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Summary

We study the interaction between effective Hausdorff dimension

dim(X ) = lim inf
n→∞

K (X ↾ n)
n

∈ [0, 1]

and Besicovitch pseudo-distance

d(X ,Y ) = lim sup
n→∞

|(X ↾ n)∆(Y ↾ n)|
n

∈ [0, 1]

of binary sequences. Specifically, fix t < s in [0, 1].

▶ Given X with dim(X ) = t, how close to X can we find Y with
dim(Y ) = s?

▶ Given Y with dim(Y ) = s, how close to Y can we find X
with dim(X ) = t?

This line of inquiry was initiated by Greenberg, Miller, Shen,
Westrick 2018 (henceforth GrMShW).



Kolmogorov complexity of strings

The Kolmogorov complexity K (σ) of a finite binary string σ is the
length of the shortest description of σ, where descriptions are given
by a fixed universal Turing machine.

We are concerned with the asymptotics of K(σ)
|σ| (where σ is an

initial segment of some X ∈ 2ω), so it does not matter which
universal Turing machine we fix.

Nor does it matter whether we use plain Kolmogorov complexity or
prefix-free Kolmogorov complexity.



The entropy function H : [0, 1] → [0, 1]

Given a string σ of length n, here is a way to describe it:

(1) specify the number of 1s and 0s in σ (say pn and (1− p)n
respectively), and

(2) specify σ among the strings of length n with pn many 1s.

(1) can be done with O(log n) bits.

(2) can be done with H(p)n bits, where

H(p) = −p log(p)− (1− p) log(1− p)

is the entropy function. 0 0.5 1
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Effective Hausdorff dimension of sequences

Definition (Lutz; Mayordomo)

The (effective Hausdorff) dimension of a sequence X ∈ 2ω is

dim(X ) = lim inf
n→∞

K (X ↾ n)
n

∈ [0, 1].

Observations:

▶ Computable sequences have dimension 0.

▶ Martin-Löf random sequences have dimension 1.

▶ Flipping every bit in a sequence does not change its dimension.



Upper density and dimension
If a sequence X has upper density p, i.e.,

lim sup
n→∞

|{i < n : X (i) = 1}|
n

= p,

then we can bound the dimension of X in terms of p:

Proposition

A sequence with upper density p has dimension ≤ H(p).

Corollary

If a sequence has dimension s, then its upper density is at least
H−1(s). (We use the branch H−1 : [0, 1] → [0, 1/2].)
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Hamming distance and Besicovitch pseudo-distance

The Hamming distance ∆(σ, τ) between strings σ, τ ∈ 2n is the
number of bits where they differ.

Definition
The (Besicovitch pseudo-)distance between sequences X ,Y ∈ 2ω is

d(X ,Y ) = lim sup
n→∞

∆(X ↾ n,Y ↾ n)
n

∈ [0, 1].

Observations:

▶ The distance between X and 00 · · · is the upper density of X .

▶ If we modify X on a set of positions of upper density 0, then
the result Y satisfies d(X ,Y ) = 0.



Distance versus dimension

Proposition (GrMShW)

If dim(X ) = t and dim(Y ) = s, then |s − t| ≤ H(d(X ,Y )).

In particular:

1. The previous proposition is the special case where Y is 00 · · · .
2. If d(X ,Y ) = 0, then X and Y have the same dimension.

Proof idea: We can describe an initial segment of X by describing
the corresponding initial segment of Y , as well as their differences.
This shows that

t ≤ s + H(d(X ,Y )).



Distance versus dimension

Proposition (GrMShW)

If dim(X ) = t and dim(Y ) = s, then |s − t| ≤ H(d(X ,Y )), i.e.,

d(X ,Y ) ≥ H−1(|s − t|).

Motivating Question

Is this the best possible bound?

In a weak sense, yes:

Proposition (GrMShW)

For every t < s, there are X and Y with dim(X ) = t, dim(Y ) = s,
and d(X ,Y ) ≤ H−1(s − t) (hence d(X ,Y ) = H−1(s − t)).

However, it is not the case that for every X of dimension t, there
is some Y of dimension s such that d(X ,Y ) ≤ H−1(s − t).



Raising dimension from t to s

Observation (GrMShW)

Suppose t < s. There is some X of dimension t such that for
every Y of dimension s, d(X ,Y ) > H−1(s − t).

To see this, fix X with dimension t and density H−1(t). For every
Y with dimension s, the density of Y is at least H−1(s), so

d(X ,Y ) ≥ H−1(s)− H−1(t) > H−1(s − t).
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Raising dimension from t to s

Observation (GrMShW)

Fix X with dimension t and density H−1(t). For every Y with
dimension s, the density of Y is at least H−1(s), so

d(X ,Y ) ≥ H−1(s)− H−1(t).

The above is the worst that could happen when trying to increase
the dimension of a given sequence X :

Theorem (GrMShW)

Suppose t < s. For every X of dimension t, there is some Y of
dimension s such that d(X ,Y ) ≤ H−1(s)− H−1(t).



