# Compositions of multi-valued functions 

Jun Le Goh<br>Cornell University

Asian Logic Conference, July 2017

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

We may view $R T_{k}^{1}$ as a problem, with instances and solutions.

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

We may view $\mathrm{RT}_{k}^{1}$ as a problem, with instances and solutions.
If we can solve $R T_{2}^{1}$, can we use that to solve $R T_{3}^{1}$ ?

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

We may view $\mathrm{RT}_{k}^{1}$ as a problem, with instances and solutions.
If we can solve $R T_{2}^{1}$, can we use that to solve $R T_{3}^{1}$ ?
Yes, by invoking $\mathrm{RT}_{2}^{1}$ twice (uniformly).

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

We may view $\mathrm{RT}_{k}^{1}$ as a problem, with instances and solutions.
If we can solve $R T_{2}^{1}$, can we use that to solve $R T_{3}^{1}$ ?
Yes, by invoking $\mathrm{RT}_{2}^{1}$ twice (uniformly).
Q: Is it possible to solve $\mathrm{RT}_{3}^{1}$ with only one invocation of $\mathrm{RT}_{2}^{1}$ ? How about two invocations of $\mathrm{RT}_{2}^{1}$, but in parallel?

Consider the infinite pigeonhole principle $\mathrm{RT}_{k}^{1}$ : every $k$-partition of $\mathbb{N}$ has an infinite homogeneous set.

We may view $R T_{k}^{1}$ as a problem, with instances and solutions.
If we can solve $R T_{2}^{1}$, can we use that to solve $R T_{3}^{1}$ ?
Yes, by invoking $\mathrm{RT}_{2}^{1}$ twice (uniformly).
Q: Is it possible to solve $\mathrm{RT}_{3}^{1}$ with only one invocation of $\mathrm{RT}{ }_{2}^{1}$ ? How about two invocations of $\mathrm{RT}_{2}^{1}$, but in parallel?

In order to answer such questions, we need to formalize statements such as
" $P$ can be solved by invoking $Q_{0}$, and then invoking $Q_{1}$,
..., and finally invoking $Q_{n-1}$."

## Weihrauch reducibility among multi-valued functions

$P \leq w Q$ if there are Turing functionals $\Gamma$ and $\Delta$ such that for every $P$-instance $X$,

- $\Gamma^{X}$ is a $Q$-instance;
- for every $Q$-solution $Y$ to $\Gamma^{X}, \Delta^{X \oplus Y}$ is a $P$-solution to $X$.


This formalizes the statement " $P$ can be solved by invoking $Q$ once (uniformly)."

## Composition

$X$ is a $\left(Q_{1} \circ Q_{0}\right)$-instance if

- $X$ is a $Q_{0}$-instance;
- every $Q_{0}$-solution $Y$ to $X$ is itself a $Q_{1}$-instance. $Z$ is a $\left(Q_{1} \circ Q_{0}\right)$-solution to $X$ if there is $Y$ such that
- $Y$ is a $Q_{0}$-solution to $X$;
- $Z$ is a $Q_{1}$-solution to $Y$.

$$
\begin{array}{cc}
Q_{0} & Q_{1} \\
X-\cdots & Y
\end{array}
$$

## Composition

$X$ is a $\left(Q_{1} \circ Q_{0}\right)$-instance if

- $X$ is a $Q_{0}$-instance;
- every $Q_{0}$-solution $Y$ to $X$ is itself a $Q_{1}$-instance.
$Z$ is a $\left(Q_{1} \circ Q_{0}\right)$-solution to $X$ if there is $Y$ such that
- $Y$ is a $Q_{0}$-solution to $X$;
- $Z$ is a $Q_{1}$-solution to $Y$.

$P \leq w Q_{1} \circ Q_{0}$ is too weak! We should at least allow ourselves to computably transform the $Q_{0}$-solution $Y$ into some $Q_{1}$-instance.


## $\bullet_{\ominus}$ (Dorais, Dzhafarov, Hirst, Mileti, Shafer '15)

$X$ is a $\left(Q_{1} \bullet \ominus Q_{0}\right)$-instance if

- $X$ is a $Q_{0}$-instance;
- for every $Q_{0}$-solution $Y$ to $X, \Theta^{X \oplus Y}$ is a $Q_{1}$-instance.

A $\left(Q_{1} \bullet \ominus Q_{0}\right)$-solution to $X$ is a pair $(Y, Z)$ such that

- $Y$ is a $Q_{0}$-solution to $X$;
- $Z$ is a $Q_{1}$-solution to $\Theta^{X \oplus Y}$.



## $\bullet_{\ominus}$ (Dorais, Dzhafarov, Hirst, Mileti, Shafer '15)

$X$ is a $\left(Q_{1} \bullet \ominus Q_{0}\right)$-instance if

- $X$ is a $Q_{0}$-instance;
- for every $Q_{0}$-solution $Y$ to $X, \Theta^{X \oplus Y}$ is a $Q_{1}$-instance.

