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Hilbert’s tenth problem

Hilbert (≈ 1900, translated to English by Newson):

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

What is a “process [which uses] a finite number of operations”?

This was defined in the 1940s by work of Gödel, Herbrand, Church, Post and Turing.

In 1970, Matiyasevich (building on work of Davis, Putnam and Robinson) showed that
there cannot be such a process.
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Diophantine equations

x + 2y − 3 = 0

x2 + y2 − z2 = 0

x3 + y3 − z3 = 0

x2 − 2y2 − 1 = 0

y2 − x3 + 36x = 0

Hilbert’s tenth problem asks for a process to determine whether equations such as the
above have any integer solutions.
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Examples of equations which we know how to solve

Proposition

The linear equation ax + by = c has an integer solution (x , y) if and only if

gcd(a, b) divides c .

Proposition

The quadratic equation x2 + y2 = 3z2 has no integer solutions (x , y , z).

Proof.
Suppose (x , y , z) is an integer solution. WLOG gcd(x , y) = 1.

If 3 divides x , then x2 ≡ 0 (mod 3), else x2 ≡ 1 (mod 3). Same for y .

Since 3 cannot divide both x and y , we have

x2 + y2 ≡ 1 or 2 (mod 3).

This contradicts 3z2 ≡ 0 (mod 3).
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Changing the scope from Z to N

Proposition

P(x1, . . . , xn) = 0 has a solution in Z if and only if P(a1 − b1, . . . , an − bn) = 0 has a
solution in N.

Theorem
P(x1, . . . , xn) = 0 has a solution in N if and only if

P(p21 + q21 + r21 + s21 , . . . , p
2
n + q2n + r2n + s2n) = 0

has a solution in Z.

To prove (⇒) of the theorem, use a theorem of Lagrange:

Every natural number can be expressed as the sum of squares of four (possibly
zero) integers, i.e., for every c ∈ N, p2 + q2 + r2 + s2 = c has some solution
(p, q, r , s) ∈ N4.
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Diophantine relations

Definition
A relation S ⊆ Nn is a Diophantine relation if there is some Diophantine equation
P(x1, . . . , xn, y1, . . . , ym) = 0 such that

(x1, . . . , xn) ∈ S ⇔ ∃y1, . . . , ymP(x1, . . . , xn, y1, . . . , ym) = 0.

(The scope of y1, . . . , ym is N.)

I x is not a power of 2 if and only if

(∃y , z)[x − y(2z + 3) = 0].

I x is not prime if and only if

(∃y , z)[x − (y + 2)(z + 2) = 0].
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Diophantine relations

Definition (repeated)

A relation S ⊆ Nn is a Diophantine relation if there is some Diophantine equation
P(x1, . . . , xn, y1, . . . , ym) = 0 such that

(x1, . . . , xn) ∈ S ⇔ ∃y1, . . . , ymP(x1, . . . , xn, y1, . . . , ym) = 0.

I x divides y if and only if
(∃d)[y − dx = 0].

I x < z if and only if
(∃v)[x + v + 1− z = 0].

I x is the remainder of y when divided by z if and only if ∃q(y = qz + x) and x < z
if and only if

(∃d , v)[(y − dz − x)2 + (x + v + 1− z)2 = 0].
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Closure properties of Diophantine relations

Lemma
Diophantine relations are closed under intersection and union.

Proof.
Suppose S1 and S2 are Diophantine relations which are defined by

∃yP1(x , y) = 0 and ∃zP2(x , z) = 0

respectively. Then S1 ∩ S2 is defined by

∃y , z [P1(x , y)2 + P2(x , z)2 = 0].

S1 ∪ S2 is defined by
∃y , z [P1(x , y) · P2(x , z) = 0].
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Closure properties of Diophantine relations

A Diophantine function is one whose graph is a Diophantine relation.

Lemma
Diophantine functions are closed under composition.

Proof.
Suppose f is an m-ary Diophantine function and g1, . . . , gm are Diophantine functions.
Then

z = f (g1(x1), . . . , gm(xm))

if and only if

∃y1, . . . , ym(z = f (y1, . . . , ym) ∧ y1 = g1(x1) ∧ · · · ∧ ym = gm(xm)).

