
COMPOSITIONS OF MULTIVALUED FUNCTIONS

JUN LE GOH

Abstract. In reverse mathematics, one sometimes encounters
proofs which invoke some theorem multiple times in series, or in-
voke different theorems in series. One example is the standard
proof that Ramsey’s theorem for 2 colors implies Ramsey’s the-
orem for 3 colors. A natural question is whether such repeated
applications are necessary. Questions like this can be studied un-
der the framework of Weihrauch reducibility. For example, one can
attempt to capture the notion of one multivalued function being
uniformly reducible to multiple instances of another multivalued
function in series. There are three known ways to formalize this
notion: the compositional product, the reduction game, and the
step product. We clarify the relationships between them by giving
sufficient conditions for them to be equivalent. We also show that
they are not equivalent in general.

1. Introduction

Many mathematical theorems can be thought of as problems; that is,
they have the form “for every instance X, there exists a solution Y ”.
For example, instances of the intermediate value theorem (on [0, 1])
are continuous functions f : [0, 1]→ R such that 0 lies strictly between
f(0) and f(1), and solutions to f are zeroes of f . Another example is
König’s lemma, which states that every infinite finitely branching tree
has an infinite path. Instances of König’s lemma are infinite finitely
branching trees T , and solutions to T are infinite paths on T .

What would it mean to solve a problem? Given an instance of the
problem, we must provide some solution to said instance. Since each
instance of a problem may have many solutions, there may be many
possible mappings which take each instance to a solution. Intuitively,

Date: June 27, 2019.
Key words and phrases. Weihrauch reducibility; compositional product; reduc-

tion game; step product.
We thank Richard A. Shore for many useful discussions and suggestions. We

also thank the referees for their helpful comments. This research was partially
supported by NSF grant DMS-1161175.

1

2 JUN LE GOH

a problem is easily solvable if some such mapping can be constructed
in a simple way.

This gives us a way to study the computational content of theorems:
we study how difficult it is to solve the associated problem. The ma-
chinery to do the latter was first studied by computable analysts: for
many theorems of interest, the instances and solutions of their associ-
ated problems can be represented as elements of Baire space NN. The
problems are then (possibly partial) multivalued functions on NN, and
the realizers are single-valued functions on NN with the same domain.

We are particularly interested in the relative computational strength
of problems. Given any realizer for problem Q, can we computably
transform it into some realizer for problem P? In order to formalize
this, we will use a reducibility relation known as Weihrauch reducibility.

Our interest in comparing mathematical theorems up to Weihrauch
reducibility is closely related to, and partially motivated by, the pro-
gram of reverse mathematics, which studies the proof-theoretic strength
of mathematical theorems over some base theory. The standard base
theory is a weak subsystem of second-order arithmetic known as RCA0,
which roughly corresponds to computable mathematics. In that con-
text, one considers the following question. For any two theorems P
and Q, do we have RCA0 + Q ` P?

For example, consider Ramsey’s theorem for k-colorings of n-tuples
(RTn

k): for every coloring c : [N]n → k, there is an infinite c-homogeneous
set. Then RCA0+RTn

3 ` RTn
2 (view the given 2-coloring as a 3-coloring).

This proof only invokes RTn
3 once, and it can be translated into a

Weihrauch reduction from RTn
2 to RTn

3 .
Less trivially, we also have that RCA0 +RTn

2 ` RTn
3 . The usual proof

invokes RTn
2 twice, in series: given a 3-coloring of [N]n by red, green,

and blue, first define a 2-coloring of [N]n by red and “grue”. Then use
RTn

2 to obtain an infinite homogeneous set for it. If we obtain a red
homogeneous set, then we are done. If we obtain a “grue” homogeneous
set, then we apply RTn

2 to the original coloring restricted to this set,
and we are done.

Is there a proof of RTn
3 which only invokes RTn

2 once?1 If not, is
there a proof of RTn

3 which invokes RTn
2 twice, but in parallel?2 We

want to study such questions from the point of view of Weihrauch

1In the reverse mathematics setting, Hirst and Mummert [10] gave such a proof
in RCA0. Their proof was not “uniform”. In the setting of Weihrauch reducibil-
ity, Hirschfeldt and Jockusch [9], Brattka and Rakotoniaina [5], and Patey [11]
independently showed that there is no reduction.

2Note that invoking a theorem in parallel is a special case of invoking a theorem
in series.

COMPOSITIONS OF MULTIVALUED FUNCTIONS 3

reducibility. In order to do so, we must define some reducibility which
would capture the notion of P being reducible to multiple instances of
Q in series. There are three known ways to formalize this idea:

(1) the compositional product (Definition 5);
(2) reduction games (Definition 10);
(3) the step product (Definition 18).

In this paper, we clarify the relationships between these three notions
(for example, Theorems 23, 27, Corollary 29). We conclude that they
are (mostly) equivalent, and hence one is (mostly) free to use whichever
definition is convenient for one’s purposes. Along the way, we prove
some basic properties of these notions, and give counterexamples where
appropriate.

We are also interested in capturing the notion of P being reducible to
different theorems Q0, . . . , Qn−1 in series. One motivating example is
Cholak, Jockusch, and Slaman’s [6] proof of RT2

2 which proceeds by first
using one theorem to obtain an infinite set on which the given coloring
is stable, and then restricting to said set and obtaining, by another
theorem, an infinite homogeneous set. To formalize this notion, we
consider a generalized reduction game and show how it relates to the
other formalizations (Theorem 34).

In the rest of the introduction, we give some notation and basic def-
initions. In this paper, P , Q, Q, etc., refer to multivalued functions
from NN to NN. All multivalued functions and single-valued functions
are allowed to be partial, unless otherwise stated. Their domains could
be empty. Their domains and graphs need not be arithmetically defin-
able, or even definable. If X is in the domain of P , then we say that X
is a P -instance. If (X, Y) ∈ P , then we say that Y is a P -solution to
X. If Φ is a Turing functional and X is an oracle for Φ, we will some-
times write Φ(X) instead of ΦX . Since Φ formally only takes numbers
as input, this should not cause confusion.

We begin by defining Weihrauch reducibility on multivalued func-
tions:

Definition 1. For multivalued functions P and Q, we say that P is
Weihrauch reducible (strongly Weihrauch reducible resp.) to Q, written
P ≤W Q (P ≤sW Q resp.), if there is a forward functional Γ and a
backward functional ∆ such that

(1) for every P -instance X, ΓX is a Q-instance;
(2) if X is a P -instance, then for every Q-solution Y to ΓX ,

∆(X ⊕ Y) (∆(Y) resp.) is a P -solution to X.

4 JUN LE GOH

Intuitively, P ≤W Q means that one can uniformly computably
transform a realizer for Q into a realizer for P . In this paper, we focus
on Weihrauch reducibility, but we use strong Weihrauch reducibility to
state some of the results we need.

Note the uniformity in the above definitions: Γ and ∆ have to sat-
isfy the above conditions for all P -instances X. In fact, Weihrauch
reducibility on multivalued functions was independently rediscovered
by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [7], who named it uni-
form reducibility. See Brattka, Gherardi, and Marcone [3] for historical
remarks about Weihrauch reducibility, and an equivalent definition.

It is easy to see that ≤W is reflexive and transitive, so we can define
the associated notion of Weihrauch equivalence and Weihrauch degrees:
for multivalued functions P and Q, we say that P and Q are Weihrauch
equivalent, written P ≡W Q, if P ≤W Q and Q ≤W P . For a multi-
valued function P , its Weihrauch degree p is its ≡W -class. Weihrauch
reducibility lifts to Weihrauch degrees in the usual way; that is, we say
that p ≤W q if and only if there is some P ∈ p and Q ∈ q such that
P ≤W Q, if and only if for all P ∈ p and Q ∈ q, we have P ≤W Q. We
will abuse notation and use P ≤W q to mean that there is some Q ∈ q
such that P ≤W Q, or equivalently, for all Q ∈ q, we have P ≤W Q.
We give P ≡W q the analogous meaning.

We can define strong Weihrauch equivalence and strong Weihrauch
degrees in the same way.

