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Q: Given a theory, does it have a minimum model?

Theorem (Grzegorczyk, Mostowski, Ryll-Nardzewski and Gandy, Kreisel, Tait)

The intersection of all ω-models of full second-order arithmetic is
the class HYP of hyperarithmetical sets.

Q: Is there a theory whose minimum ω-model is HYP?

There are several such theories, including ∆1
1-CA and Σ1

1-AC.

In fact, every ω-model of (say) Σ1
1-AC is hyp closed, i.e., closed

under hyperarithmetic reduction and ⊕.

Q: Is there a theory whose ω-models are exactly those
which are hyp closed?
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ω-models of theories of second-order arithmetic

Q: Is there a theory whose ω-models are exactly those
which are hyp closed?

Theory Closure of ω-models Minimum ω-model

RCA0 Turing reduction and ⊕ REC
ACA0 Arithmetic reduction and ⊕ ARITH

? Hyp reduction and ⊕ HYP

The answer is no:

Theorem (van Wesep ‘77)

For any theory T all of whose ω-models are hyp closed, there is
some T ′ which is strictly weaker than T , all of whose ω-models are
hyp closed.
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Theories of hyp analysis

Definition (Montalbán ‘06, relativizing Steel ‘78)

T is a theory of hyp analysis if:

1 every ω-model of T is hyp closed;

2 for every Y ⊆ ω, HYP(Y ) |= T .

By van Wesep, there is no weakest theory of hyp analysis.

Q: How does the “zoo” of theories of hyp analysis look
like?

For example, are they linearly ordered?

Q: Are there any theories of hyp analysis which can be
formulated without using concepts from logic?

“Clearly” Σ1
1-AC and ∆1

1-CA do not qualify.
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Over RCA0 + IΣ1
1:

Kleene ‘59, Kreisel ‘62,
Friedman ‘67, Harrison ‘68,
van Wesep ‘77, Steel ‘78,
Simpson ‘99,
Montalbán ‘06, ‘08,
Neeman ‘08
Conidis ‘12
Barnes, G., Shore in
preparation

All of these separations
(except Σ1

1-AC0 0 Σ1
1-DC0)

were proved using Steel
forcing and variants thereof.
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A Σ1
1 axiom of finite choice

Kreisel ‘62: Σ1
1-AC0 consists of the sentences

(∀n)(∃X )ϕ(n,X )→ (∃〈Xn〉n)(∀n)ϕ(n,Xn)

for ϕ arithmetical.

Definition

Finite-Σ1
1-AC0 consists of the sentences

(∀n)(∃ finitely many X )ϕ(n,X )→ (∃〈Xn〉n)(∀n)ϕ(n,Xn)

for ϕ arithmetical.

Finite-Σ1
1-AC0 is a theory of hyp analysis, since it is sandwiched

between theories of hyp analysis.
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Our results

Theorem (G.)

There is an ω-model which satisfies ∆1
1-CA0 but not finite-Σ1

1-AC0.

Theorem (G.)

ABW0 + IΣ1
1 ` finite-Σ1

1-AC0.

Our results strengthen

Theorem (Conidis ‘12)

There is an ω-model which satisfies ∆1
1-CA0 but not ABW0.

Theorem (Conidis ‘12)

ABW0 + IΣ1
1 ` unique-Σ1

1-AC0.

We do not know if finite-Σ1
1-AC0 implies ABW0.
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Steel’s proof

Theorem (Steel ‘78)

There is an ω-model which satisfies ∆1
1-CA0 but not Σ1

1-AC0.

Steel constructs a generic tree TG ⊆ ω<ω and generic paths
〈αG

i 〉i∈ω on TG such that the αG
i ’s are not easily definable from

one another.

For each finite F ⊂ ω, the model MF consists of all sets which are
computable in the λth jump of TG ⊕ 〈αG

i 〉i∈F , for some λ < ωCK
1 .

Lemma

For each finite F ⊂ ω, the set of paths on TG in MF is exactly
{αG

i : i ∈ F}.

Finally, define M∞ =
⋃

F⊂ω finite MF .
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Steel’s proof

(⋃
F⊂ω finite MF =

)
M∞ |= ¬Σ1

1-AC0.

Consider ϕ(n,X ): X is a set of n distinct paths on TG .
For each n, ϕ(n, ·) has a solution in M∞.

A Σ1
1-AC0-solution 〈Xn〉n∈ω would compute an infinite sequence of

distinct paths on TG . But M∞ does not contain any infinite
sequence of distinct paths on TG , by the lemma.

M∞ |= ∆1
1-CA0.

Main ingredient of proof is to show that if two forcing conditions
are sufficiently “alike”, then they force the same Σ1

1 formulas.

This helps to control the complexity of the forcing relation.
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Steel tagged tree forcing
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A condition p consists of:

1 a finite tree T p

2 finitely many paths f p(i)

3 tags hp : T p → ωCK
1 ∪ {∞}
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Steel tagged tree forcing

Conditions are p = 〈T p, f p, hp〉 where:

1 T p ⊆ ω<ω is finite

2 f p is a finite partial function from ω to T p

(for each i , f p(i) is an initial segment of the generic path αG
i )

3 hp tags nodes of T p with a computable ordinal or ∞
if τ ⊆ σ, then hp(τ) > hp(σ)
nodes in range(f p) must be tagged ∞

q extends p if:

1 T q ⊇ T p

2 hq ⊇ hp

3 f q can extend paths in f p, subject to a technical restriction

4 f q can add new paths to f p, subject to a technical restriction
(f q(j) is new if j /∈ dom(f p).)

Jun Le Goh A Σ1
1 axiom of finite choice and Steel forcing



Steel tagged tree forcing with locks (G.)