By substituting the Diophantine definitions of f , g1, . . . , gm into the above, we may
obtain a Diophantine definition of the composition.
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Section 1

Diophantine ⇔ recursive
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Diophantine ⇔ recursive

Our goal in this section is to prove

Theorem
The Diophantine functions are exactly the recursive functions.

Proposition

Every Diophantine function is recursive.

Sketch.
Suppose f is a Diophantine function which is defined by

z = f (x) ⇔ ∃yP(x , z , y) = 0.

Given natural numbers x , z , y , one can compute whether P(x , z , y) = 0. We know that
for each x , there is exactly one z for which there are y with P(x , z , y) = 0. Therefore
we can recursively find such z by minimization.
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Towards recursive ⇒ Diophantine: Primitive recursion

Recall that the recursive functions are closed under primitive recursion.

So we need to show that the Diophantine functions are closed under primitive
recursion, i.e.,

If f and g are n-ary and (n + 2)-ary Diophantine functions respectively, then
the following (n + 1)-ary function h is Diophantine:

h(x , 0) = f (x)

h(x , t + 1) = g(x , t, h(x , t)).
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Towards recursive ⇒ Diophantine: Encoding sequences
Goal: Show that if f and g are n-ary and (n + 2)-ary Diophantine functions
respectively, then the following (n + 1)-ary function h is Diophantine:

h(x , 0) = f (x)

h(x , t + 1) = g(x , t, h(x , t)).

One needs to construct a Diophantine equation which defines the “history” of the
computation which produces h(x , t), i.e.,

h(x , 0), h(x , 1), . . . , h(x , t − 1), h(x , t).

For fixed t, one can easily do this. For example, for t = 2,

y = h(x , 2) ⇔ (∃y0, y1)(y0 = f (x) ∧ y1 = g(x , 0, y0) ∧ y = g(x , 1, y1)).

But we need a single Diophantine definition which works for all t, so we need to
encode each “history” as a single number, rather than using a new existential
quantifier for each entry in the “history”.
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Towards encoding sequences: Encoding pairs

Theorem (Pairing)

There are Diophantine functions P(x , y), L(z) and R(z) such that

1. for all x , y , L(P(x , y)) = x and R(P(x , y)) = y ;

2. for all z , P(L(z),R(z)) = z ;

3. for all z , L(z),R(z) ≤ z .

Proof.
Consider the Cantor pairing function (x , y) 7→ (x+y)(x+y+1)

2 + y . Formally,

z = P(x , y) if 2z = (x + y)(x + y + 1) + 2y

x = L(z) if ∃y [2z = (x + y)(x + y + 1) + 2y ]

x = R(z) if ∃x [2z = (x + y)(x + y + 1) + 2y ].

It follows from invertibility of the Cantor pairing function that L(z) and R(z) are
functions.
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Encoding sequences using sequence numbers

Theorem (Sequence numbers)

There is a Diophantine function S(i , u) such that S(i , u) ≤ u and for each sequence
a1, . . . , an, there is some u such that S(i , u) = ai for each i .

(Think of u as a code for the sequence a1, . . . , an. Think of S(i , u) as extracting the
ith entry of the sequence encoded by u.)

Proof.
Define S(i , u) to be the remainder of L(u) divided by 1 + i · R(u).

Since L, R, and remainder are Diophantine functions and Diophantine functions are
closed under composition, S(i , u) is Diophantine.

Also, S(i , u) ≤ L(u) ≤ u.

To show that each sequence a1, . . . , an is encoded by some u, we use the Chinese
remainder theorem (next slide).
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Encoding sequences using sequence numbers, continued

Theorem (Sequence numbers)

There is a Diophantine function S(i , u) such that S(i , u) ≤ u and for each sequence
a1, . . . , an, there is some u such that S(i , u) = ai for each i .

Proof. (continued)

(S(i , u) is the remainder of L(u) divided by 1 + i · R(u).)

Given a1, . . . , an, we can construct u as follows. Fix any y > a1, . . . , an which is
divisible by n!. Then

1 + y , 1 + 2y , . . . , 1 + ny

are relatively prime. The Chinese remainder theorem gives us x s.t.

x ≡ ai (mod 1 + iy) for i = 1, . . . , n.

Then we could take u = P(x , y).
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Towards recursive ⇒ Diophantine: Bounded quantification

Theorem
If P(b, z , x , y) = 0 is Diophantine, then the set of (b, x) s.t.