The Weihrauch degrees form a distributive lattice (Brattka, Gher-
ardi [2], Pauly [12]). The join (coproduct) of multivalued functions P0

and P1, denoted P0tP1, has instances
⋃

i=0,1{(i,X) : X is a Pi-instance}.
For i = 0, 1, (i, Y) is a (P0 t P1)-solution to (i,X) if Y is a Pi-solution
to X. The meet (sum) of P0 and P1, denoted P0 u P1, has instances
{(X0, X1) : Xi is a Pi-instance}. For i = 0, 1, (i, Y) is a (P0 u P1)-
solution to (X0, X1) if Y is a Pi-solution to Xi. It is easy to see that
the join and meet operations lift to the ≡W -degrees.

Another useful notion is that of a uniformly computable multivalued
function: a multivalued function P is uniformly computable if it has a
computable realizer; that is, there is a functional Γ such that for every
P -instance X, Γ(X) is a P -solution to X. Note that the uniformly
computable multivalued functions do not all lie in the same degree.3

3In fact, it is easy to see that the Medvedev degrees embed into the set of
Weihrauch degrees which contain a uniformly computable multivalued function.

COMPOSITIONS OF MULTIVALUED FUNCTIONS 5

2. Formalizing Compositions

In this section, we present several ways to formalize what it means
for P to be reducible to multiple instances of Q, and prove some basic
properties about them.

2.1. Parallel Product. We begin by considering what it means for P
to be reducible to multiple instances of Q in parallel. This notion is
captured by the parallel product:

Definition 2 (Brattka, Gherardi [2]). Given multivalued functions P
and Q, the parallel product P × Q is the Cartesian product of P and
Q. That is, instances are pairs (X, Y), where X is a P -instance and
Y is a Q-instance. (Z,W) is a (P × Q)-solution to (X, Y) if Z is a
P -solution to X and W is a Q-solution to Y .

For example, we have that RTn
j × RTn

k ≤W RTn
jk: given a j-coloring

and a k-coloring, we can pair them to obtain a jk-coloring. A ho-
mogeneous set for the jk-coloring will be homogeneous for both the
j-coloring and the k-coloring. For other examples, see [3] and [7].

Up to Weihrauch degree, the parallel product is well-defined, asso-
ciative, and monotone in both components [2, Proposition 3.2].

While we will not study the parallel product in this paper, we will
use it to state a later definition.

2.2. Compositional Product. In this section, we define the com-
positional product of multivalued functions (Brattka, Gherardi, Mar-
cone [3]; Brattka, Pauly [4]), which attempts to capture the notion of P
being reducible to multiple instances of Q in series. We begin by defin-
ing the composition of multivalued functions, which forms a building
block for the compositional product. Intuitively, Q ◦ P corresponds to
invoking P and then Q, with no extra steps allowed in between; that
is, the solution to the P -instance has to be a Q-instance.

Definition 3. Given multivalued functions P and Q, their composition
Q ◦ P is the following multivalued function. Instances are P -instances
X such that every P -solution Y to X is itself a Q-instance. Z is a
(Q ◦ P)-solution to X if there is some P -solution Y to X such that Z
is a Q-solution to Y .

Note that the composition of P and Q as multivalued functions is
more restrictive than the composition of P and Q as relations. This
restriction implies that, for example, the composition of realizers for P
and Q is a realizer of the composition Q ◦ P .

It is easy to see that ◦ is associative:

6 JUN LE GOH

Proposition 4. ◦ is associative up to equality of multivalued functions;
that is, for multivalued functions P , Q, R, we have (R ◦ Q) ◦ P =
R ◦ (Q ◦ P).

However, ◦ is not monotone (in either component) with respect to
Weihrauch reducibility. To illustrate what can go wrong, here are some
examples.

(1) Take any Q which is not uniformly computable and has a com-
putable instance X0 with a computable solution. (For example,
take Q to be RT1

2.) Take P0 to be the identity function, and
take P1 to be the identity function restricted to {X0}. It is easy
to see that P0 ≤W P1 and Q ◦ P0 6≤W Q ◦ P1.

(2) Take any P which is not uniformly computable. For i = 0, 1,
define Pi as follows: Pi-instances are P -instances, and (i, Y) is a
Pi-solution to X if and only if Y is a P -solution to X. Define Q
as follows: instances are pairs (i, Y), for any set Y and i = 0, 1.
For each (0, Y), Y is the only Q-solution, and for each (1, Y),
0 is the only Q-solution. It is easy to see that P0 ≤W P1 and
Q ◦ P0 6≤W Q ◦ P1.

(3) Take any R which is not uniformly computable. Define P as
follows: instances are pairs (i,X) for any set X and i = 0, 1.
For each (0, X), the P -solutions are pairs (0, Y), where Y is an
R-solution to X, and for each (1, X), 0 is the only P -solution.
Define Q0 to be the identity function restricted to instances
(0, Y), for any set Y . Define Q1 to be the identity function
with only one instance 0. It is easy to see that Q0 ≤W Q1 and
Q0 ◦ P 6≤W Q1 ◦ P .

(4) Define P as follows: instances are pairs (i,X) for any set X
and i = 0, 1. Each (i,X) has a unique P -solution (0, X). For
i = 0, 1, define Qi to be the identity function restricted to pairs
(i,X). We have that Q0 ≤W Q1. But Q0 ◦ P has nonempty
domain while Q1 ◦ P has empty domain, so Q0 ◦ P 6≤W Q1 ◦ P .

Having defined ◦, we are now ready to define the compositional prod-
uct Q ? P , which attempts to capture the power of one invocation of
P , followed by one invocation of Q in series.

Definition 5 (Brattka, Gherardi, Marcone [3]; Brattka, Pauly [4]).
The compositional product4 of Weihrauch degrees p and q, written q?p,
is defined to be the Weihrauch degree sup{Q ◦P : Q ≤W q, P ≤W p}.

4Brattka and Pauly [4] give a different definition of q ? p and show that it is
equal to the supremum of all Q ◦ P , where Q ≤W q and P ≤W p are multivalued
functions on arbitrary represented spaces, not just NN. Nevertheless, this definition
is equivalent to theirs: suppose f is a multivalued function from (X, δX) to (Y, δY)

COMPOSITIONS OF MULTIVALUED FUNCTIONS 7

That the supremum in the definition exists is in fact a theorem:

Theorem 6 (Brattka, Pauly [4, Corollaries 18, 20]). For every p and
q, there are multivalued functions P of degree p and Q of degree q such
that Q ◦ P has degree q ? p.

We abuse notation and use Q ? P to refer to the Weihrauch degree
q ? p, where P has degree p and Q has degree q. Since ? is monotone
in both coordinates, this is well-defined.

In order to state more facts about the compositional product, we use
the notion of a cylinder due to Brattka and Gherardi [2]. We say that
a multivalued function P is a cylinder if P ≡sW id × P . It is easy to
see that if Q ≤W P , then Q ≤sW id× P . Therefore, if P is a cylinder,
then Q ≤W P if and only if Q ≤sW P .

The compositional product has a cylindrical decomposition:

Lemma 7 (Brattka, Pauly [4, Lemma 21]). For all P and Q which are
cylinders, there exists a computable function K such that Q ? P ≡W

Q ◦K ◦ P . Furthermore, Q ◦K ◦ P is a cylinder.

We also have that

Proposition 8 (Brattka, Pauly [4, Proposition 32]). ? is associative. ?
is monotone in both components with respect to Weihrauch reducibility.

In order to prove our main results, we will use the following version
of Theorem 6 for multiple multivalued functions.

Lemma 9. For every Q0, . . . , Qn−1, there are multivalued functions
R0, . . . , Rn−1 such that for each i < n, Ri ≤W Qi, and Qn−1 ? · · · ?
Q0 ≡W Rn−1 ◦ · · · ◦R0.

Proof. First, by replacing each Qi with id × Qi, we may assume that
each Qi is a cylinder. Next, by induction using Lemma 7, we obtain
computable functions K0, . . . , Kn−2 such that

Qn−1 ? · · · ? Q0 ≡W Qn−1 ◦Kn−2 ◦Qn−2 ◦ · · · ◦K0 ◦Q0.