Conditions are p = 〈T p, f p, hp, `p〉 where:

1 T p ⊆ ω<ω is finite

2 f p is a finite partial function from ω to T p

(for each i , f p(i) is an initial segment of the generic path αG
i )

3 hp tags nodes of T p with a computable ordinal or ∞
if τ ⊆ σ, then hp(τ) > hp(σ)
nodes in range(f p) must be tagged ∞

4 `p ⊆ {n : 〈n〉 ∈ T p}. 〈n〉 is locked if n ∈ `p.

q extends p if:

1 T q ⊇ T p

2 hq ⊇ hp

3 f q can extend paths in f p, subject to a technical restriction

4 f q can add new paths to f p, subject to a technical restriction
and restriction by the locks

5 `q ⊇ `p.
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Steel tagged tree forcing with locks (G.)
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A condition p consists of:

1 a finite tree T p

2 finitely many paths f p(i)

3 tags hp : T p → ωCK
1 ∪ {∞}

4 locks on certain nodes at level 1 of T p
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Using locks to ensure that M∞ |= ¬finite-Σ1
1-AC0

The locks ensure that

“X is a path on TG which passes through 〈n〉” is an instance of
finite-Σ1

1-AC0 in M∞, i.e., for each n,

M∞ contains a path through 〈n〉;
M∞ contains only finitely many paths which pass through 〈n〉.

Locks impose the following restrictions on new paths:

Say q ≤ p. If q adds a new path passing through 〈n〉, then either:

none of the paths in p pass through 〈n〉, or

〈n〉 is unlocked in p.

The first condition ensures that some αG
i passes through 〈n〉.

The second condition ensures that only finitely many paths αG
i

pass through 〈n〉.
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Towards M∞ |= ∆1
1-CA0: retagging

The tags in the forcing conditions help us control the paths on
TG . Recall from an earlier slide:

Lemma

For each finite F ⊂ ω, the set of paths on TG in MF is exactly
{αG

i : i ∈ F}.

Proof idea: Towards a contradiction, suppose p forces that some
other S in MF is a path on TG .

We modify p to kill off S , i.e., retag some node in S from ∞ to an
ordinal. Care is needed to not kill off any αG

i , i ∈ F .

To obtain a contradiction, we want to show that the modified
condition still forces that S is a path on TG .

The formula asserting that S is a path on TG is simple enough
that we can prove that.
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Comments on our forcing language

The model M∞ is both “tall” and “wide”:

each MF contains the λth jump of TG ⊕ 〈αG
i 〉i∈F for every

λ < ωCK
1 ;

M∞ contains αG
i for every i ∈ ω.

Correspondingly, formulas in our forcing language can be
complicated in two ways:

they might quantify over unranked set variables, which are
allowed to range over all sets computable in (αG

i )(λ) for every
λ < ωCK

1 ;

they might quantify over all ranked sets in M∞, instead of all
ranked sets in some MF ;

they might do both!
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Retagging and the forcing relation

Steel’s notion of retagging is sufficient for controlling the forcing
relation for “simple” formulas:

Definition (Steel)

Two conditions p and p∗ are µ-F -absolute retaggings if:

T p = T p∗ and f p � F = f p
∗
� F ;

hp and hp
∗

agree up to µ, i.e.,

if hp(σ) < µ, then hp(σ) = hp
∗
(σ);

if hp(σ) ≥ µ, then hp
∗
(σ) ≥ µ as well.

Lemma

Suppose that ψ only quantifies over ranked sets in some MF .
If p and p∗ are µ-F -absolute retaggings, then

p  ψ ⇔ p∗  ψ.

(µ increases with the complexity of ψ.)
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A stronger retagging notion for Σ1
1 formulas

In order to reason about the forcing relation for Σ1
1 formulas, we

require a stronger retagging notion which places restrictions on the
locks (and more!)

Definition (G.)

We say that Ret≤(µ, p, p∗) if:

p and p∗ are µ-dom(f p)-absolute retaggings;

paths in p and p∗ pass through the same nodes of length 1
(as a whole);

every node which is locked in p∗ is also locked in p.

Unlike Steel’s retagging, Ret≤ is asymmetric.

The first condition above implies that every path in p is also
in p∗.

Roughly speaking, we show that if p forces a Σ1
1 formula ψ and

Ret≤(µ, p, p∗) for some µ, then p∗ forces ψ as well.

Jun Le Goh A Σ1
1 axiom of finite choice and Steel forcing



M∞ satisfies ∆1
1-comprehension

Suppose ψ and ϕ are complementary Σ1
1 formulas. Goal:

{d ∈ ω : ∃q ∈ G (q  ψ(d))} ∈ M∞.

Two key steps:

1 use a boundedness argument to restrict our attention to ψµ,
which is the result of bounding all set quantifiers in ψ by some
µ < ωCK

1 ;

2 modify the scope of “∃q ∈ G” to all conditions q whose
tagging functions hq agree with the actual rank function hG

of TG up to some µ < ωCK
1 .

We establish these by utilizing the relationships between various
notions of retagging and the forcing relation.
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M∞ satisfies ∆1
1-comprehension

Towards a contradiction, assume that M∞ |= ϕ(d), yet we are able
to find q that satisfies the requirements in the previous slide.

p

q r

q∗ r∗s∗

∀n(ψ(n)↔ ¬ϕ(n))

ψµ(d) ∧ ϕµ(d)

ψµ(d) ϕµ(d)

Ret≤ Ret≥






 



p and r lie in G , while q “looks like” it lies in G (at least enough

so that we can “amalgamate” q and r). Thank you!
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