(∀z ≤ b)(∃y)[P(b, z , x , y) = 0]

is Diophantine.

In other words, the class of Diophantine relations is closed under bounded
quantification.

The proof of this theorem is very long. Before we dive in, we shall derive some
corollaries.
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The set of prime numbers is Diophantine

Recall that the set of composite numbers is easily seen to be Diophantine:

x is composite ⇔ (∃y , z)[x − (y + 2)(z + 2) = 0].

Theorem
The set of prime numbers is Diophantine.

Proof.
x is prime if and only if

x > 1 ∧ (∀y , z ≤ x)(yz < x ∨ yz > x ∨ y = 1 ∨ z = 1).

By the theorem on bounded quantification, the above yields a Diophantine
definition.
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Corollaries of closure under bounded quantification

Corollary

The Diophantine functions are closed under primitive recursion.

Proof.
Suppose f and g are n-ary and (n + 2)-ary Diophantine functions respectively. Let h
denote the (n + 1)-ary function defined by primitive recursion:

h(x , 0) = f (x)

h(x , t + 1) = g(t, h(x , t), x).

Observe that y = h(x , z) if and only if there are u, v such that:

1. v = S(0, u) and v = f (x)

2. for all t < z , there is some w such that w = S(t + 1, u) and w = g(t,S(t, u), x)

3. y = S(z , u).

This shows that h is Diophantine; note the bounded universal quantifier over t.
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Corollaries of closure under bounded quantification

Corollary

The Diophantine functions are closed under minimization.

Proof.
Suppose f is an (n + 1)-ary Diophantine function such that for each n-tuple x , there is
some y such that f (x , y) = 0.

For each x , define h(x) to be the least y such that f (x , y) = 0.

We have y = h(x) if and only if f (x , y) = 0 and for all t < y , f (x , t) > 0.

This shows that h is Diophantine; note the bounded universal quantifier over t.
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What’s next

Combining the corollaries on the previous two slides, one can prove

Theorem
Every recursive function is Diophantine.

Returning now to bounded quantification, a major intermediate step is to prove

Theorem (Matiyasevich 1970)

The exponential function (n, k) 7→ nk is Diophantine.

Matiyasevich’s theorem provided the final piece needed to show that Hilbert’s tenth
problem is unsolvable:

Theorem (Davis, Putnam, Robinson 1961)

Hilbert’s tenth problem for exponential Diophantine equations is unsolvable.
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Exponential is Diophantine: Pell’s equation x2 − dy 2 = 1

If (x , y) is a solution with y 6= 0, then x
y ≈
√
d . It is closely connected to the

continued fraction expansion of
√
d .

Historical notes:

I Important contributions were made by Greek and Indian mathematicians such as
Brahmagupta (7th century AD).

I It appears that Brouncker (≈ 1650) was the first to give a method for finding all
solutions, while Lagrange (≈ 1750) was the first to give a method with what we
might consider a proof.

I It seems that Pell had a very small role, if any: Dickson blames Euler for this
misattribution (see chapter XII in Dickson, History of the theory of numbers, vol.
II, 1966)
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Exponential is Diophantine: Pell’s equation x2 − dy 2 = 1

We will focus on the case d = a2 − 1 for integers a ≥ 2.

Theorem
(x , y) ∈ N2 is a solution to x2 − (a2 − 1)y2 = 1 if and only if
there is some k ≥ 0 such that

(a +
√

a2 − 1)k = x + y
√
a2 − 1.

Definition
For each k ∈ N, define xk(a) and yk(a) by

(a +
√
a2 − 1)k = xk(a) + yk(a)

√
a2 − 1.

24 / 65



Exponential is Diophantine: Pell’s equation x2 − (a2 − 1)y 2 = 1

Definition (repeated)

Define xk(a) and yk(a) by (a +
√
a2 − 1)k = xk(a) + yk(a)

√
a2 − 1.

k xk(a) yk(a)

0 1 0
1 a 1
2 2a2 − 1 2a
3 4a3 − 3a 4a2 − 1

The polynomials xk(a) and yk(a) are known as Chebyshev polynomials. They are
closely related to trigonometric addition formulas, e.g.,

cos(3θ) = 4 cos3(θ)− 3 cos(θ) and
sin(3θ)

sin(θ)
= 4 cos2(θ)− 1.
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Recurrences for xk and yk

The plan now is to use (xk(a))k and (yk(a))k to define the exponential function.