Then define Rn−1 = Qn−1, and for i < n− 1, define Ri = Ki ◦Qi. For
each i, it is easy to see that Ri ≤W Qi. �

2.3. Reduction Games. In this section, we present another formal-
ization of the notion of P being reducible to multiple instances of Q in
series. The process of solving an instance of P using multiple instances
of Q in series can be thought of as a game. Roughly speaking, Player

and g is a multivalued function from (Y, δY) to (Z, δZ). Then f ≡W δY ◦ f ◦ δ−1
X ,

g ≡W δZ ◦ g ◦ δ−1
Y , and g ◦ f ≡W (δZ ◦ g ◦ δ−1

Y) ◦ (δY ◦ f ◦ δ−1
X).

8 JUN LE GOH

I starts by posing a P -instance for Player II to solve. At each turn,
Player II has oracle access to all of Player I’s previous plays, and it
can either compute a Q-instance for Player I to solve, or it can win by
computing a solution to the P -instance posed by Player I.

Definition 10 (Hirschfeldt, Jockusch [9, Definition 4.1]). Define the
game reducing P to Q as follows. In round n = 1, Player I starts
by playing a P -instance X0. Player II responds with either of the
following:

• an X0-computable Q-instance Y1;
• an X0-computable P -solution to X0;

and an indication of which case it is (for the second case, Player II
declares victory.)

In round n > 1, Player I plays a solution Xn−1 to the Q-instance
Yn−1. Player II responds with either of the following:

• a
(⊕

i<nXi

)
-computable Q-instance Yn;

• a
(⊕

i<nXi

)
-computable P -solution to X0;

and an indication of which case it is (for the second case, Player II
declares victory.)

Player II wins if it ever declares victory, after which the game ends.
Otherwise Player I wins, which happens either if the game goes on
forever, or Player II cannot move (which can only happen in the first
round).

In the game reducing P to Q, even though II can only play sets which
are computable in the join of all of I’s previous plays, II is allowed to
employ non-uniform strategies to decide which set to play. Since we
are interested in solving P uniformly from multiple instances of Q, we
will only consider computable strategies for II, defined as follows.

We recall some notation from [9]. First, we assume that we have
defined the join operation for finitely many sets so that we can compute
n from

⊕
i<nXi. In general, when we write X0 ⊕ X1 we mean {2n :

n ∈ X0} ∪ {2n + 1 : n ∈ X1} as usual. However, we will sometimes
write X0⊕X1 for

⊕
i≤1 Xi, when it is clear that this is what we mean.

Similarly, we will write simply X0 instead of
⊕

i≤0 Xi.

Second, if Z is a set and Φ is a Turing functional, then we define Φ̂Z

to be {n : 2n + 1 ∈ ΦZ}.

Definition 11 (Hirschfeldt, Jockusch [9, Definition 4.3]). A Turing
functional Φ is a computable strategy for II for the game reducing P to
Q if for all n ≥ 1, if Z =

⊕
i<n Xi is the join of Player I’s first n moves

in some run of said game, then

COMPOSITIONS OF MULTIVALUED FUNCTIONS 9

• if ΦZ(0)↓= 0, then Φ̂Z is a Z-computable Q-instance;

• otherwise, ΦZ(0)↓= 1 and Φ̂Z is a Z-computable P -solution to
X0.

We will frequently define ΦZ by first defining Φ̂Z and then setting

ΦZ = ∅ ⊕ Φ̂Z or ΦZ = {0} ⊕ Φ̂Z .
We say that P ≤gW Q if there is a computable winning strategy for

II for the game reducing P to Q. We say that P ≤n
gW Q if there is a

computable strategy for II for the game reducing P to Q such that II
always wins in round n + 1 or before.

In this paper, we will not discuss ≤gW , only its bounded versions
≤n

gW . In order to understand ≤n
gW better, we start by considering ≤1

gW .

If P ≤1
gW Q, that means that there is a strategy Φ for II which wins the

game reducing P to Q in round 1 or 2. Those P -instances for which Φ
wins in round 1 have uniformly computable solutions, while all other
P -instances can be solved by solving some corresponding Q-instance
(given by Φ). More precisely, Φ provides a Weihrauch reduction from
the restriction of P to those latter instances, to Q. This indicates that
≤1

gW and ≤W are related. We explore their relationship in the following
propositions.

First, the above discussion can be formally stated as follows:

Proposition 12. The following are equivalent:

• P ≤1
gW Q;

• the domain D of P can be computably partitioned into D0 and
D1, such that P � D0 is uniformly computable and P � D1 ≤W

Q;
• there is some uniformly computable R such that P ≤W Q tR.
• P ≤W Q t id.

Second, if every P -instance uniformly computes a Q-instance, then
we can upgrade a ≤1

gW -reduction from P to Q to a ≤W -reduction:

Proposition 13. P ≤W Q if and only if every P -instance uniformly
computes a Q-instance (that is, dom(Q) is Medvedev reducible to dom(P))
and P ≤1

gW Q.

Proof. (⇒). Fix Γ and ∆ witnessing that P ≤W Q. First, Γ witnesses
that every P -instance uniformly computes a Q-instance. Next, we give
a strategy Φ witnessing that P ≤1

gW Q:

ΦX0 = ∅ ⊕ ΓX0

ΦX0⊕X1 = {0} ⊕∆X0⊕X1 .

10 JUN LE GOH

Note that in the two cases of the definition above, the oracles of Φ
are meant to be

⊕
i≤0 Xi and

⊕
i≤1 Xi respectively. This is because

Φ’s action depends on which round of the game it is playing, hence it
must be able to compute that information from the oracle.

(⇐). Fix a strategy Φ witnessing that P ≤1
gW Q, and fix a functional

Ξ which takes in any P -instance and computes a Q-instance from it.
We define functionals Γ and ∆ witnessing that P ≤W Q:

ΓX0 =

{
Φ̂X0 if ΦX0(0)↓= 0

ΞX0 otherwise

and

∆X0⊕X1 =

{
Φ̂X0⊕X1 if ΦX0(0)↓= 0

Φ̂X0 otherwise
.

�

Most problems that arise directly from mathematical theorems have
computable instances. Such problems are called pointed (Brattka, de
Brecht, Pauly [1]).

Corollary 14. If Q is pointed, then P ≤W Q if and only if P ≤1
gW Q.

It is clear that Q is pointed if and only if id ≤W Q. Hence if Q is not
pointed, then there is a trivial counterexample to the above Corollary:
id 6≤W Q yet id ≤1

gW Q. These results clarify a statement in §4.4 of [9],

where they claim that P ≤1
gW Q if and only if P ≤W Q.

Moving on to n ≥ 1, observe that if P ≤n
gW Q, then there is a

computable strategy for II for the game reducing P to Q which wins in
round 1 or round n + 1. This is because everytime II declares victory
in round k for 1 < k < n + 1, II could instead repeatedly play the
Q-instance which it played in round 1, and wait until round n + 1 to
declare victory. Using this observation, we obtain

Proposition 15. P ≤n
gW Q if and only if the domain D of P can be

computably partitioned into D0 and D1, such that

• P � D0 is uniformly computable;
• there is a strategy for II witnessing that P � D1 ≤n

gW Q which
always wins in round n + 1.

Proof. (⇒). Fix a strategy Φ witnessing that P ≤n
gW Q. For i = 0, 1,

define Di = {X ∈ D : ΦX(0)↓= 1− i}. D0 and D1 form a computable

partition of D. P � D0 is uniformly computable, as witnessed by Φ̂.
Then, as discussed above, we may modify Φ to give a strategy Ψ

which always wins the game reducing P � D1 to Q in round n + 1.

COMPOSITIONS OF MULTIVALUED FUNCTIONS 11

(⇐). Fix a computable partition of D into D0 and D1, a functional
Ξ which solves P � D0, and a strategy Φ which always wins the game
reducing P � D1 to Q in round n + 1.

We give a strategy for II which witnesses that P ≤n
gW Q. I starts by

playing a P -instance, say X0. II starts by computing whether X0 lies
in D0 or D1. If X0 lies in D0, then II applies Ξ to solve X0 and declares
victory. If X0 lies in D1, then II follows the strategy Φ to solve X0 and
declare victory in round n+1. Either way, II declares victory by round
n + 1. �

Another useful property about ≤n
gW is that it is well-defined on

Weihrauch degrees, which we show below. Since we only defined the
compositional product up to Weihrauch degree, this allows us to make
sense of statements such as P ≤n

gW Q ? Q (such as in Theorem 30).
The desired statement follows from the following proposition.

