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Consider the infinite pigeonhole principle
RT1

k : every k-partition of N has an infinite homogeneous set.

We may view RT1
k as a problem, with instances and solutions.

If we can solve RT1
2, can we use that to solve RT1

3?

Yes, by invoking RT1
2 twice (uniformly).

Q: Is it possible to solve RT1
3 with only one invocation of RT1

2?
How about two invocations of RT1

2, but in parallel?

In order to answer such questions, we need to formalize statements
such as

“P can be solved by invoking Q0, and then invoking Q1,
..., and finally invoking Qn−1.”
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Weihrauch reducibility among multi-valued functions

P ≤W Q if there are Turing functionals Γ and ∆ such that for
every P-instance X ,

I ΓX is a Q-instance;

I for every Q-solution Y to ΓX , ∆X⊕Y is a P-solution to X .

X ΓX

Y∆X⊕Y

QP

This formalizes the statement “P can be solved by invoking Q
once (uniformly).”



Composition

X is a (Q1 ◦ Q0)-instance if

I X is a Q0-instance;

I every Q0-solution Y to X is itself a Q1-instance.

Z is a (Q1 ◦ Q0)-solution to X if there is Y such that

I Y is a Q0-solution to X ;

I Z is a Q1-solution to Y .

X Y Z
Q0 Q1

P ≤W Q1 ◦ Q0 is too weak! We should at least allow ourselves to
computably transform the Q0-solution Y into some Q1-instance.
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•Θ (Dorais, Dzhafarov, Hirst, Mileti, Shafer ‘15)

X is a (Q1 •Θ Q0)-instance if

I X is a Q0-instance;

I for every Q0-solution Y to X , ΘX⊕Y is a Q1-instance.

A (Q1 •Θ Q0)-solution to X is a pair (Y ,Z ) such that

I Y is a Q0-solution to X ;

I Z is a Q1-solution to ΘX⊕Y .

X Y ΘX⊕Y Z
Q0 Q1

P ≤W Q1 •Θ Q0 is too weak! Θ cannot access the original
P-instance, only the Q0-instance computed from it.
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Reduction games (Hirschfeldt, Jockusch ‘16)

P ≤2
gW Q if there is a computable winning strategy Φ for Player II

in the following game:

Player I Player II

P-instance X0
Round 1

P-solution ΦX0 win!Q-instance ΦX0

Round 2
Q-solution X1

Q

P-solution ΦX0⊕X1 win!Q-instance ΦX0⊕X1

Round 3
Q-solution X2

Q

P-solution ΦX0⊕X1⊕X2 win!

Fine print: Φ has to specify whether it is providing a P-solution or
a Q-instance.
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Compositional product (Brattka, Gherardi, Marcone ‘11)

The composition of multifunctions is weak, but we can take the
sup of the composition of all Weihrauch equivalent multifunctions.

If q0 and q1 are Weihrauch degrees, define

q1 ? q0 = sup{Q1 ◦ Q0 : Q0 ≡W q0,Q1 ≡W q1}.

Brattka and Pauly (‘16) showed that:

I the above sup exists and is realized;

I ? is associative;

I ? is monotone in both components.
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Composing a multi-valued function with itself

Theorem
For all P and Q, TFAE:

1. P ≤W Q ? Q;

2. there is a strategy for II witnessing that P ≤2
gW Q, which

always wins in round 3;

3. there is a functional Θ such that P ≤W Q •Θ Q, where Q is
defined by Q(A,X ) = Y whenever Q(X ) = Y .
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Composing a multi-valued function with itself

Theorem
For all P and Q, TFAE:

1. P ≤W Q ? Q;

2. there is a strategy for II witnessing that P ≤2
gW Q, which

always wins in round 3;

3. there is a functional Θ such that P ≤W Q •Θ Q, where Q is
defined by Q(A,X ) = Y whenever Q(X ) = Y .

Sketch of proof of theorem.

(1) ⇒ (2): take Q0,Q1 ≤W Q such that P ≤W Q1 ◦ Q0, then use
that to define a strategy.
(2) ⇒ (3): encode the original P-instance in the Q-instance. Θ
follows the strategy.
(3) ⇒ (1): straightforward.
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Composing a multi-valued function with itself

Theorem
For all P and Q, TFAE:

1. P ≤W Q ? Q;

2. there is a strategy for II witnessing that P ≤2
gW Q, which

always wins in round 3;

3. there is a functional Θ such that P ≤W Q •Θ Q, where Q is
defined by Q(A,X ) = Y whenever Q(X ) = Y .

Questions

I In (3), can we consider Q •Θ Q instead of Q •Θ Q? No.

I In (2), can we consider P ≤2
gW Q, without the condition that

the strategy wins in the last round? Not unless Q has
computable instances, but...



Back to Weihrauch reducibility

In a Weihrauch reduction from P to Q, given a P-instance, one
must compute a Q-instance even if one could already solve said
P-instance!

X ΓX

Y∆X⊕Y

QP

P ≤1
gW Q has more flexibility: given a P-instance, Player II can

either choose to solve it directly, or compute a Q-instance for
Player I to solve.
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The ≡1
gW lattice

Theorem
For all P and Q, TFAE:

1. P ≤1
gW Q ? Q;

2. P ≤2
gW Q;

3. there is a functional Θ such that P ≤1
gW Q •Θ Q.

≤1
gW is reflexive and transitive. The ≡1

gW -degrees form a lattice
with the usual join and meet operations.

Q: How does the ≡1
gW -lattice compare with the Weihrauch lattice?
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Summary

We studied three formalizations of “one can solve P by uniformly
invoking Q twice in series”:

I the compositional product Q ? Q;

I the reduction game P ≤2
gW Q;

I the step product Q •Θ Q.

Our results:

I For those Q that arise from mathematical theorems, the first
two are equivalent.

I The third is weaker than the first two, but can be made
equivalent with a simple modification.