A $\left(Q_{1} \bullet \ominus Q_{0}\right)$-solution to $X$ is a pair $(Y, Z)$ such that

- $Y$ is a $Q_{0}$-solution to $X$;
- $Z$ is a $Q_{1}$-solution to $\Theta^{X \oplus Y}$.

$P \leq{ }_{W} Q_{1} \bullet_{\Theta} Q_{0}$ is too weak! $\Theta$ cannot access the original $P$-instance, only the $Q_{0}$-instance computed from it.


## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

Player I

Player I/

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
P \text {-instance } X_{0} &
\end{array}
$$

Round 1

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{gathered}
\text { Player I } \\
P \text {-instance } X_{0}
\end{gathered}
$$

Player II

Round 1

$$
P \text {-solution } \Phi^{X_{0}} \text { win! }
$$

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{gathered}
\text { Player I } \\
P \text {-instance } X_{0}
\end{gathered}
$$

Player II

Round 1
$Q$-instance $\Phi^{X_{0}}$

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{gathered}
\text { Player I } \\
P \text {-instance } X_{0}
\end{gathered}
$$

Player II

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{<-\ldots-} \frac{Q \text {-instance } \Phi^{X_{0}}}{}
$$

Round 2

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
P \text {-instance } X_{0} &
\end{array}
$$

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{1-\ldots-\text {-instance } \Phi^{X_{0}}}
$$

Round 2
$P$-solution $\Phi^{X_{0} \oplus X_{1}}$ win!

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
P \text {-instance } X_{0} &
\end{array}
$$

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{1-\ldots \text {-instance } \Phi^{X_{0}}}
$$

Round 2
$Q$-instance $\Phi^{X_{0} \oplus X_{1}}$

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
\text { P-instance } X_{0} &
\end{array}
$$

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{1-\ldots \text {-instance } \Phi^{X_{0}}}
$$

Round 2

$$
Q \text {-solution } X_{2}<Q^{Q} Q^{- \text {-instance } \Phi^{X_{0} \oplus X_{1}}}
$$

Round 3

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
\text { P-instance } X_{0} &
\end{array}
$$

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{1-\ldots \text {-instance } \Phi^{X_{0}}}
$$

Round 2

$$
Q \text {-solution } X_{2}<Q^{Q} Q^{- \text {-instance } \Phi^{X_{0} \oplus X_{1}}}
$$

Round 3
$P$-solution $\Phi^{X_{0} \oplus X_{1} \oplus X_{2}}$ win!

## Reduction games (Hirschfeldt, Jockusch '16)

$P \leq_{g W}^{2} Q$ if there is a computable winning strategy $\Phi$ for Player II in the following game:

$$
\begin{array}{cc}
\text { Player I } & \text { Player II } \\
P \text {-instance } X_{0} &
\end{array}
$$

Round 1

$$
Q \text {-solution } X_{1} \stackrel{Q}{1-\ldots \text {-instance } \Phi^{X_{0}}}
$$

Round 2

$$
Q \text {-solution } X_{2}<Q^{Q} Q \text {-instance } \Phi^{X_{0} \oplus X_{1}}
$$

Round 3

$$
P \text {-solution } \Phi^{X_{0} \oplus X_{1} \oplus X_{2}} \text { win! }
$$

Fine print: $\Phi$ has to specify whether it is providing a $P$-solution or a $Q$-instance.

## Compositional product (Brattka, Gherardi, Marcone '11)

The composition of multifunctions is weak, but we can take the sup of the composition of all Weihrauch equivalent multifunctions.

If $\mathbf{q}_{\mathbf{0}}$ and $\mathbf{q}_{\mathbf{1}}$ are Weihrauch degrees, define

$$
\mathbf{q}_{1} \star \mathbf{q}_{0}=\sup \left\{Q_{1} \circ Q_{0}: Q_{0} \equiv w \mathbf{q}_{0}, Q_{1} \equiv w \mathbf{q}_{1}\right\}
$$

## Compositional product (Brattka, Gherardi, Marcone '11)

The composition of multifunctions is weak, but we can take the sup of the composition of all Weihrauch equivalent multifunctions.

If $\mathbf{q}_{\mathbf{0}}$ and $\mathbf{q}_{\mathbf{1}}$ are Weihrauch degrees, define

$$
\mathbf{q}_{\mathbf{1}} \star \mathbf{q}_{\mathbf{0}}=\sup \left\{Q_{1} \circ Q_{0}: Q_{0} \equiv W \mathbf{q}_{\mathbf{0}}, Q_{1} \equiv{ }_{W} \mathbf{q}_{\mathbf{1}}\right\} .
$$

Brattka and Pauly ('16) showed that:

- the above sup exists and is realized;
- $\star$ is associative;
- $\star$ is monotone in both components.


## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet_{\Theta} \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet_{\Theta} \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Corollaries
For all $Q$, there is a functional $\Theta$ such that $Q \star Q \equiv{ }_{w} Q \bullet_{\ominus} \bar{Q}$.

## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet \ominus \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Corollaries
For all $Q$, there is a functional $\Theta$ such that $Q \star Q \equiv{ }_{w} Q \bullet_{\Theta} \bar{Q}$.
For all $Q$,

$$
\sup _{\wedge} Q \bullet \wedge \bar{Q} \equiv w Q \star Q \leq_{g W}^{2} Q
$$

## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet \ominus \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

## Corollaries

For all $Q$, there is a functional $\Theta$ such that $Q \star Q \equiv{ }_{w} Q \bullet_{\Theta} \bar{Q}$.
For all $Q$ which have computable instances,

$$
\sup _{\wedge} Q \bullet \wedge \bar{Q} \equiv w Q \star Q \equiv w \sup \left\{P: P \leq_{g W}^{2} Q\right\}
$$

## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq w Q{ }^{\circ} \bullet_{\Theta} \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Sketch of proof of theorem.
$(1) \Rightarrow(2)$ : take $Q_{0}, Q_{1} \leq_{W} Q$ such that $P \leq_{W} Q_{1} \circ Q_{0}$, then use that to define a strategy.
$(2) \Rightarrow(3)$ : encode the original $P$-instance in the $\bar{Q}$-instance. $\Theta$ follows the strategy.
$(3) \Rightarrow(1)$ : straightforward.

## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet \ominus \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Questions

- In (3), can we consider $Q \bullet_{\bullet} Q$ instead of $Q \bullet \bullet \bar{Q}$ ?
- In (2), can we consider $P \leq_{g W}^{2} Q$, without the condition that the strategy wins in the last round?


## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq_{w} Q \bullet \ominus \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Questions

- In (3), can we consider $Q \bullet_{\ominus} Q$ instead of $Q \bullet_{\ominus} \bar{Q}$ ? No.
- In (2), can we consider $P \leq_{g W}^{2} Q$, without the condition that the strategy wins in the last round?


## Composing a multi-valued function with itself

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq W Q \star Q$;
2. there is a strategy for II witnessing that $P \leq_{g W}^{2} Q$, which always wins in round 3 ;
3. there is a functional $\Theta$ such that $P \leq w Q \bullet_{\ominus} \bar{Q}$, where $\bar{Q}$ is defined by $\bar{Q}(A, X)=Y$ whenever $Q(X)=Y$.

Questions

- In (3), can we consider $Q \bullet_{\ominus} Q$ instead of $Q \bullet_{\ominus} \bar{Q}$ ? No.
- In (2), can we consider $P \leq_{g W}^{2} Q$, without the condition that the strategy wins in the last round? Not unless $Q$ has computable instances, but...


## Back to Weihrauch reducibility

In a Weihrauch reduction from $P$ to $Q$, given a $P$-instance, one must compute a $Q$-instance even if one could already solve said $P$-instance!


## Back to Weihrauch reducibility

In a Weihrauch reduction from $P$ to $Q$, given a $P$-instance, one must compute a $Q$-instance even if one could already solve said $P$-instance!

$P \leq_{g W}^{1} Q$ has more flexibility: given a $P$-instance, Player II can either choose to solve it directly, or compute a $Q$-instance for Player I to solve.

## The $\equiv{ }_{g W}^{1}$ lattice

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq_{g W}^{1} Q \star Q$;
2. $P \leq_{g W}^{2} Q$;
3. there is a functional $\Theta$ such that $P \leq_{g W}^{1} Q \bullet \Theta \bar{Q}$.

## The $\equiv{ }_{g W}^{1}$ lattice

Theorem
For all $P$ and $Q$, TFAE:

1. $P \leq{ }_{g W}^{1} Q \star Q$;
2. $P \leq_{g W}^{2} Q$;
3. there is a functional $\Theta$ such that $P \leq_{g W}^{1} Q \bullet \Theta \bar{Q}$.
$\leq_{g W}^{1}$ is reflexive and transitive. The $\equiv_{g W}^{1}$-degrees form a lattice with the usual join and meet operations.

Q: How does the $\equiv_{g W^{-}}^{1}$-lattice compare with the Weihrauch lattice?

## Summary

We studied three formalizations of "one can solve $P$ by uniformly invoking $Q$ twice in series":

- the compositional product $Q \star Q$;
- the reduction game $P \leq_{g W}^{2} Q$;
- the step product $Q \bullet_{\ominus} Q$.


## Our results:

- For those $Q$ that arise from mathematical theorems, the first two are equivalent.
- The third is weaker than the first two, but can be made equivalent with a simple modification.