Lemma

xk+1 = a · xk + (a2 − 1) · yk xk+1 = 2a · xk − xk−1

yk+1 = a · yk + xk yk+1 = 2a · yk − yk−1

Now we can reason about (xk(a))k and (yk(a))k using induction on k.

For example, one can prove by induction on k that

Lemma
(xk(a))k grows exponentially, specifically, for each k we have ak ≤ xk(a) ≤ (2a)k .
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Robinson’s congruence

Lemma (Robinson 1952)

nk and xk − (a− n)yk are equal modulo 2an − n2 − 1.

Proof.
Induction on k . For the inductive step, modulo 2an − n2 − 1, we have

xk+1 − (a− n)yk+1

= (2axk − xk−1)− (a− n)(2ayk − yk−1) recurrences

= 2a(xk − (a− n)yk)− (xk−1 − (a− n)yk−1)

≡ 2ank − nk−1 ind. hyp.

= nk−1(2an − 1)

≡ nk−1(n2)

= nk+1.
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Corollary of Robinson’s congruence

Corollary

Suppose n ≥ 2 and k ≥ 1. For every a > xk(n), nk is the remainder of
xk(a)− (a− n)yk(a) divided by 2an − n2 − 1.

Proof.
By Robinson’s congruence, it suffices to show that nk < 2an − n2 − 1. We have

nk ≤ xk(n) by growth rate of (xk(n))k

< a by assumption

≤ 2an − n2 − 1,

where the last inequality holds because

a(2n − 1) ≥ (n + 1)(2n − 1) a > nk ≥ n

> n2 + 1 n ≥ 2.
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Towards showing that xk(a) and yk(a) are Diophantine

The corollary to Robinson’s congruence shows that the exponential function is
Diophantine, assuming that xk(a) and yk(a) are Diophantine.

To prove the latter, we need more properties about xk(a) and yk(a).

First, we have lemmas which relate yk(a) and a (roughly).

Lemma (Robinson 1952)

a− 1 divides yk(a)− k .

Closely related is

Lemma
a− b divides yk(a)− yk(b).
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First and Second Step Down Lemmas

Next, we have lemmas which relate yq(a) and q (roughly).

Lemma (SDL1)

yk(a)2 divides yq(a) if and only if k · yk(a) divides q.

Lemma (SDL2)

yr (a) ≡ ±yp(a) (mod xq(a)) if and only if r ≡ ±p (mod 2q).
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Diophantine definition of xk(a) and yk(a)

Theorem
(a, k, c , d) satisfies c = xk(a) and d = yk(a) if and only if
there are e, f , g , h, i ∈ N such that:

1. c2 − (a2 − 1)d2 = 1

2. e2 − (a2 − 1)f 2 = 1

3. h2 − (g2 − 1)i2 = 1

4. 2d2 divides f

5. g ≡ a (mod e)

6. g ≡ 1 (mod 2d)

7. i ≡ k (mod 2d)

8. i ≡ d (mod e)

9. k ≤ d .
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Diophantine definition of xk(a) and yk(a), forward direction

Suppose c = xk(a) and d = yk(a). Define

q = k · yk(a) e = x2q(a) f = y2q(a)
g = a + e2(e2 − a) h = xk(g) i = yk(g)

4. 2d2 divides f : By SDL1, since k · yk(a) divides q, we have yk(a)2 (= d2) divides
yq(a). Now f = y2q(a) = 2xq(a)yq(a) (by a “double angle formula”), so 2d2

divides f .

5. g ≡ a (mod e) by definition of g .

6. g ≡ 1 (mod 2d): By (2), e2 ≡ 1 (mod f 2). It follows from (4) that
e2 ≡ 1 (mod 2d). So g ≡ 1 (mod 2d), by definition of g .

7. i ≡ k (mod 2d): By (6), 2d divides g − 1. By Robinson, g − 1 divides yk(g)− k
(= i − k). So i ≡ k (mod 2d).

