
MATH 873 F19 NOTES (IN PROGRESS)

1. Introduction

Slaman:

[..] we are attempting to understand the interaction be-
tween the mathematical objects and the means needed
to speak about them.

Themes of this course:

– Computability as a unifying and organizing principle spanning
different fields (e.g., combinatorics, analysis, topology)

– Interactions between computable reducibilities and reverse math-
ematics

Examples of problems:

– Given a continuous function f : R→ R with a zero, find a zero;
– Given a convergent sequence of real numbers, find its limit;
– Given a bounded sequence of real numbers, find an accumula-

tion point;
– Given a sequence of natural numbers, find its minimum;
– Given a bounded sequence of natural numbers, find its maxi-

mum;
– Given a finitely branching infinite subtree of N<N, find an infi-

nite path;
– Given a countable open cover of [0, 1], find a finite subcover;
– Given a continuous function f : [0, 1] → R such that f(0) and
f(1) have opposite signs, find a zero.

A basic question of computable mathematics:

Can we solve these problems computably? If not, can
we measure how noncomputable they are?

Some early (i.e., 1950’s) results in the area:

– There is a computable bounded increasing sequence of real num-
bers whose limit is not computable (Specker);

– There is an infinite computable subtree of 2<N with no com-
putable path (Kleene).

Date: December 2, 2019.
1

2 MATH 873 F19 NOTES (IN PROGRESS)

The above results imply that the corresponding problems cannot be
solved computably, for any computable way to solve a problem certainly
must produce a computable solution for each computable instance.

What about the other problems above? Can they be solved com-
putably? How can we formalize this notion?

1.1. Computability on NN. The first order of business is to develop
a notion of computability on spaces other than N. For any countable
space S, such as the space of all finite strings in a finite alphabet,
we can transfer notions of computability from N using a surjection
ν :⊆ N → S (known as a numbering). For example, e 7→ We is a
(choice of) numbering.

What about spaces like R? The space of continuous functions on R?
The space of (bounded) sequences in R? For those, we can transfer
notions of computability from NN. So let us first define computability
on NN.

Definition 1.1. A function F :⊆ NN → NN is computable if there is a
total computable function f : N<N → N<N such that:

– if σ � τ , then f(σ) � f(τ);
– F (x) = y if and only if for all m, there exists n such that
f(x � n) � y � m.

This definition can be relativized to set oracles (i.e., F isA-computable
if there is a total A-computable f .)

Alternatively, one can define computable functions using Type-2 Tur-
ing machines. Roughly speaking, these are Turing machines with one-
way input and output tapes: given sufficiently long initial segments of
a valid input, the machine outputs arbitrarily long initial segments of
the appropriate element of NN. See Weihrauch’s book [56] for details.

The above notion of computability is an effective refinement of con-
tinuity. We make this precise as follows.

First, we define a topology on NN (Baire space) which we will use
for the rest of the course. We use the product topology induced by
the discrete topology on N. For each σ ∈ N<N, [σ] is defined to be
{x ∈ NN : σ ≺ x}. {[σ] : σ ∈ N<N} is a countable base for this
topology. Each [σ] is clopen. The open sets are exactly the Σ0

1 sets.

Theorem 1.2 (folklore?). If F :⊆ NN → NN is computable, then it is
continuous with Π0

2 domain. Conversely, if F :⊆ NN → NN is contin-
uous with Π0

2 domain (i.e., Gδ domain), then it is computable relative
to some oracle (in NN).

Proof. (⇒). The point is that any finite portion of the output depends
only on a finite portion of the input.

MATH 873 F19 NOTES (IN PROGRESS) 3

Formally, it suffices to show that for each σ ∈ N<N, the preimage
of σ_NN is relatively open in dom(F). Fix f : N<N → N<N which
witnesses that F is computable. Suppose that F (x) ∈ σ_NN, i.e.,
F (x) extends σ. Then there is some m ∈ N such that f(x � m) extends
σ. It follows that for any y extending x � m, if F (y) is defined, then it
extends f(x � m). Hence F−1[σ_NN] contains dom(F)∩((x � m)_NN).