Proposition 16. If P ≤m
gW Q with a strategy that always wins in round

m + 1 and Q ≤n
gW R with a strategy that always wins in round n + 1,

then P ≤mn
gW R with a strategy that always wins in round mn + 1. If

P ≤m
gW Q and Q ≤n

gW R, then P ≤mn
gW R.

Proof. To prove the first statement, fix a strategy Φ for P ≤m
gW Q

which always wins in round m + 1, and a strategy Ψ for Q ≤n
gW R

which always wins in round n+1. We describe a strategy for P ≤mn
gW R

which always wins in round mn + 1. The idea is to play the game G
reducing P to R by playing the game G′ reducing P to Q, interleaved
with m many consecutive games G0, . . . , Gm−1, each reducing Q to R.

Say that in G, I starts by playing a P -instance X0. Then Φ̂(X0) is a
Q-instance, so we simulate a parallel game G′ reducing P to Q where I

starts by playing X0 and II responds with Φ̂(X0). In order to come up
with a valid response for I in G′, we simulate yet another parallel game

G0 reducing Q to R where I starts by playing Φ̂(X0). Then Ψ̂(Φ̂(X0))

is an R-instance, so II plays Ψ̂(Φ̂(X0)) in G (and in G0).

Next, in G, I responds with some R-solution X1 to Ψ̂(Φ̂(X0)). We

copy that response to G0. Then Ψ̂(Φ̂(X0)⊕X1) is an R-instance, so II
plays it in G (and in G0).

We continue playing G as above (and simulating G0) until II wins

G0 and provides a Q-solution Z0 to Φ̂(X0). At that point we return to
simulating G′: I can now respond with Z0.

In G′, II responds with the Q-instance Φ̂(X0⊕Z0). In order to simu-
late I’s response in G′, we simulate another parallel game G1 reducing

Q to R where I starts by playing Φ̂(X0 ⊕ Z0). Proceed as we did for
G0.

12 JUN LE GOH

Since Φ always wins in round m + 1 and Ψ always wins in round
n + 1, the above strategy always wins in round mn + 1.

The proof of the second statement is similar. �

Corollary 17. ≤n
gW is well-defined up to Weihrauch degree, i.e., if

P1 ≤W P0, P0 ≤n
gW Q0, and Q0 ≤W Q1, then P1 ≤n

gW Q1.

Proof. Use Propositions 16 and 13. �

2.4. Step Product. The step product generalizes the composition of
multivalued functions. Intuitively, Q •Θ P corresponds to invoking P ,
transforming the result by Θ (allowing Θ access to the original P -
instance), and then invoking Q.

Definition 18 (Dorais, Dzhafarov, Hirst, Mileti, Shafer [7, §5.2]).
Given multivalued functions P and Q and a Turing functional Θ, the
multivalued function Q •Θ P is defined as follows. A is an instance of
Q •Θ P if

• A is a P -instance;
• for every P -solution B to A, we have that ΘA⊕B is a Q-instance.

In that case, a (Q •Θ P)-solution to A is a pair (B,C) such that

• B is a P -solution to A;
• C is a Q-solution to ΘA⊕B.

Note that Q •Θ P may very well be the empty multivalued function,
but that will not affect any of our results.

Note also that if we define Θ to be the projection A⊕B 7→ B, then
Q •Θ P is exactly Q ◦ P .

Many compositions that we encounter in proofs can be thought of as
some step product. However, the step product does not satisfy several
of the properties one would desire of a product, such as monotonicity.
First we give a positive result: in some sense, the step product is
monotone in the first coordinate with respect to Weihrauch reducibility.

Proposition 19. Suppose Q0 ≤W Q1, Θ is a functional, and P is a
multivalued function. Then there is a functional Λ such that Q0 •Θ

P ≤W Q1 •Λ P .

Proof. We define a functional Λ, and forward and backward function-
als witnessing that Q0 •Θ P ≤W Q1 •Λ P . We will take the forward
functional to be the identity.

Fix Γ and ∆ witnessing that Q0 ≤W Q1. We define Λ such that every
(Q0 •Θ P)-instance X is also a (Q1 •Λ P)-instance: for every P -solution
Y to X, Θ(X ⊕ Y) is a Q0-instance, so Γ(Θ(X ⊕ Y)) is a Q1-instance.
Hence we define Λ = Γ ◦Θ.

COMPOSITIONS OF MULTIVALUED FUNCTIONS 13

Next, for every (Q1 •Λ P)-solution (Y, Z) to X, we have that Y is a
P -solution to X and Z is a Q1-solution to Λ(X ⊕ Y) = Γ(Θ(X ⊕ Y)).
Hence ∆(Θ(X⊕Y)⊕Z) is a Q0-solution to Θ(X⊕Y), so (Y,∆(Θ(X⊕
Y)⊕Z)) is a (Q0•ΘP)-solution to X. Therefore, we define the backward
functional by

X ⊕ (Y, Z) 7→ (Y,∆(Θ(X ⊕ Y)⊕ Z)).

This completes the proof that Q0 •Θ P ≤W Q1 •Λ P . �

However, the step product is not monotone (in the above sense) in
the second coordinate. (Take Q = RT1

2, P0 = id, P1 = id � {N}. Then
P0 ≤W P1 but for all Λ, Q◦P0 6≤W Q•ΛP1. See Example 26 for a more
sophisticated example.) We have the following partial positive result:

Proposition 20. Suppose P0 ≤W P1, P1 is a cylinder, Θ is a func-
tional, and Q is a multivalued function. Then there is a functional Λ
such that Q •Θ P0 ≤sW Q •Λ P1.

Proof. Fix Γ and ∆ witnessing that P0 ≤W P1. Fix Φ and Ψ witnessing
that id × P1 ≤sW P1. We define a functional Λ, and forward and
backward functionals witnessing that Q •Θ P0 ≤W Q •Λ P1. We will
take the forward functional to be X 7→ Φ(X,Γ(X)).

We define Λ such that for every (Q•ΘP0)-instance X, Φ(X,Γ(X)) is
a (Q•ΛP1)-instance: first note that Φ(X,Γ(X)) is a P1-instance. Next,
for every P1-solution Z to Φ(X,Γ(X)), Ψ(Z) is an (id×P1)-solution to
(X,Γ(X)); that is, (Ψ(Z))0 = X and (Ψ(Z))1 is a P1-solution to Γ(X).
It follows that ∆(Ψ(Z)) is a P0-solution to X. Therefore, Θ(X ⊕
∆(Ψ(Z))) is a Q-instance. So we define

Λ(A⊕ Z) = Θ((Ψ(Z))0 ⊕∆(Ψ(Z))).

Now, for every (Q•ΛP1)-solution (Z,W) to Φ(X,Γ(X)), we have that
Z is a P1-solution to Φ(X,Γ(X)) and W is a Q-solution to Λ(Φ(X,Γ(X))⊕
Z) = Θ(X ⊕∆(Ψ(Z))). Then (∆(Ψ(Z)),W) is a (Q •Θ P0)-solution to
X. Therefore, we define the backward functional by

(Z,W) 7→ (∆(Ψ(Z)),W).

This completes the proof that Q •Θ P0 ≤sW Q •Λ P1. �

Proposition 20 suggests that the class of Q•ΘP where P is a cylinder
may be well-behaved (see also Lemma 7). Note that any multivalued
function P is Weihrauch equivalent to a cylinder, for example id× P .

14 JUN LE GOH

3. Composing a Multivalued Function with Itself

In this section, we study the relationships between the various prod-
ucts for the simplest nontrivial case: two invocations of P . We will see
in Theorem 23 that the compositional product and the reduction game
are equivalent in the case where P is pointed, and the compositional
product and the step product can be made equivalent if we modify the
second factor in the step product.

We begin by showing that ? is always at least as strong as •Θ.

Proposition 21. For any functional Θ, we have that Q•ΘP ≤W Q?P .

Proof. Define the multivalued function P0 as follows. Instances of P0

are instances of Q •Θ P . (Y, Z) is a solution to the P0-instance Y if Z
is a P -solution to Y .