8. i ≡ d (mod e): By (5), e divides g − a. Also, g − a divides yk(g)− yk(a)
(= i − d). So i ≡ d (mod e).
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Backward direction

Suppose there are
e, f , g , h, i such that:

1. c2 − (a2 − 1)d2 = 1

2. e2 − (a2 − 1)f 2 = 1

3. h2 − (g2 − 1)i2 = 1

4. 2d2 divides f

5. g ≡ a (mod e)

6. g ≡ 1 (mod 2d)

7. i ≡ k (mod 2d)

8. i ≡ d (mod e)

9. k ≤ d .

By 1–3, let p, q, r be such that c = xp(a), d = yp(a),
e = xq(a), f = yq(a), h = xr (g), i = yr (g).

Claim: k = p (so c = xk(a) and d = yk(a)).

Notice p ≤ yp(a) = d and k ≤ d . So it suffices to show

k ≡ ±p (mod 2d).

By (7) we have k ≡ i (mod 2d). We also have

i ≡ r (mod 2d)

by (6) and Robinson:

2d divides g − 1 divides yr (g)− r = i − r .

It remains to show r ≡ ±p (mod 2d).
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Backward direction, cont.

Suppose there are
e, f , g , h, i such that:

1. c2 − (a2 − 1)d2 = 1

2. e2 − (a2 − 1)f 2 = 1

3. h2 − (g2 − 1)i2 = 1

4. 2d2 divides f

5. g ≡ a (mod e)

6. g ≡ 1 (mod 2d)

7. i ≡ k (mod 2d)

8. i ≡ d (mod e)

9. k ≤ d .

Let p, q, r be such that c = xp(a), d = yp(a), e = xq(a),
f = yq(a), h = xr (g), i = yr (g).

Goal: r ≡ ±p (mod 2d).

First, we show that d divides q:

(4) ⇒ yp(a)2 | yq(a)
SDL1⇒ yp(a) | q.

Therefore it suffices to show r ≡ ±p (mod 2q).
By (8),

yr (g) ≡ yp(a) (mod xq(a)).

By (5) and a previous lemma,

xq(a) = e divides g − a divides yr (g)− yr (a),

so yr (a) ≡ yp(a) (mod xq(a)).

By SDL2, r ≡ ±p (mod 2q).
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Recap

We showed that (a, k) 7→ xk(a) and (a, k) 7→ yk(a) are Diophantine.

This implies (by Robinson’s congruence) that (n, k) 7→ nk is Diophantine.

Our next goal is to show that the class of Diophantine relations is closed under
bounded quantification.

To do this, we shall show that several other functions are Diophantine.
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More Diophantine functions

Theorem
The following functions are Diophantine:

(n, k) 7→
(
n

k

)
n 7→ n!

(a, t, y) 7→
∏
k≤y

(a + kt)

We shall briefly discuss the ideas involved in proving the above.
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Binomial coefficient is Diophantine

Main idea:
(n
k

)
is the kth digit in the base u expansion of (u + 1)n, whenever u is large

enough.

Lemma

If k ≤ n and u > 2n, then
(n
k

)
is the remainder of

⌊
(u + 1)n

uk

⌋
when divided by u.

Proof.
First,

(n
k

)
< 2n < u. Second, by the binomial theorem,

(u + 1)n

uk
=

k−1∑
i=0

(
n

i

)
ui−k︸ ︷︷ ︸

less than 1

+

(
n

k

)
+

n∑
i=k+1

(
n

i

)
ui−k︸ ︷︷ ︸

divisible by u

.
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Factorial and “Product” are Diophantine

Lemma
For each k , we have

k! =

⌊
(2k)k

2
/

(
(2k)k

k

)⌋
.

Using the above lemma, we can show that n 7→ n! is Diophantine.

Lemma
Fix a, t and y . If q and u satisfy qt ≡ a (mod u) and u >

∏
k≤y (a + kt), then∏

k≤y (a + kt) is the remainder of

∏
k≤y

(qt + kt)

(
= ty+1(y + 1)!

(
q + y

y + 1

))

when divided by u.

Using the above lemma, we can show that (a, t, y) 7→
∏

k≤y (a + kt) is Diophantine.
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Bounded quantification is Diophantine

Theorem (repeated from many slides ago)

If P(k , b, x , y) = 0 is Diophantine, then the set of (b, x) s.t.

(∀k ≤ b)(∃y)[P(k , b, x , y) = 0]

is Diophantine.

Some observations which play a key role in the proof: Let p be a prime.