The domain of F is Π0
2 because

dom(F) = {x : ∀m∃n[|f(x � n)| = m]}.

(⇐). Given some continuous F :⊆ NN → NN, consider the function
f : N<N → N<N defined as follows: f(σ) is the ρ of maximum length
< |σ| such that F ′′[dom(F) ∩ [σ]] ⊆ [ρ] (in words: if x extends σ and
F (x) is defined, then F (x) extends ρ). (If no such ρ exists, just define
f(σ) = σ.)

Note that f can be encoded as an element of NN.
Using f , we can compute some continuous G :⊆ NN → NN as follows:

G(x) = y if for all m, there exists n such that f(x � n) = y � m.
G always extends F , but the converse need not be true. (If it were

true, that would be disturbing—we haven’t used the assumption on
dom(F)!)

So we need to adjust things a little. This is where we make use of
the assumption that dom(F) is Π0

2. Fix g such that

x ∈ dom(F)⇔ ∀m∃σ[g(σ,m) = 1 and x ∈ [σ]].

(Intuitively, we are fixing a sequence of open sets whose intersection is
dom(F) and g(τ,m) = 1 means that “the mth open set contains [τ]”.)

Note that g can be encoded as an element of NN.
We show that f⊕g computes F as follows. Vaguely speaking, we use

g to slow f down. For each σ, we can compute (using g) the maximum
l(σ) ≤ |σ| such that

∀m < l(σ)∃τ ≺ σ[g(τ,m) = 1].

Then, define h as follows: for each σ, restrict the output of f(σ) to
length l(σ) (if needed). We end by showing that F (x) = y if and only
if for all m, there exists n such that h(x � n) = y � m.

(⇒) is clear, if you already believe that G extends F . As for (⇐),
observe that the assumption implies that l is cofinal on initial segments
of x. By definition of l, it follows that x lies in dom(F).

(Intuitively, if x does not lie in the mth open set, then h will never
output strings of length > m when given initial segments of x.) �

1.2. Represented spaces and computability on them.

4 MATH 873 F19 NOTES (IN PROGRESS)

Definition 1.3 (Kreitz, Weihrauch [44]). For any space X (of cardi-
nality at most NN), a (NN)-representation of X is a (possibly partial)
surjection δ :⊆ NN → X. A represented space is a pair (X, δ), where δ
is a representation of X.

Let (X, δ) be a represented space. If δ(p) = x, then p is said to be
a (δ-)name of x. If x has a computable δ-name, then it is said to be
(δ-)computable.

Next, we define computability on functions between represented spaces.

Definition 1.4. Let (X, δX) and (Y, δY) be represented spaces. Then
f :⊆ X → Y is ((δX , δY)-)computable ((δX , δY)-continuous resp.) if
there is some computable (continuous resp.) function F :⊆ NN → NN

such that

f(δX(p)) = δY (F (p))

for every p ∈ dom(f ◦ δX). In this case, F is said to be a realizer of f .

NN NN

X Y

F

f

δX δY

In other words, F is a realizer of f if for any x ∈ dom(f), F takes
every δX-name for x to a δY -name for f(x).

Note. Whether F is a realizer of f only depends on F � dom(f ◦ δX).
This means that f :⊆ NN → NN can be (id, id)-computable (where
id : NN → NN is the identity representation) but not computable! In
fact, one can show that f :⊆ NN → NN is (id, id)-computable if and
only if it is a restriction of some computable function.

Proposition 1.5. If f :⊆ X → Y is (δX , δY)-computable and g :⊆
Y → Z is (δY , δZ)-computable, then g ◦ f :⊆ X → Z is (δX , δZ)-
computable.

Different representations can carry different amounts of “informa-
tion”. For example, we could represent a real number using sequences
of rational numbers converging to it, or sequences of rational numbers
rapidly converging to it. Knowing the first few terms of a convergent
sequence gives us no information about the limit, while knowing the
first few terms of a rapidly convergent sequence gives us an approxima-
tion of the limit. This idea can be captured by the notion of reducibility
between representations:

MATH 873 F19 NOTES (IN PROGRESS) 5

Definition 1.6. Let δ1 and δ2 be representations of X. We say that δ1

(computably) reduces to δ2, written δ1 ≤ δ2, if idX : X → X is (δ1, δ2)-
computable. We say that δ1 and δ2 are (computably) equivalent, written
δ1 ≡ δ2, if δ1 ≤ δ2 and δ2 ≤ δ1.