We have P0 ≤W P : take the forward functional to be the identity,
and define the backward functional by mapping Y ⊕ Z to (Y, Z).

Next, define Q0: its instances are pairs (Y, Z) such that Y is a Q•ΘP -
instance and Z is a P -solution to Y . (Z,W) is a solution to the Q0-
instance (Y, Z) if W is a solution to the Q-instance ΘY⊕Z .

We have Q0 ≤W Q: define the forward functional by mapping (Y, Z)
to ΘY⊕Z , and define the backward functional by mapping (Y, Z)⊕W
to (Z,W).

Finally, we see that Q0 ◦ P0 is equal to Q •Θ P , so we are done. �

Next, in order to state our first main result, we need the following
definition.

Definition 22. Given a multivalued function R, define the multivalued
function R as follows. Instances of R are pairs (X, Y), where X is any
set and Y is an R-instance. Z is an R-solution to (X, Y) if Z is an
R-solution to Y .

Note that R ≡W R. Note also that R is not a cylinder. Now we
prove our first main theorem relating ?, reduction games, and •Θ.

Theorem 23. The following are equivalent:

(1) P ≤W Q ? Q;
(2) there is a strategy for II witnessing that P ≤2

gW Q, which always
wins in the third round, or P has empty domain;

(3) every P -instance uniformly computes a Q-instance, and
P ≤2

gW Q;

(4) there is a functional Θ such that P ≤W Q •Θ Q.

Proof. (1) ⇒ (2). By Theorem 6, since P ≤W Q ? Q, there are multi-
valued functions Q0, Q1 ≤W Q such that P ≤W Q1 ◦ Q0. We define a

COMPOSITIONS OF MULTIVALUED FUNCTIONS 15

strategy Φ for II witnessing that Q1 ◦ Q0 ≤2
gW Q, which always wins

in the third round. The desired result then follows from Corollary 17.
Fix Γ0 and ∆0 witnessing that Q0 ≤W Q. Fix Γ1 and ∆1 witnessing
that Q1 ≤W Q.

I begins the game by playing a (Q1 ◦ Q0)-instance, say X. (If the
domain of Q1 ◦ Q0 is empty, then the domain of P is empty and we
are done.) In particular, note that X is a Q0-instance. II responds by
playing the Q-instance Γ0(X).

I then plays a Q-solution to Γ0(X), say Z. Then ∆0(X⊕Z) is a Q0-
solution to X. Since X is a (Q1◦Q0)-instance, ∆0(X⊕Z) must be a Q1-
instance. Therefore, II responds with the Q-instance Γ1(∆0(X ⊕ Z)).

Finally, I plays a Q-solution W to Γ1(∆0(X ⊕ Z)). Then
∆1(∆0(X⊕Z)⊕W) is a Q1-solution to ∆0(X⊕Z), which implies that
it is a (Q1 ◦ Q0)-solution to X. II declares victory and responds with
∆1(∆0(X ⊕ Z)⊕W).

(2) ⇒ (3). If P has empty domain, (3) vacuously holds. Otherwise,

fix a strategy Φ for II witnessing that P ≤2
gW Q which always wins in

the third round. For every P -instance X, Φ̂X is always a Q-instance
(because Φ does not win in the first round).

(3) ⇒ (4). Fix some Φ witnessing that P ≤2
gW Q, and fix some Ξ

which computes Q-instances from P -instances. First define a forward
functional for P ≤W Q •Θ Q:

ΓX =

{
(X, Φ̂X) if ΦX(0)↓= 0

(X,ΞX) otherwise
.

Then define

Θ(X,Y)⊕Z =

{
Φ̂X⊕Z if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 0

ΞX otherwise
.

Observe that for every P -instance X, ΓX is a Q-instance, and for every
Q-solution Z to ΓX , ΘΓX⊕Z is a Q-instance. Therefore ΓX is a Q•Θ Q-
instance.

Finally, define a backward functional

∆X⊕(Z,W) =

Φ̂X⊕Z⊕W if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 0

Φ̂X⊕Z if ΦX(0)↓= 0 and ΦX⊕Z(0)↓= 1

Φ̂X if ΦX(0)↓= 1

.

16 JUN LE GOH

(4) ⇒ (1). We have that

P ≤W Q •Θ Q

≤W Q ? Q Proposition 21

≤W Q ? Q Q ≤W Q and definition of ? .

�

We note that a statement similar to (2) ⇒ (4) was proven in Re-

mark 4.23 in [9]. (They use Q̂ := id × Q instead of Q, but the same

result holds: use Proposition 20 and the fact that Q̂ is a cylinder.)
However, they (implicitly) assume that if P ≤2

gW Q, then (2) holds.
This is true if Q is pointed, but false otherwise (see Proposition 28).

Let us now study corollaries of Theorem 23. First, we obtain a simple
realization of the compositional product (cf. Theorem 6):

Corollary 24. For all Q, there is a functional Θ such that Q ?Q ≡W

Q •Θ Q.

Proof. (1) ⇔ (4) in Theorem 23. �

If Q is a cylinder, we note that a nicer result follows from the cylin-
drical decomposition of Brattka and Pauly (Lemma 7):

Corollary 25. If Q is a cylinder, then there is a functional Θ such
that Q ? Q ≡W Q •Θ Q.

Proof. By the cylindrical decomposition lemma, there is some uni-
formly computable K such that Q ? Q ≡W Q ◦ K ◦ Q. Taking Θ :
A⊕B 7→ K(B), we get Q ? Q ≡W Q •Θ Q. �

The above corollary cannot hold for all Q in general:

Example 26. We construct Q and Θ such that for all Λ, Q •Θ Q 6≤W

Q •Λ Q (and hence Q ? Q 6≤W Q •Λ Q for all Λ). We take Θ to be the
identity. Fix four sets A, B, C and D such that no three of these sets
compute the other. (Such sets can be obtained from a Cohen generic.)
Define Q as follows: the instance B has a unique solution C, and the
instance ((A,B), C) has a unique solution D. Observe that (A,B) is a
(Q •id Q)-instance with unique solution (C,D).

Suppose towards a contradiction that Λ is such that Q •id Q ≤W

Q •Λ Q. Fix Γ and ∆ witnessing this. We show that they fail to solve
the (Q •id Q)-instance (A,B). First, Γ(A ⊕ B) must be a Q-instance.
The only Q-instance computable in A ⊕ B is B, which has a unique
Q-solution C. Next, Λ(B ⊕ C) must be a Q-instance. The only Q-
instance computable in B ⊕ C is B, which has a unique Q-solution

COMPOSITIONS OF MULTIVALUED FUNCTIONS 17

C. Hence the unique (Q •Λ Q)-solution to B must be (C,C). Finally,
∆((A⊕B)⊕ (C⊕C)) must be the unique (Q•id Q)-solution to (A,B),
which is (C,D). But A⊕B ⊕ C does not compute D, contradiction.

Another application of Theorem 23 is to compare •, ?, and ≤2
gW on

the same footing. The following suprema are taken with respect to
Weihrauch reducibility.

Theorem 27. For all Q, supΛ Q •Λ Q exists and for all Θ,

Q •Θ Q ≤W sup
Λ

Q •Λ Q ≡W Q ? Q ≤2
gW Q.

Proof. First, by (1)⇒ (4) in Theorem 23, there is Λ such that Q?Q ≤W

Q •Λ Q. By (4)⇒ (1) in Theorem 23, Q •Λ Q ≤ Q?Q for all Λ. Hence
supΛ Q •Λ Q exists and is equal to Q ? Q.

Next, by Proposition 21, Q •Θ Q ≤W Q ? Q.
Finally, by (1) ⇒ (2) in Theorem 23, Q ? Q ≤2

gW Q. �

We do not know whether supΘ Q •Θ Q or sup{P : P ≤2
gW Q} exist

in general. If Q is pointed, we have some partial results.

Proposition 28. If Q is pointed, then sup{P : P ≤2
gW Q} exists and

is equal to Q?Q. If Q is not pointed, then there is some P ≤2
gW Q (in

fact, P ≤1
gW Q) such that P 6≤W Q ? Q.