1. If p divides P(y) and p > |P(y)|, then P(y) = 0.

2. If y ′ ≡ y (mod p), then P(y ′) ≡ P(y) (mod p).

3. If c and q are such that p divides 1 + c · q!, then p > q.
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Bounded quantification is Diophantine

Sketch of proof of theorem on previous slide.

Using P, define a polynomial Q(b, u, x) such that:

I Q(b, u, x) > max{b, u}
I Q(b, u, x) > |P(k , b, x , y)| whenever k ≤ b and y ≤ u.

One can show that (∀k ≤ b)(∃y)(P(k, b, x , y) = 0) if and only if there are u, k ′, t, y ′

such that:

I t = Q(b, u, x)!

I 1 + k ′t =
∏

k≤b(1 + kt)

I 1 + k ′t divides
∏

y≤u(y ′ − y)

I 1 + k ′t divides P(k ′, b, x , y ′).

Together with previous results, this completes the proof that a function is Diophantine
if and only if it is recursive.
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Diophantine sets = recursively enumerable sets

Theorem
The Diophantine sets are exactly the recursively enumerable sets.

Proof.
Suppose S = {x ∈ N : ∃yP(x , y) = 0} is a Diophantine set. Then S is the projection
of the recursive set {(x , y) : P(x , y) = 0}, so S is r.e.

Conversely, suppose S ⊆ N is r.e. Then S is the range of a recursive function
f : N→ N. We have proved that recursive functions are Diophantine, so we can write

z = f (x) ⇔ ∃yP(z , x , y) = 0.

Then z ∈ S if and only if ∃x , yP(z , x , y) = 0.
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Section 2

Applications to Hilbert’s tenth problem
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Proof that Hilbert’s tenth problem is unsolvable

Theorem
There is a Diophantine equation P(x , y) = 0 for which there is no recursive function
f : N→ {0, 1} such that f (x) = 1⇔ ∃yP(x , y) = 0.

So there is a family of Diophantine equations (P(x , y) = 0)x∈N for which Hilbert’s
tenth problem is already unsolvable.

Proof.
Fix an r.e. set S which is not recursive (e.g., the halting problem.) Since S is r.e., it is
Diophantine. Fix P(x , y) such that

S = {x ∈ N : ∃yP(x , y) = 0}.

Since S is not recursive, there cannot be any recursive function f such that
f (x) = 1⇔ ∃yP(x , y) = 0.
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How unsolvable is Hilbert’s tenth problem?

We have just showed that Hilbert’s tenth problem is unsolvable, but how unsolvable is
it? Recursion theory allows us to quantify this.

Fix an effective encoding of each Diophantine equation as a natural number.

Then we can view Hilbert’s tenth problem as a subset of N:

HTP := {e ∈ N : e is a code for a Diophantine equation which has a solution}.

We shall prove

Theorem
HTP is Turing equivalent to the halting problem K , i.e., HTP is computable with
oracle K and vice versa. In fact, they are equivalent under many-one reducibility.
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K is at least as complicated as HTP

Proposition

HTP is many-one reducible to K , i.e., there is a recursive function f such that for each
e, f (e) lies in K if and only if the Diophantine equation coded by e has a solution.

The point here is that HTP is r.e., and every r.e. set is many-one reducible to K .
We sketch a direct proof here:

Sketch.
Consider the following machine M:

Given input (e, n), M begins by ignoring n and decoding e to obtain a Dio-
phantine equation P(x) = 0. Then M tries all tuples x one by one, to see if
P(x) = 0. If it finds some such x , then it halts.

By the Church-Turing thesis, M is implemented by a partial recursive function g(e, n).
Define a recursive function f : N→ N as follows: f (e) is an index for the partial
recursive function n 7→ g(e, n).
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HTP is as complicated as K

Theorem
Every r.e. set S is many-one reducible to HTP, i.e., for each r.e. set S , there is a
recursive function f : N→ N such that for each x , the number x lies in S if and only if
the Diophantine equation coded by f (x) has a solution.

In particular, K is many-one reducible to HTP.

Proof.
Since S is r.e., it is Diophantine. Fix P(x , y) such that

S = {x ∈ N : ∃yP(x , y) = 0}.

For each x , define f (x) to be the code of the Diophantine equation P(x , y) = 0.

