, hds) is complete for Π1
1 pairs.

Proof.
The Kleene-Brouwer ordering reduces (wf,hb) to (wo, hds).

Since any Σ1
1 separating set for a complete Π1

1 pair is complete for
Σ1
1, Harrington’s result follows.



Returning to trees with a unique branch

Theorem (G.)

(wf,ub) is complete for Π1
1 pairs.

Sketch.
We semi-reduce (hds,wo) to (wf, ub). Given an index for a
recursive linear ordering L, consider the tree T of jump hierarchies
along L (joined with minimal Skolem functions).

L has a hyp desc. seq. ⇒ T is well-founded (H. Friedman)

L is well-ordered ⇒ T has a unique branch.

Corollary (G.)

Any Σ1
1 subset of ω which separates wf and ub is complete for Σ1

1.
(Likewise for Π1

1.)



Applications of our results, I

Before moving on to subsets of ωω, we mention other applications
of our results for Π1

1 subsets of ω.

Our results imply that the set of indices for recursive linear
orderings which are isomorphic to an ordinal in some ω-model of
Kripke-Platek set theory is complete for Σ1

1.

This answers a question of Knight, Turetsky, Weisshaar (ta).



Applications of our results, II

Our results have been used to calibrate the (uniform)
computational strength of problems concerning jump hierarchies
(Anglès d’Auriac, Kihara 2021; G., Pauly, Valenti 2021).

Example problems (stated informally):

I Given a well-ordering, produce the jump hierarchy along it

I Given a linear ordering, produce either a jump hierarchy along
it or a descending sequence.

I Given a linear ordering, produce a jump hierarchy if it supports
a jump hierarchy; otherwise produce a descending sequence.

All of these problems are analogs of the Arithmetical Transfinite
Recursion principle from reverse mathematics.



How about coanalytic subsets of ωω?

WF: the set of well-founded trees on ω

UB: the set of trees on ω with a unique branch

Theorem (Saint Raymond, 2007)

For any pair (A,B) of disjoint coanalytic subsets of ωω, there is a
continuous function f : ωω → ωω such that f −1(WF) = A and
f −1(UB) = B.

If we relativize the definitions of creativeness, completeness, and
effective inseparability appropriately, we can obtain an effective
version of the above:

Theorem (G.)

Suppose γ ∈ ωω. For any pair (A,B) of disjoint Π1
1(γ) subsets of

ωω, there is a γ-recursive function f : ωω → ωω such that
f −1(WF) = A and f −1(UB) = B.

Using our result (or Saint Raymond’s), we obtain completeness
results for subsets of ωω, including the theorem on slide 1.



How about other pointclasses?

Let X denote either ω or ωω. Suppose Γ � X is X -parametrized in
a Λ-recursive way. Let Gx denote the x-th subset of X in Γ.
Example definition:

Definition (G.)

C ⊆ X is Λ-creative for Γ if it lies in Γ and there is a Λ-recursive
function f : X → X such that for every x ∈ X , if Gx and C are
disjoint, then f (x) /∈ C ∪ Gx .

Λ-creative for Γ ⇔ Λ-complete for Γ

Λ-effectively inseparable for Γ ⇔ Λ-complete for Γ pairs

hold assuming:

1. the recursion theorem for Λ-recursive functions

2. the class of Λ-recursive functions is closed under composition

3. Γ satisfies the reduction property

4. Γ is closed under preimages by Λ-recursive functions

5. other mild closure properties.



Summary

I We develop a theory of effectively inseparable sets for a
variety of pointclasses, along the lines of the classical
development for Σ0

1 subsets of ω.

I This provides bridges between different notions of
completeness for pairs and completeness for separating sets.

I We construct natural pairs of effectively inseparable Π1
1

subsets of ω, such as (wo,hds) and (wf,ub).

I With appropriate relativizations, we can do the same for
coanalytic subsets of ωω.

I Applications of our results:
I completeness of various sets
I an effective version of a theorem from descriptive set theory
I calibrating the uniform computational strength of problems.

Thanks!