Proof. Suppose that Q has a computable instance. If we fix a com-
putable Q-instance A, then for every multivalued function P , every
P -instance uniformly computes A. By (1) ⇔ (3) in Theorem 23,
sup{P : P ≤2

gW Q} exists and is equal to Q ? Q.
Suppose that Q has no computable instance. Consider P = id. We

have that P ≤1
gW Q, yet P -instances do not uniformly compute Q-

instances. By the contrapositive of (1) ⇒ (3) in Theorem 23, P 6≤W

Q ? Q. �

Corollary 29. If Q is pointed, then

sup
Λ

Q •Λ Q ≡W Q ? Q ≡W sup{P : P ≤2
gW Q}.

Proposition 28 inspired us to consider ≤1
gW instead of ≤W . That

gives us a cleaner analog of Theorem 23:

Theorem 30. The following are equivalent:

(1) P ≤1
gW Q ? Q;

(2) P ≤2
gW Q;

(3) there is a functional Θ such that P ≤1
gW Q •Θ Q.

18 JUN LE GOH

Proof. (1) ⇒ (2). Let D be the domain of P . By Proposition 12, fix a
computable partition D0 and D1 of D such that P � D0 is uniformly
computable and P � D1 ≤W Q?Q. By (1)⇒ (2) in Theorem 23, there
is a strategy for II witnessing that P � D1 ≤2

gW Q, which always wins

in the third round. By Proposition 15, P ≤2
gW Q as desired.

(2) ⇒ (3). Let D be the domain of P . By Proposition 15, fix a
computable partition D0 and D1 of D such that P � D0 is uniformly
computable, and there exists a strategy Φ witnessing that P � D1 ≤2

gW

Q which always wins in the third round. By (2) ⇒ (4) in Theorem 23,
there is some Θ such that P � D1 ≤W Q •Θ Q. By Proposition 12,
P ≤1

gW Q •Θ Q as desired.

(3) ⇒ (1). By Theorem 27, Q •Θ Q ≤W Q ? Q. The desired result
follows from Corollary 17. �

4. Finite Compositions of Arbitrary Multivalued
Functions

Many of the results in Section 3 can be easily generalized to finite
compositions of a multivalued function with itself. In this section, we
generalize some of our results to the finite composition of (possibly)
different multivalued functions. We show that such a composition can
be thought of in terms of the following generalized reduction game.

Definition 31. For multivalued functions P , Q0, . . . , Qn−1, define the
game reducing P to Qn−1, . . . , Q0 as follows. In round 1, Player I
starts by playing a P -instance X0. Player II responds with either of
the following:

• an X0-computable P -solution to X0;
• an X0-computable Q0-instance Y1;

and an indication of which case it is (for the first case, II declares
victory.)

Subsequently, for k ≥ 1, in round k + 1, Player I plays a solution Xk

to the Qk−1-instance Yk. Player II responds with either of the following:

• a
(⊕

i<k+1 Xi

)
-computable P -solution to X0;

• if k < n, a
(⊕

i<k+1 Xi

)
-computable Qk-instance Yk+1;

and an indication of which case it is (for the first case, II declares
victory.)

Player II wins if it declares victory on round n + 1 or before, after
which the game ends. Otherwise Player I wins, which happens exactly
if Player II has no possible move in some round. (If the game reaches
round n + 1, the only possible move for II is to declare victory, if it
can.)

COMPOSITIONS OF MULTIVALUED FUNCTIONS 19

Note. In the game reducing P to Q, if II was able to make a move in
round 1, then it can repeat said move for all subsequent rounds. This
is not always possible for the game reducing P to Qn−1, . . . , Q0.

Definition 32. A Turing functional Φ is a computable strategy for II for
the game reducing P to Qn−1, . . . , Q0 if for all k ≤ n, if Z =

⊕
i<k+1 Xi

is the join of Player I’s first k+1 moves in some run of said game, then
ΦZ = V ⊕ Y , where

• if V = {0}, then Y is a Z-computable solution to the P -instance
X0 (this must happen if k = n);
• otherwise, V = ∅ and Y is a Z-computable Qk-instance.

We define Φ̂ and the join operation as before.

We say that P ≤(n)
gW Qn−1, . . . , Q0 if there is a computable winning

strategy for II for the game reducing P to Qn−1, . . . , Q0.

Unlike ≤n
gW , ≤(n)

gW does not seem to admit a nice characterization like

that in Proposition 15. That is, assuming that P ≤(n)
gW Qn−1, . . . , Q0,

one may not be able to divide the domain of P into finitely many
sets, on each of which II has a strategy which always wins in a certain
number of rounds. Take for example a run where a strategy Φ wins
the game reducing P to Qn−1, . . . , Q0 in some round 1 < k < n + 1.
We may not be able to delay Φ’s victory because there may not be any
Qk+1-instance which is computable in I’s plays. Even if there is such
a Qk+1-instance, we may not be able to compute it uniformly from I’s
plays. Whether we can do so may depend on I’s choice of solutions
to the instances played by II. Therefore, we do not have an analog of
Theorem 30 in this context.

Next, we prove an analog of Corollary 17. We could prove an analog
of Proposition 16 and use that to derive an analog of Corollary 17, but
that would be messy.

Proposition 33. Suppose P0 ≤W P1 and Qi ≤W Ri for each i < n.

If P1 ≤(n)
gW Qn−1, . . . , Q0, then P0 ≤(n)

gW Rn−1, . . . , R0. Moreover, if

P1 ≤(n)
gW Qn−1, . . . , Q0 with a strategy that always wins in the last round,

then P0 ≤(n)
gW Rn−1, . . . , R0 with a strategy that always wins in the last

round as well.

Proof. Fix Γ and ∆ witnessing that P0 ≤W P1, and for each i < n,
fix Γi and ∆i witnessing that Qi ≤W Ri. Fix a strategy Φ witnessing

that P1 ≤(n)
gW Qn−1, . . . , Q0. We describe a strategy Ψ witnessing that

P0 ≤(n)
gW Rn−1, . . . , R0, such that if Φ always wins in round n + 1,

then so does Ψ. The idea is as follows: while we play the game G0

20 JUN LE GOH

reducing P0 to Rn−1, . . . , R0, we play a parallel game G1 reducing P1

to Qn−1, . . . , Q0, where II follows the strategy Φ.
In the game G0, I starts by playing a P0-instance X0. Then Γ(X0)

is a P1-instance, so we may start the game G1 with the P1-instance
Γ(X0) and with II following the strategy Φ. In G1, II either plays a
P1-solution to Γ(X0) and declares victory, or a Q0-instance.

If II plays a P1-solution to Γ(X0), then we may apply ∆ to obtain a
P0-solution to X0. II can then play this set in G0 and declare victory.

On the other hand, if II plays a Q0-instance, then we may apply Γ0

to obtain an R0-instance. II can then play this set in G0, continuing
the game.

In G0 (if II has not already won), I responds by playing an R0-
solution to II’s previous play in G0. Then we may apply ∆0 to obtain
a Q0-solution to II’s previous play in G1. We make I play this set in
G1.

Next, in G1, II (following Φ) either plays a P1-solution to Γ(X0) and
declares victory, or plays a Q1-instance. The rest of the game proceeds
as above.

We have described our strategy for the first two rounds of G0. We
omit the formal construction and verification. �

Our final main theorem (analogous to Theorem 23) is as follows:

Theorem 34. For multivalued functions P,Qn−1, . . . , Q0, the following
are equivalent:

(1) P ≤W Qn−1 ? · · · ? Q0;

(2) there is a strategy for II witnessing that P ≤(n)
gW Qn−1, . . . , Q0

which always wins in round n + 1, or P has empty domain;
(3) there are functionals Θ0, . . . ,Θn−2 such that

P ≤W Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0))).

Before we give the proof, we state some observations. First, if all
Qi are pointed, then the extra condition in (2) is unnecessary (cf. the
observation before Proposition 15):

Corollary 35. For multivalued functions P,Qn−1, . . . , Q0 such that P
has nonempty domain and all Qi are pointed, P ≤W Qn−1 ? · · · ? Q0 if

and only if P ≤(n)
gW Qn−1, . . . , Q0.