Therefore HTP is exactly as complicated as K (as measured by relative computability
as well as many-one reducibility).
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Post’s problem on r.e. sets

Quoting from Post (1944) (reformatted):

For unsolvable problems the concept of reducibility leads to the concept of
degree of unsolvability:

I two unsolvable problems being of the same degree of unsolvability if
each is reducible to the other,

I one of lower degree of unsolvability than another if it is reducible to the
other, but that other is not reducible to it,

I of incomparable degrees of unsolvability if neither is reducible to the
other.

[..] (Among the r.e. unsolvable problems) there is certainly a highest degree of
unsolvability. Our whole development largely centers on the single question of
whether there is, among these problems, a lower degree of unsolvability than
that, or whether they are all of the same degree of unsolvability.
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Section 3

Subproblems and variations of Hilbert’s tenth problem
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Subproblems which are known to be solvable or unsolvable

Question
Which subproblems of Hilbert’s tenth problem are solvable?

Degree one: Exercise for you.

One variable: Exercise for you.

Degree two, two variables: Solved by Lagrange (≈ 1800).

Degree two, arbitrarily many variables: Solved by Siegel (1972).

Degree three remains open. In the two variable case, much is known.
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Degree three, two variables

Theorem (Baker 1970s)

All integer solutions (x , y) to

y2 = ax3 + bx2 + cx + d

satisfy
|x |, |y | < exp((106 ·max(|a|, |b|, |c|, |d |))10

6
).

Corollary

There is an algorithm to decide whether a given equation of the form
y2 = ax3 + bx2 + cx + d has any integer solution.

Proof.
Check every x and y with |x |, |y | < exp((106 max(|a|, |b|, |c |, |d |))10

6
).
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Degree four

Proposition

Given any Diophantine equation P(x1, . . . , xn) = 0, we can compute a Diophantine
equation Q(y1, . . . , ym) = 0 of degree 4, which has an integer solution if and only if
the original equation has an integer solution.

Proof.
We shall construct a system of Diophantine equations of degree 2. Then we can
consider the sum of their squares to obtain a single equation of degree 4.

To do so, perform the following substitution repeatedly: Replace a term of degree
d > 2 with a term of degree 2 using a new variable. For example, we can replace x4

with xy and add a new equation y = x3. Then we would replace x3 with xz and add a
new equation z = x2.

Corollary

Hilbert’s tenth problem for Diophantine equations of degree at most 4 is unsolvable.

Notice the above procedure comes at the cost of increasing the number of variables.
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Number of variables

The best result I know is:

Theorem (Sun 1992)

Hilbert’s tenth problem for Diophantine equations with at most 11 variables is
unsolvable.
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Computational complexity of subproblems of Hilbert’s tenth problem

Computational complexity is concerned with the time and/or space resources needed
to solve computational problems.

The computational complexity of number-theoretic problems, such as factoring, is
central to the analysis of cryptographic schemes such as RSA.

Whenever a subproblem of Hilbert’s tenth problem is solvable, we can ask: What is its
computational complexity?
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Computational complexity of subproblems of Hilbert’s tenth problem

Theorem (Baker 1970s, repeated from before)

All integer solutions (x , y) to

y2 = ax3 + bx2 + cx + d

satisfy
|x |, |y | < exp((106H)10

6
),

where H = max(|a|, |b|, |c |, |d |).

The naive algorithm arising from Baker’s theorem has “high” time complexity: One
tests each of the x and y with |x |, |y | < exp((106H)10

6
).

For certain other classes of equations, one can do better: See Lagarias (2011) and its
references.

54 / 65



Generalizations of subproblems of Hilbert’s tenth problem

Consider the following problem for fixed k :
Given a Diophantine equation of degree ≤ k , decide if it has solutions in N.

It is easy to reduce Hilbert’s tenth problem for equations for degree ≤ k to the above
problem.

The converse is not clear, however.

Even though deciding whether a given Diophantine equation has solutions in N can be
reduced to Hilbert’s tenth problem, this reduction does not preserve degree.

Example

x21 + 3x2 + 2 = 0 has a solution in N if and only if

(p21 + q21 + r21 + s21 )2 + 3(p22 + q22 + r22 + s22 ) + 2 = 0

has a solution in Z.
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Generalizations of subproblems of Hilbert’s tenth problem

Theorem (Grunewald, Segal 2004)

There is an algorithm which takes in a Diophantine equation of degree 2 and decides
whether it has solutions in N. In fact, there is an algorithm which can decide whether
the equation has finitely or infinitely many solutions in N.

