Inseparable pairs and recursion theory

Jun Le GOH

University of Wisconsin-Madison

BEST, Zoomland June 18, 2021

Thanks to Richard A. Shore, Leo Harrington, Alberto Marcone, Julia Knight, Dan Turetsky, Rose Weisshaar.

Inseparable pairs of sets

There are disjoint coanalytic sets of reals which cannot be separated by any Borel set. A well-known example:

- \blacktriangleright WF: well-founded trees on ω
- ▶ UB: trees on ω with a unique branch

Our results imply that more is true:

Theorem

Any (co)analytic set which separates $\rm WF$ and $\rm UB$ is complete (co)analytic.

The above follows from analytic determinacy, but we do not assume any determinacy.

We have similar results for a variety of pointclasses. To prove them, we turn to recursion theory.

Outline of talk

- 1. Σ_1^0 subsets of ω
- 2. Π_1^1 subsets of ω
 - 2.1 Segue into Turing jump hierarchies
- 3. Coanalytic subsets of ω^ω
- 4. Other pointclasses

Creative subsets of $\boldsymbol{\omega}$

Definition (Post, 1940s)

A Σ_1^0 set $C \subseteq \omega$ is *creative* if there is some recursive $f : \omega \to \omega$ such that for each $x \in \omega$:

 W_x and C are disjoint $\Rightarrow f(x) \notin C \cup W_x$.

Here W_x is the x-th Σ_1^0 subset of ω . (We call x an *index* for W_{x} .)

Creativeness effectivizes "C is not Δ_1^{0} ":

- W_x threatens to show that \overline{C} is Σ_1^0 ;
- f(x) is an effectively produced witness which defeats W_x .

Example

 $\{x \in \omega : x \in W_x\}$ is creative, as witnessed by f(x) = x.

$\mathsf{Creative} \Leftrightarrow \mathsf{complete}$

Definition (Post, 1940s)

A Σ_1^0 set $C \subseteq \omega$ is *creative* if there is some recursive $f : \omega \to \omega$ such that for each $x \in \omega$:

 W_x and C are disjoint $\Rightarrow f(x) \notin C \cup W_x$.

Here W_x is the *x*-th Σ_1^0 subset of ω .

Definition

A Σ_1^0 set $C \subseteq \omega$ is complete for Σ_1^0 if for every Σ_1^0 set $D \subseteq \omega$, there is some recursive $f : \omega \to \omega$ such that $x \in D \Leftrightarrow f(x) \in C$.

Theorem (Myhill, 1955)

Creative \Leftrightarrow complete for Σ_1^0 .

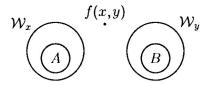
 (\Rightarrow) This uses the recursion theorem.

 (\Leftarrow) Creativeness is preserved under reduction.

Onward to pairs of subsets of ω

Definition (Kleene, 1950s) A pair (A, B) of Σ_1^0 subsets of ω is *effectively inseparable* if there is some recursive $f : \omega^2 \to \omega$ such that for each $x, y \in \omega$:

 $W_x \supseteq A \text{ and } W_y \supseteq B \text{ are disjoint } \Rightarrow f(x,y) \notin W_x \cup W_y.$



Effective inseparability effectivizes "(A, B) has no Δ_1^0 separating set":

- W_x and W_y together threaten to define a Δ_1^0 separating set;
- ► f(x, y) is an effectively produced witness which defeats the pair (W_x, W_y).

Effectively inseparable \Leftrightarrow complete for pairs

Just as creativeness is equivalent to completeness, effective inseparability is equivalent to the following notion:

Definition

A pair of disjoint Σ_1^0 sets (A, B) is complete for Σ_1^0 pairs if for every pair of disjoint Σ_1^0 sets (C, D), there is some recursive $f: \omega \to \omega$ such that

 $x \in C \Leftrightarrow f(x) \in A$ and $x \in D \Leftrightarrow f(x) \in B$.

Theorem (Smullyan, 1961)

Effectively inseparable \Leftrightarrow complete for Σ_1^0 pairs.

(⇒) This uses Smullyan's double recursion theorem.
(⇐) Fix a pair of effectively inseparable sets. Effective

inseparability is preserved under reduction.

Sets which separate complete pairs are complete

Corollary (folklore?)

Suppose that (A, B) is complete for Σ_1^0 pairs. If C is a Σ_1^0 set which separates A and B, then C is complete for Σ_1^0 . Similarly, if C is a Π_1^0 set which separates A and B, then C is complete for Π_1^0 .

Proof of first statement.

By Smullyan's theorem, (A, B) is effectively inseparable. This implies that C is creative: WLOG $A \subseteq C \subseteq \overline{B}$. Given $W_x \subseteq \overline{C}$, apply effective inseparability of (A, B) to the disjoint Σ_1^0 sets

$$C \supseteq A$$
 and $W_x \cup B \supseteq B$.

By Myhill's theorem, C is complete for Σ_1^0 .

