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Enumeration reducibility

Definition (various authors, 1950s)

For (nonempty) A,B ⊆ N, we say that A is enumeration reducible
to B (A ≤e B) if

every enumeration of B computes an enumeration of A.

Example

Let B be a maximal independent set of vertices in a computable
graph. Then Bc ≤e B (but B ̸≤e B

c in general.)

The enumeration degrees (e-degrees) are defined from ≤e in the
same way that the Turing degrees are defined from ≤T.

They form an upper-semilattice under ≤e and the usual effective
join.
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Beyond the Turing degrees: The enumeration degrees

The Turing degrees embed into the e-degrees in a natural way:

A ≤T B if and only if A⊕ Ac ≤e B ⊕ Bc

so the map A 7→ A⊕ Ac induces an embedding.
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Questions we can ask about a partial order

1. Is it linear?

2. Which finite partial orders embed into it?

3. Is it dense?

4. Given finite partial orders P ⊆ Q, can every embedding of P
into it be extended to an embedding of Q?

5. (!) Given a first-order sentence in the language of {≤}, can
we algorithmically decide if it is true?

For many degree structures, the answer to 5 is very much no
(Slaman, Woodin 1997).

4 / 16



A central question

On the other hand, every finite partial order embeds into the
e-degrees (corollary of Sacks 1963), so we can compute if a
sentence of the form

∃a0∃a1 · · · ∃an (Boolean combination of ai ≤ aj)

holds in the e-degrees by checking whether the Boolean
combination is consistent with the axioms of partial orders.

At what point does computability break down?
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A countable substructure: The Σ0
2 e-degrees

We are working on this question for the Σ0
2 e-degrees.

Reasons to study the Σ0
2 e-degrees:

1. They are analogous to the c.e. Turing degrees

2. Any nontrivial automorphism of the e-degrees must move
some Σ0

2 e-degree (Slaman, Soskova 2017)

3. They exhibit unusual order-theoretic phenomenon (next slide)
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The Σ0
2 e-degrees: Ahmad pairs

The Σ0
2 e-degrees are dense (Cooper).

Compare: The c.e. Turing degrees are dense (Sacks density).

Question (Cooper)

Does the Σ0
2 e-degrees satisfy the same first-order sentences as the

c.e. Turing degrees?

Theorem (Ahmad 1989)

In the Σ0
2 e-degrees, there are

incomparable a and b such that
if x <e a, then x ≤e b.

a

b

x

Notice that a cannot be the join of two degrees below it.

On the other hand, in the c.e. Turing degrees, every degree is the
join of two degrees below it (Sacks splitting).
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There are no Ahmad triples

Theorem (Ahmad 1989)

There are incomparable a and b
such that if x <e a, then x ≤e b.

a

b

x

Theorem (G., Lempp, Ng,
Soskova 2021)

For every incomparable a, b, c,
there is some x such that:

▶ x <e a but x ̸≤e b, OR

▶ x <e b but x ̸≤e c.

(Actually we just need a ̸≤ b and
b ̸≤ c, so a and c could be
comparable or even equal.)

a

b

c

x

a

b

c

x
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Reformulating as extensions of embeddings

Theorem (Ahmad 1989)

There are incomparable a and b such that if x <e a, then x ≤e b.

Reformulation:

Not every embedding of the antichain {a, b} (into the Σ0
2

e-degrees) can be extended to an embedding of {a, b, x}
where x < a and x ̸≤ b.

Our result can be reformulated similarly:

Every embedding of the antichain {a, b, c} can be ex-
tended to one of the following:

▶ an embedding of {a, b, c , x} where x < a and x ̸≤ b
▶ an embedding of {a, b, c , x} where x < b and x ̸≤ c .

(Actually, there are four choices here because in the first ordering, we didn’t specify the relationship between x and

c, and in the second ordering, we didn’t specify the relationship between x and a.)
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“Disjunctive” results

Our result on no “Ahmad triples” generalizes the following

Theorem (Ahmad 1989)

There are no “symmetric Ahmad pairs”, i.e., for every
incomparable a and b, there is some x such that:

▶ x <e a but x ̸≤e b, or

▶ x <e b but x ̸≤e a.