Notice that in general, the set of Diophantine equations with infinitely many solutions
in N (or in Z) is not (obviously) recursively enumerable.

Nevertheless we can still express such a property using a first-order sentence.
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Deciding truth of first-order sentences

For each statement
P(x1, . . . , xn) = 0 has a solution in Z,

there is a first-order sentence ϕ in the language +, ·, 0, 1,=:

(∃x1)(∃x2) . . . (∃xn)P(x1, . . . , xn) = 0

such that the statement holds if and only if ϕ is true in the structure (Z,+, ·, 0, 1).

Definition
The first-order theory of a structure is the set of first-order sentences which are true in
said structure.
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Deciding truth of first-order sentences in Z

Just as we defined codes for Diophantine equations, we can define codes for all
first-order sentences. Therefore we can think of the first-order theory of a structure as
a subset of N.

General question: For each structure, is its first-order theory recursive?

Theorem
The first-order theory of (Z,+, ·, 0, 1) is not recursive.

Sketch.
Hilbert’s tenth problem is unsolvable.
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Deciding truth of first-order sentences in C

Theorem (“essentially” “classical”)

The first-order theory of (C,+, ·, 0, 1) is recursive.

This holds because there is an effective procedure for converting a first-order formula ϕ
to a quantifier-free formula which is equivalent to ϕ in the structure (C,+, ·, 0, 1).

We call this effective quantifier elimination.

Corollary

Hilbert’s tenth problem for C is solvable.
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Deciding truth of first-order sentences in R

(R,+, ·, 0, 1) does not admit quantifier elimination:

∃y(x = y2)

is not equivalent to a quantifier-free formula in the language +, ·, 0, 1.

Theorem (Tarski 1951)

The expanded structure (R,+, ·, 0, 1,≤) admits effective quantifier elimination. So its
first-order theory is recursive.

Corollary

The first-order theory of (R,+, ·, 0, 1) is recursive. Hilbert’s tenth problem for R is
solvable.
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Hilbert’s tenth problem for rings other than Z

There are several rings of interest to number theorists other than Z.

We just discussed C and R. What about Q?

For Q and subfields K of Q, Hilbert’s tenth problem is open, i.e., it is not known if
there is an algorithm which decides whether a given Diophantine equation has
solutions in Q (K respectively).
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Hilbert’s tenth problem for Q

Proposition

Suppose Z is existentially definable over Q. Then Hilbert’s tenth problem for Q is
unsolvable.

Sketch.
P(x1, . . . , xn) = 0 has a solution in Z if and only if

∃x1, . . . , xn ∈ Q(P(x) = 0 ∧ x1 ∈ Z ∧ · · · ∧ xn ∈ Z).

If “xi ∈ Z” is existential, then the above can be reformulated as “Q(y) = 0 has a
solution in Q” for some Diophantine Q(y). The desired result follows from
unsolvability of Hilbert’s tenth problem for Z.

It is not known if Z is existentially definable over Q. But it is possible to define Z in Q
using a first-order formula in the language +, ·, 0, 1,=.
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Defining Z in Q using a first-order formula

I In 1949, Robinson was the first to define Z in Q using a first-order formula. Her
formula had the form ∀∃∀.

I In 2009, Poonen found a formula of the form ∀∃.

Building on Poonen’s work, Koenigsmann showed:

Theorem (Koenigsmann 2016)

There is a polynomial P(x , y1, . . . , yn) with coefficients in Z such that for any x ∈ Q,

x ∈ Z ⇔ (∀y1, . . . , yn ∈ Q)(P(x , y1, . . . , yn) 6= 0).

In particular, Z is definable in Q using only universal quantifiers.
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Is Z existentially definable in Q?: Some heuristic against it

As mentioned previously, it is open whether Z is existentially definable in Q.

What about subfields K of Q other than Q?

Theorem (Eisenträger, Miller, Springer, Westrick 2020)

In “most” subfields K of Q, the ring of integers OK is neither existentially definable
nor universally definable in K .

Here “most” is measured using Baire category: In order to make this precise one has
to define a topology on the space of all subfields of Q.
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