I do not know a proof of this result which does not use the recursion theorem.

$\Pi^1_1 \text{ subsets of } \omega$

The goal now is to carry out the previous analysis in other settings. Let's start with Π_1^1 subsets of ω .

Definition (G.)

A Π_1^1 set $C \subseteq \omega$ is *creative for* Π_1^1 if there is some recursive $f : \omega \to \omega$ such that for each $x \in \omega$:

 G_x and C are disjoint $\Rightarrow f(x) \notin C \cup G_x$.

Here G_x is the *x*-th Π_1^1 subset of ω .

A Π_1^1 set $C \subseteq \omega$ is complete for Π_1^1 if for every Π_1^1 set $D \subseteq \omega$, there is some recursive $f : \omega \to \omega$ such that $x \in D \Leftrightarrow f(x) \in C$.

Theorem (G.)

Creative for $\Pi_1^1 \Leftrightarrow$ complete for Π_1^1 .

The main point here is that the Π^1_1 subsets of ω have a "good" parametrization.

Pairs of Π_1^1 subsets of ω

Similarly, one can define the notions:

- effectively inseparable for Π_1^1 ; and
- complete for Π_1^1 pairs

and prove that they are equivalent.

To prove (\Uparrow), one needs the existence of a pair of Π_1^1 subsets of ω which is effectively inseparable for Π_1^1 .

Such a pair can be constructed using the fact that Π_1^1 subsets of ω have the reduction property.

The above equivalence is slightly inadequate for our intended applications. To see why, let's consider a pair of Π_1^1 sets which we hope to prove is complete.

A natural complete pair of Π^1_1 subsets of ω

- wf: the set of indices for recursive well-founded trees on ω
- hb: the set of indices for recursive trees on ω with some hyperarithmetic branch

Theorem (G.)

 $({\rm wf},{\rm hb})$ is complete for $\mathsf{\Pi}^1_1$ pairs.

Sketch.

Given disjoint Π_1^1 sets (A, B), fix reductions f and g from A and B to wf respectively. Given any $x \in \omega$, consider the recursive tree whose branches are strict-order-preserving embeddings from $T_{f(x)}$ to $T_{g(x)}$ (joined with Skolem functions). If $x \in B$, then $T_{f(x)}$ is ill-founded and $T_{g(x)}$ is well-founded, so there is no strict-order-preserving embedding. If $x \in A$, then $T_{f(x)}$ is well-founded and $T_{g(x)}$ is ill-founded, so there is a hyperarithmetic strict-order-preserving embedding.

NB: This sketch does not address the case where $x \notin A \cup B!$

Semi-completeness for pairs

Definition

A pair (A, B) of Π_1^1 subsets of ω is *semi-complete for* Π_1^1 *pairs* if for any pair C, D of disjoint Π_1^1 subsets of ω , there is some total recursive function $f : \omega \to \omega$ such that

$$x \in C \Rightarrow f(x) \in A$$
 and $x \in D \Rightarrow f(x) \in B$.

The previous slide sketched a proof that (wf, hb) is semi-complete for Π_1^1 pairs. But this is equivalent to completeness:

Theorem (G.)

Let (A, B) be a pair of disjoint Π_1^1 subsets of ω . TFAE:

- 1. (A, B) is effectively inseparable for Π_1^1 ;
- 2. (A, B) is complete for Π_1^1 ;
- 3. (A, B) is semi-complete for Π_1^1 .

The point behind (3) \Rightarrow (1) is that a "semi-reduction" preserves effective inseparability. (Smullyan proved an analog of this for Σ_1^0 .)

What about trees with a unique branch?

ub: the set of indices for recursive trees on ω which have a unique branch

We shall show that (wf, ub) is complete for Π_1^1 pairs.

 $ub \subset hb$, so every separating set for (wf, hb) also separates (wf, ub). Therefore if (wf, ub) is inseparable, so is (wf, hb).

We will indirectly reduce $(\rm wf, hb)$ to $(\rm wf, ub)$ by considering Turing jump hierarchies along countable linear orderings.

Turing jump hierarchies are in fact my primary motivation for this work.

Turing jump hierarchies on countable linear orderings

Given any real, the (Turing) jump operator produces a more complicated real (wrt Turing reducibility).

Jump hierarchies can be obtained by iterating the jump operator along a countable well-ordering. At limit stages, one collects all previous results of the iteration using the (effective) join.

More generally, one can define what it means to be a jump hierarchy along any countable linear ordering. (There are a few ways to define this, but they are equivalent for our present purposes.)

There are jump hierarchies along ill-founded linear orderings because:

- "L supports some jump hierarchy" is a Σ_1^1 property of L
- "*L* is a well-ordering" is not Σ_1^1 .

A question, answered by Harrington

Which linear orderings support a jump hierarchy? Specifically:

Question

Is the set of indices for recursive linear orderings which support a jump hierarchy complete for Σ_1^1 ?