In other words, every embedding of the antichain {a, b} can be
extended to one of the following:

▶ an embedding of {a, b, x} where x < a and x ̸≤ b

▶ an embedding of {a, b, x} where x < b and x ̸≤ a.
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What’s the goal here?

We’d like to give an algorithm for deciding the two-quantifier
first-order theory of the Σ0

2 e-degrees. In terms of quantifier
alternations, two quantifiers is the most we can hope to decide
(Kent 2006).

Fact: Every two-quantifier sentence can be thought of as a
disjunctive extension of embeddings problem.

Our focus (for now) is the following special case:

One-point extensions of antichains problem

Given a (finite) antichain P and one-point extensions Q0, . . . ,Qn

of P, decide whether every embedding of P into the Σ0
2 e-degrees

extends to an embedding of some Qi .

n = 0 was solved by Lempp, Slaman, Sorbi 2005. n ≥ 1 is open.
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One-point extensions of antichains problem

We’ll restrict ourselves further to one-point extensions where the
new element is not above any of the old elements.

Given an antichain P = {a0, . . . , ak} and such one-point extensions
Q0, . . . ,Qn of P, let xi denote the new element added by Qi .

Suppose that in Qi , we have xi < ai and xi | aj for j ̸= i .

a0 a1 a2 a3

x1

We shall call such Qi singleton extensions.
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Singleton extensions and weak Ahmad bases

If Qi is a singleton extension and a0, . . . , ak does not extend to an
embedding of Qi then:

Every x <e ai must be below some other aj .

If ai has the above property we say that it is a weak Ahmad base.

▶ If a and b form an Ahmad pair, then a is a weak Ahmad base.

▶ Not all weak Ahmad bases come from Ahmad pairs
(G., Lempp, Ng, Soskova 2021).

Right: Every x <e a0 is below a1 or
below a2, but a0 does not form an
Ahmad pair with a1 or with a2, as
witnessed by x1 and x2 respectively.

a0 a1 a2

x1x2
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We want to understand which degrees can be weak Ahmad bases,
because in general, we may want to construct an embedding of P
which cannot be extended to any of Q0, . . . ,Qn, not just a single
Qi .

Theorem (G., Lempp, Ng, Soskova ongoing)

If a and b form an Ahmad pair, then b is not a weak Ahmad base.

This generalizes our result on “no Ahmad triple”.

In fact, we believe we have proved the following stronger statement
(∗):

If a0, . . . , aℓ are incomparable weak Ahmad bases, then
for each i ≤ ℓ, there is some xi <e ai such that
xi |e aj for all j ̸= i .

(To derive the theorem from (∗), take ℓ = 1, a0 = a, a1 = b.)
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(∗): If a0, . . . , aℓ are incomparable weak Ahmad bases,
then for each i ≤ ℓ, there is some xi <e ai such that
xi |e aj for all j ̸= i .

Assuming (∗), we can derive a combinatorial condition on
Q0, . . . ,Qn which is necessary for there to be an embedding of
{a0, . . . , ak} which does not extend to any of Q0, . . . ,Qn.

a0 a1
. . .

aℓ aℓ+1
. . .

ak

x0 x1 xℓ

singleton extensions

We must have that x0, x1, . . . , xℓ cannot be used to extend the
embedding a0, . . . , ak to any of Qℓ+1, . . . ,Qn.
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Our plan is to prove that this combinatorial condition is also
sufficient for constructing an embedding of {a0, . . . , ak} which
does not extend to any of Q0, . . . ,Qn.

If true, this would give us an algorithm for deciding whether every
embedding of a given finite antichain P extends to an embedding
of some Qi , where Q0, . . . ,Qn are one-point extensions of P
where the new element is not above any old elements.

Thanks!

16 / 16