Lowering dimension from s to t

Given Y of dimension s, how close to Y can we find some X of
dimension t?

H−1(s − t) is the closest that we can hope for, but this is not
always attainable.

The information in Y may be stored redundantly, i.e., it may be
hard to erase.



Lowering dimension from s to t: Redundancy in Y

(GrMShW) Take Y to be Z ⊕ Z , where Z is a random.

Imagine you’re trying to flip bits of Y in order to obtain an X of
lower dimension.

In order for you to succeed, it must be hard to recover Y from X .

X can detect (for free) its inconsistencies, i.e., the i such that
X (2i) ̸= X (2i + 1). It is relatively cheap to fix all inconsistencies.
Example:

X 0000110100101101 · · ·
Extra info 001 · · ·
X̃ 0000110000001111 · · ·

If, in addition to the above, we specify the set of i such that
X (2i) = X (2i + 1) ̸= Z (i), then we can recover all of Y .



Lowering dimension from s to t: Earlier results

Theorem (GrMShW)

For each Y of dimension s and each t < s, there is some X of
dimension t with d(X ,Y ) ≤ H−1(1− t).

This was proved using the corresponding result for finite strings:

Proposition (GrMShW)

For each σ ∈ 2n and t ∈ [0, 1], there is some τ ∈ 2n such that

K (τ)

n
≲ t

∆(σ, τ)

n
≲ H−1(1− t).

If s = 1, the above theorem is optimal. How about if s < 1?



Lowering dimension from s to t: Another strategy

If s < 1, there is another strategy for finding a nearby X of
dimension t.

The previous theorem was proved by applying the previous
proposition to each interval in Y to obtain X . Instead:

▶ We leave some intervals
in Y unchanged, and

▶ apply the previous
proposition to the other
intervals to obtain strings
of dimension < t.

If t is sufficiently close to s,
then this strategy is better.
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Lowering dimension from s to t: Our main theorem

Theorem (GoMSoW)

For each Y of dimension s and each t < s, there is some X of
dimension t such that

d(X ,Y ) ≤
{
H−1(1− t) if t ≤ 1− H(2s−1)

s−t
− log(21−s−1)

otherwise
.
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For s = 1, this specializes to the
previous theorem of GrMShW.

The above piecewise function is
continuous, and even
differentiable.



Lowering dimension from s to t: Optimality

Theorem (GoMSoW)

For each s, there is some Ys of dimension s such that the previous
bounds are optimal, i.e., for each t < s and each X of dimension t,

d(X ,Ys) =

{
H−1(1− t) if t ≤ 1− H(2s−1)

s−t
− log(21−s−1)

otherwise
.

Such Ys are constructed in order to maximize the redundancy of
their information.

Notice Ys does not depend on t.



Lowering dimension from s to t: Constructing optimal Ys

For integers r ≤ n, a set C ⊆ 2n is an r -covering code if every
string of length n lies at most distance r from C .

“Small” r -covering codes exist by a probabilistic argument
(Delsarte, Piret 1986).

We show that “small” r -covering codes which are
“well-distributed” exist, i.e., no string of length n is “close” to
“too many” elements of the covering code.

Once we know that such covering codes exist, we can compute
them by exhaustive search.

Henceforth, for each r ≤ n, fix such a covering code Cn
r .



Witnesses of optimality: s-codewords

For each n, let In denote the interval of integers[∑
i<n i ,

∑
i<n+1 i

)
. Note |In| = n.

Definition (GoMSoW)

For s ∈ [0, 1], we say that Ys ∈ 2ω is an s-codeword if there is
some Y of dimension 1 and integers ⟨rn⟩n∈ω such that:

▶ rn ≈ H−1(1− s)n

▶ for each n, ∆(Y ↾ In,Ys ↾ In) ≤ rn
▶ Ys ↾ In ∈ Cn

rn .

Facts:

1. Given Y of dimension 1, we can construct an s-codeword Ys .

2. dim(Ys) ≥ s because d(Y ,Ys) ≤ H−1(1− s).

3. dim(Ys) ≤ s because the covering codes Cn
rn are “small”.



s-codewords are far from sequences of lower dimension

Suppose t < s, Ys is an s-codeword, and dim(X ) = t.

Recall that Ys restricted to the interval In lies in the rn-covering
code Cn

rn .

We can describe Ys ↾ In by:

(1) describing X ↾ In
(2) specifying the distance q between X ↾ In and Ys ↾ In
(3) specifying Ys ↾ In among the strings in Cn

rn which lie within
distance q of X ↾ In.

(3) can’t be too short, otherwise we could give a simple description
of Ys ↾ In.

We can obtain a lower bound for q by giving an upper bound for
the number of bits needed for (3) in terms of q. Here we use the
fact that Cn

rn is “well-distributed”.



For each t > s, s-codewords are close to some sequence of
dimension t

Proposition (GoMSoW)

Suppose t > s. For every s-codeword Ys , there is some X of
dimension t such that d(X ,Ys) is as small as possible, i.e.,
H−1(t − s).

Thanks!