The above question arose in my investigation of the computational strength of problems relating to jump hierarchies (a bit on that later).

Theorem (Harrington 2017, unpublished) Yes.

Harrington's proof was clever, ad hoc, and relied heavily on the recursion theorem.

The present work was directly inspired by Harrington's proof.

Well-orderings and linear orderings with hyperarithmetic descending sequences

In order to derive Harrington's result, we consider

- wo: the set of indices for recursive well-orderings;
- hds: the set of indices for recursive linear orderings with a hyperarithmetic descending sequence.
- H. Friedman showed that

well-ordering \Rightarrow supports a jump hierarchy \Rightarrow no hyp desc. seq.

```
Theorem (G.)
```

(wo, hds) is complete for Π_1^1 pairs.

Proof.

The Kleene-Brouwer ordering reduces (wf, hb) to (wo, hds).

Since any Σ_1^1 separating set for a complete Π_1^1 pair is complete for Σ_1^1 , Harrington's result follows.

Returning to trees with a unique branch

Theorem (G.) (wf, ub) is complete for Π_1^1 pairs.

Sketch.

We semi-reduce (hds, wo) to (wf, ub). Given an index for a recursive linear ordering L, consider the tree T of jump hierarchies along L (joined with minimal Skolem functions).

L has a hyp desc. seq. \Rightarrow *T* is well-founded (H. Friedman) *L* is well-ordered \Rightarrow *T* has a unique branch.

Corollary (G.) Any Σ_1^1 subset of ω which separates wf and ub is complete for Σ_1^1 . (Likewise for Π_1^1 .) Before moving on to subsets of ω^{ω} , we mention other applications of our results for Π^1_1 subsets of ω .

Our results imply that the set of indices for recursive linear orderings which are isomorphic to an ordinal in some ω -model of Kripke-Platek set theory is complete for Σ_1^1 .

This answers a question of Knight, Turetsky, Weisshaar (ta).

Applications of our results, II

Our results have been used to calibrate the (uniform) computational strength of problems concerning jump hierarchies (Anglès d'Auriac, Kihara 2021; G., Pauly, Valenti 2021).

Example problems (stated informally):

- Given a well-ordering, produce the jump hierarchy along it
- Given a linear ordering, produce either a jump hierarchy along it or a descending sequence.
- Given a linear ordering, produce a jump hierarchy if it supports a jump hierarchy; otherwise produce a descending sequence.

All of these problems are analogs of the Arithmetical Transfinite Recursion principle from reverse mathematics.

How about coanalytic subsets of ω^{ω} ?

- $\rm WF:$ the set of well-founded trees on ω
- UB: the set of trees on ω with a unique branch

Theorem (Saint Raymond, 2007)

For any pair (A, B) of disjoint coanalytic subsets of ω^{ω} , there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $f^{-1}(WF) = A$ and $f^{-1}(UB) = B$.

If we relativize the definitions of creativeness, completeness, and effective inseparability appropriately, we can obtain an effective version of the above:

Theorem (G.)

Suppose $\gamma \in \omega^{\omega}$. For any pair (A, B) of disjoint $\Pi_1^1(\gamma)$ subsets of ω^{ω} , there is a γ -recursive function $f : \omega^{\omega} \to \omega^{\omega}$ such that $f^{-1}(WF) = A$ and $f^{-1}(UB) = B$.

Using our result (or Saint Raymond's), we obtain completeness results for subsets of ω^{ω} , including the theorem on slide 1.

How about other pointclasses?

Let \mathcal{X} denote either ω or ω^{ω} . Suppose $\Gamma \upharpoonright \mathcal{X}$ is \mathcal{X} -parametrized in a Λ -recursive way. Let G_x denote the x-th subset of \mathcal{X} in Γ . Example definition:

Definition (G.)

 $C \subseteq \mathcal{X}$ is Λ -creative for Γ if it lies in Γ and there is a Λ -recursive function $f : \mathcal{X} \to \mathcal{X}$ such that for every $x \in \mathcal{X}$, if G_x and C are disjoint, then $f(x) \notin C \cup G_x$.

hold assuming:

- 1. the recursion theorem for Λ -recursive functions
- 2. the class of A-recursive functions is closed under composition
- 3. Γ satisfies the reduction property
- 4. Γ is closed under preimages by $\Lambda\text{-recursive functions}$
- 5. other mild closure properties.

Summary

- We develop a theory of effectively inseparable sets for a variety of pointclasses, along the lines of the classical development for Σ⁰₁ subsets of ω.
- This provides bridges between different notions of completeness for pairs and completeness for separating sets.
- We construct natural pairs of effectively inseparable Π¹₁ subsets of ω, such as (wo, hds) and (wf, ub).
- With appropriate relativizations, we can do the same for coanalytic subsets of ω^ω.
- Applications of our results:
 - completeness of various sets
 - an effective version of a theorem from descriptive set theory
 - calibrating the uniform computational strength of problems.

Thanks!