Proof. (⇒) follows from (1) ⇒ (2) in Theorem 34. For (⇐), fix com-

putable instances of each Qi. Then any strategy witnessing that P ≤(n)
gW

Qn−1, . . . , Q0 can be padded to obtain a strategy which always wins in
the last round: simply play the appropriate computable instances and
ignore the solutions. Then apply (2) ⇒ (1) from Theorem 34. �

COMPOSITIONS OF MULTIVALUED FUNCTIONS 21

Unlike Proposition 28, even if for all P , we have P ≤W Qn−1?· · ·?Q0

if and only if P ≤(n)
gW Qn−1, . . . , Q0, it does not follow that all Qi have

computable instances. (See the comments before Proposition 33.)
Next, note that strategies in the game reducing P to Qn−1, . . . , Q0

are allowed to refer to each Qi-instance played thus far, while •Θ only
allows reference to the Qi-instance just played. Therefore in (3), we
use Qi instead of Qi. The extra coordinate in a Qi-instance can be
used to encode every Qj-instance played thus far. For the last factor
(i = n − 1), we can get away with Qn−1 instead of Qn−1 (as is the
case in Theorem 23). Nevertheless, we state the theorem with Qn−1

because this obviates the need to consider an extra case in the proof of
(2) ⇒ (3).

We now prove Theorem 34:

Proof. (1) ⇒ (2). By Lemma 9, since P ≤W Qn−1 ? · · · ? Q0, there are
multivalued functions R0, . . . , Rn−1 such that Ri ≤W Qi for all i < n,
and P ≤W Rn−1 ◦ · · · ◦R0.

By Proposition 33, it suffices to give a computable strategy for II
which always wins the game reducing Rn−1 ◦ · · ·◦R0 to Qn−1, . . . , Q0 in
round n + 1. For each i < n, fix Γi and ∆i witnessing that Ri ≤W Qi.

In order to illustrate the construction, we describe the strategy for
the first three rounds before giving the general description. I starts
by playing an (Rn−1 ◦ · · · ◦ R0)-instance X0. (If Rn−1 ◦ · · · ◦ R0 has
empty domain, then so does P and we are done.) II has to respond
with an X0-computable Q0-instance. Note that X0 is in particular an
R0-instance, so II can play the Q0-instance Γ0(X0).

Next, I plays a Q0-solution X1 to Γ0(X0). II has to respond with an
(X0 ⊕ X1)-computable Q1-instance. Since X0 is an (Rn−1 ◦ · · · ◦ R0)-
instance, any R0-solution to X0 is itself an (Rn−1 ◦ · · · ◦ R1)-instance,
which is in particular an R1-instance. We can obtain an R0-solution
to X0 by applying ∆0 to X0 ⊕ X1. As explained above, that gives
us an R1-instance, to which we can apply Γ1 to obtain a Q1-instance.
Therefore II plays Γ1(∆0(X0 ⊕X1)).

In the third round, I plays a Q1-solution X2 to Γ1(∆0(X0⊕X1)). II
has to respond with an (X0 ⊕X1 ⊕X2)-computable Q2-instance.

Since ∆0(X0⊕X1) is an (Rn−1◦· · ·◦R1)-instance, any R1-solution to
∆0(X0⊕X1) is itself an (Rn−1◦· · ·◦R2)-instance, which is in particular
an R2-instance. We can obtain an R1-solution to ∆0(X0 ⊕ X1) by
applying ∆1 to ∆0(X0 ⊕ X1) ⊕ X2. That gives us an R2-instance, to
which we can apply Γ2 to obtain a Q2-instance. Therefore II plays
Γ2(∆1(∆0(X0 ⊕X1)⊕X2)).

22 JUN LE GOH

We have described our strategy for the first three rounds. Formally,
define the auxiliary functional Ξ by recursion:

Ξ(X0) = X0

Ξ

(⊕
j<k+1

Xj

)
= ∆k−1

(
Ξ

(⊕
j<k

Xj

)
⊕Xk

)
if k ≤ n.

For example, Ξ(X0 ⊕ X1) = ∆0(X0 ⊕ X1). Then we can define our
strategy as follows. Suppose that in round k, I plays Xk−1. In round
k < n + 1, II plays the Qk−1-instance Γk−1(Ξ(

⊕
j<k Xj)). In round

n + 1, II declares victory and plays Ξ(
⊕

j<n+1 Xj).
Verification. We show by simultaneous induction on k that:

(i) for every 1 ≤ k < n + 1, Ξ(
⊕

j<k Xj) is an (Rn−1 ◦ · · · ◦Rk−1)-
instance;

(ii) for every 1 ≤ k ≤ n + 1, II’s move in round k is legal;
(iii) for every 1 < k ≤ n+ 1, Ξ(

⊕
j<k Xj) is an Rk−2-solution to the

(Rn−1 ◦ · · · ◦Rk−2)-instance Ξ(
⊕

j<k−1 Xj).

Base case. By definition of Ξ and the game, (i) holds for k = 1.
Inductive step 1. Suppose (i) holds for some 1 ≤ k < n + 1. Then

Ξ(
⊕

j<k Xj) is in particular an Rk−1-instance, so by choice of Γk−1,
II’s move in round k is a Qk−1-instance. Also, Γk−1 ◦ Ξ is computable.
Therefore (ii) holds for k.

Inductive step 2. Suppose (i) and (ii) hold for some 1 ≤ k < n + 1.
Then in round k + 1, I plays a solution Xk to II’s move in round k. By
our choice of ∆k−1 and the definition of Ξ, (iii) holds for k + 1.

Inductive step 3. Suppose (iii) holds for some 1 < k < n + 1. By
definition of ◦, (i) is true for k as well.

The base case and inductive steps prove (i), (ii), and (iii) for the
desired values of k, except (ii) for k = n + 1. We prove that as
follows. Since (iii) holds for every 1 < k ≤ n + 1, by definition
of ◦, Ξ(

⊕
j<n+1 Xj) is a (Rn−1 ◦ · · · ◦ R0)-solution to X0. Therefore

Ξ(
⊕

j<n+1 Xj) is a winning move for II in round n + 1. We have
defined a strategy for II which always wins the game reducing P to
Qn−1, . . . , Q0 in round n + 1.

(2) ⇒ (3). If P has empty domain, (3) vacuously holds. Otherwise,
fix a strategy Φ for II which always wins the game reducing P to
Qn−1, . . . , Q0 in round n + 1. We have to define Θ0, . . . ,Θn−2 and
forward and backward functionals witnessing that P ≤W Qn−1 •Θn−2

(Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0))).

COMPOSITIONS OF MULTIVALUED FUNCTIONS 23

Suppose we are given a P -instance X0, from which we need to com-
pute a Qn−1 •Θn−2 (Qn−2 •Θn−3 (· · · (Q1 •Θ0 Q0)))-instance. Regardless

of our definitions of Θ0, . . . ,Θn−2, such a set must be a Q0-instance.

As a starting point, we can obtain a Q0-instance by applying Φ̂ to X0.
Also, we want to include X0 in the Q0-instance so that we can use it
in the future. Hence, we define the forward functional Γ to send X0 to

the Q0-instance (X0, Φ̂(X0)).
Next, we need to define Θ0 so that for every Q0-solution X1 to

(X0, Φ̂(X0)), Θ0((X0, Φ̂(X0)) ⊕ X1) is a Q1-instance. Since X1 is a

Q0-solution to Φ̂(X0), we can obtain a Q1-instance by applying Φ̂ to
X0 ⊕ X1. Also, we want to include X0 and X1 in the Q1-instance so
that we can use them in the future. Hence, we define Θ0 to output the

Q1-instance (X0 ⊕X1, Φ̂(X0 ⊕X1)).
In general, for 0 ≤ m ≤ n− 2, define Θm by

(X0, Φ̂(X0))⊕ (((X1, X2), . . .), Xm+1) 7→

(⊕
i<m+2

Xi, Φ̂

(⊕
i<m+2

Xi

))
.

Finally, we want to solve X0 using a Qn−1 •Θn−2 (· · · (Q1 •Θ0 Q0))-

solution to (X0, Φ̂(X0)). Such a solution has the form (((X1, X2), . . .), Xn).
We will show in the verification that there is a run of the game reducing
P to Qn−1, . . . , Q0 where II follows the strategy Φ and at round m, I

plays Xm−1. Since Φ always wins in round n + 1, Φ̂(
⊕

i<n+1 Xi) must
be a P -solution to X0. Therefore, we define the backward functional

∆ by mapping X0 ⊕ (((X1, X2), . . .), Xn) to Φ̂(
⊕

i<n+1 Xi).

Verification. We show that P ≤W Qn−1•Θn−2(Qn−2•Θn−3(· · · (Q1•Θ0

Q0))) via Γ and ∆. Fix a P -instance X0. We show by simultaneous
induction on k that

(i) for each 0 ≤ k ≤ n − 1, Γ(X0) is a Qk •Θk−1
(· · · (Q1 •Θ0 Q0))-

instance;
(ii) for each 0 ≤ k ≤ n − 1, if (((X1, X2), . . .), Xk+1) is a Qk •Θk−1

(· · · (Q1 •Θ0 Q0))-solution to Γ(X0), then there is a partial run
of the game reducing P to Qn−1, . . . , Q0 where II follows the
strategy Φ and at round 1 ≤ m ≤ k + 2, I plays Xm−1.

Base case. We show that (i) holds for k = 0. Since X0 is a P -instance

and Φ always wins in round n+1, it follows that Φ̂(X0) is a Q0-instance.

Therefore Γ(X0) = (X0, Φ̂(X0)) is a Q0-instance.
Inductive step 1. Assuming that for some 0 ≤ k ≤ n − 1, we have

that (ii) holds for all 0 ≤ m < k and (i) holds for k, we show that (ii)

24 JUN LE GOH

holds for k. Let (((X1, X2), . . .), Xk+1) be a Qk •Θk−1
(· · · (Q1 •Θ0 Q0))-

solution to Γ(X0). We start by showing that there is a partial run
where II follows the strategy Φ and at round 1 ≤ m ≤ k + 1, I plays
Xm−1.

If k = 0, then I starts by playing the P -instance X0. If k > 0, by
definition of •, (((X1, X2), . . .), Xk) is a Qk−1 •Θk−2

(· · · (Q1 •Θ0 Q0))-
solution to Γ(X0). By assumption, (ii) holds for k − 1, so there is a
partial run where II follows the strategy Φ and at round 1 ≤ m ≤ k+1,
I plays Xm−1.

Now, we extend said partial run. By choice of (((X1, X2), . . .), Xk+1)
and definition of •, Xk+1 is a Qk-solution to Θk−1(Γ(X0)⊕(((X1, X2), . . .), Xk)),

which is defined to be (
⊕

i<k+1 Xi, Φ̂(
⊕

i<k+1 Xi)). Therefore Xk+1 is

a Qk-solution to Φ̂(
⊕

i<k+1 Xi), and so we may extend the aforemen-
tioned run by making I play Xk+1. This proves that (ii) holds for k.

Inductive step 2. Assuming that (i) and (ii) hold for some 0 ≤ k <
n − 1, we show that (i) holds for k + 1. Since (i) holds for k, it re-
mains to show that if (((X1, X2), . . .), Xk+1) is a Qk •Θk−1

(· · · (Q1 •Θ0

Q0))-solution to Γ(X0), then Θk(Γ(X0) ⊕ (((X1, X2), . . .), Xk+1)) =

(
⊕

i<k+2 Xi, Φ̂(
⊕

i<k+2 Xi)) is a Qk+1-instance.
Indeed, let us apply (ii) for k to (((X1, X2), . . .), Xk+1). Since Φ

always wins in round n+1 and k+2 < n+1, we have that Φ̂(
⊕

i<k+2 Xi)
is a Qk+1-instance. We have shown that (i) holds for k + 1, completing
the proof of inductive step 2.

Applying the above base case and inductive steps, we may deduce
(i) and (ii) for k = n − 1. To complete the proof, we show that if
(((X1, X2), . . .), Xn) is a Qn−1•Θn−2 (· · · (Q1•Θ0Q0))-solution to Γ(X0),

then ∆(X0 ⊕ (((X1, X2), . . .), Xn)) = Φ̂(
⊕

i<n+1 Xi) is a P -solution to
X0.

By (ii) for k = n − 1, there is a partial run where II follows the
strategy Φ and at round 1 ≤ m ≤ n + 1, I plays Xm−1. Since Φ wins

in round n + 1, Φ̂(
⊕

i<n+1 Xi) is a P -solution to X0 as desired.
(3) ⇒ (1). Induction on n using Proposition 21. �

5. The ≡1
gW -lattice

Recall from Proposition 12 that P ≤1
gW Q if and only if P ≤W Qtid.

It follows that ≤1
gW is reflexive and transitive, so we can define the as-

sociated notion of ≡1
gW and ≡1

gW -degrees. As a notion of reduction

between problems, we find ≤1
gW more intuitive than ≤W . This is be-

cause in order to show that P ≤W Q, one is obliged to compute a

COMPOSITIONS OF MULTIVALUED FUNCTIONS 25

Q-instance from every P -instance, even if one could already compute
a solution to said P -instance. See also Theorem 30.

Using Proposition 12, it is easy to show that the ≡1
gW -degrees form

a distributive lattice with the usual join and meet operations. In
fact, Pauly5 has pointed out that the ≡1

gW -lattice is isomorphic to the
pointed Weihrauch lattice, which was studied by Higuchi and Pauly [8].
It is easy to show that the pointed Weihrauch degrees (under ≤W) form
a lattice under the usual join and meet operations.

Proposition 36 (Pauly). The ≡1
gW -lattice and the pointed Weihrauch

lattice are isomorphic.

Proof. By Proposition 12, P ≤1
gW Q if and only if P ≤W Q t id. Also,

it is easy to see that P ≤W Q t id if and only if P t id ≤W Q t id.
Next, note that if P is pointed, then P t id ≡W P . So P 7→ P t id is
an isomorphism between the ≡1

gW -degrees and the pointed Weihrauch
degrees. Hence P 7→ P t id is in fact a lattice isomorphism. �

References

[1] Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a
uniform low basis theorem. Ann. Pure Appl. Logic, 163(8):986–1008, 2012.

[2] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles
and weak computability. J. Symbolic Logic, 76(1):143–176, 2011.

[3] Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-
Weierstrass theorem is the jump of weak König’s lemma. Ann. Pure Appl.
Logic, 163(6):623–655, 2012.

[4] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch de-
grees. Logical Methods in Computer Science, to appear.

[5] Vasco Brattka and Tahina Rakotoniaina. On the uniform computational con-
tent of Ramsey’s theorem. J. Symb. Log., 82(4):1278–1316, 2017.

[6] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength
of Ramsey’s theorem for pairs. J. Symbolic Logic, 66(1):1–55, 2001.

[7] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti,
and Paul Shafer. On uniform relationships between combinatorial problems.
Trans. Amer. Math. Soc., 368(2):1321–1359, 2016.

[8] Kojiro Higuchi and Arno Pauly. The degree structure of Weihrauch reducibil-
ity. Log. Methods Comput. Sci., 9(2):2:02, 17, 2013.

[9] Denis R. Hirschfeldt and Carl G. Jockusch, Jr. On notions of computability-
theoretic reduction between Π1

2 principles. J. Math. Log., 16(1):1650002, 59,
2016.

[10] Jeffry Hirst and Carl Mummert. Using Ramsey’s theorem once.
arXiv:1611.03134, 2 Jun 2017.

[11] Ludovic Patey. The weakness of being cohesive, thin or free in reverse mathe-
matics. Israel J. Math., 216(2):905–955, 2016.

5Arno Pauly, personal communication.

26 JUN LE GOH

[12] Arno Pauly. On the (semi)lattices induced by continuous reducibilities. MLQ
Math. Log. Q., 56(5):488–502, 2010.

Department of Mathematics, Cornell University, 310 Malott Hall,
Ithaca NY, USA 14853

E-mail address: jg878@cornell.edu

	1. Introduction
	2. Formalizing Compositions
	2.1. Parallel Product
	2.2. Compositional Product
	2.3. Reduction Games
	2.4. Step Product

	3. Composing a Multivalued Function with Itself
	4. Finite Compositions of Arbitrary Multivalued Functions
	5. The 1gW-lattice
	References