Intuitively, if δ1 ≤ δ2, then δ1 provides more information than δ2

(given a δ1-name for x, we can “forget” information to obtain a δ2-
name for x).

Proposition 1.7. The following hold:

(1) If δ1
X ≤ δ2

X and x ∈ X is δ1
X-computable, then it is also δ2

X-
computable.

(2) If δ2
X ≤ δ1

X and δ1
Y ≤ δ2

Y and f :⊆ X → Y is (δ1
X , δ

1
Y)-

computable, then it is (δ2
X , δ

2
Y)-computable.

Let us compare the following representations of the real numbers up
to reducibility:

(1) converging sequences of rational numbers;
(2) rapidly converging sequences of rational numbers (say, (qn)n

such that if n, n′ > m, then |qn − qn′ | < 2−m);
(3) expansion in base 10;
(4) Dedekind cuts ({q ∈ Q : q < x} ⊕ {q ∈ Q : q > x});

One can show that (4) < (3) < (2) < (1).
(4) < (3) because the characteristic function of Q is computable

under (4) but not (3).
(3) < (2) because x 7→ 3 · x is computable under (2) but not (3) (try

multiplying numbers around 0.3 by 3).
(2) < (1) because of Specker’s result (which implies that there are

reals with computable (1)-names but no computable (2)-names).
For later purposes, we introduce representations for the set of closed

subsets and the set of open subsets of a computable metric space.

Definition 1.8. A metric space (X, d) is a computable metric space if
there is a dense sequence (qn)n such that (m,n) 7→ d(qm, qn) is com-
putable.

If X is a computable metric space (with fixed choice of a dense
sequence (qn)n witnessing that), we represent the set of closed subsets
of X negatively, as follows: p is a name for a closed set A ⊆ X if p
enumerates rational open balls (centered at qn’s) whose union is the
complement of A.

This induces a positive representation of the open subsets of X, i.e.,
p is a name for an open set U ⊆ X if p enumerates rational open balls
whose union is A.

6 MATH 873 F19 NOTES (IN PROGRESS)

Example 1.9. The following are computable metric spaces with their
usual metrics: finite spaces, N, R, [0, 1], 2N, NN.

Remark 1.10. Using the Sierpinski space, one can define representa-
tions of closed subsets of general represented spaces. See Pauly [49].

Finally, there are several natural constructions on represented spaces.
These will be useful when we define operations on problems.

Definition 1.11. Define the following constructions on represented
spaces:

– Product: δX0×X1(〈p, q〉) = (δX0(p), δX1(q))
– Coproduct: δX0tX1(i

_p) = (i, δXi
(p))

– Finite parallelization: δX∗(n
_〈p0, . . . , pn−1〉) = (δX(p0), . . . , δX(pn−1))

– Parallelization: δXN(〈p0, p1, . . . 〉) = (δX(pn))n
– Continuous functions: If p encodes some monotone f : N<N →
N<N, let ηp denote the continuous function F :⊆ NN → NN,
as defined by F (x) = y iff for all m, there exists n such that
f(x � n) = y � m. If ηp realizes some total (δX , δY)-continuous
f : X → Y , define δC(X,Y)(p) to be f .

Remark 1.12. The represented spaces form a Cartesian closed cate-
gory. For details, see Brattka [5].

1.3. Problems. We began the introduction with a list of problems.
But what are problems, anyway?

Definition 1.13. A problem is a (possibly partial) multivalued func-
tion f :⊆ X ⇒ Y between represented spaces. The domain of f is
dom(f) = {x ∈ X : f(x) 6= ∅}. An element of dom(f) is called an
instance of f . For any x ∈ dom(f), an element of f(x) is called an
f -solution to x.

We use the term multivalued function instead of relation, because
they have different composition operations: the composition f ◦ g of
multivalued functions f and g has domain

{x : ∀y ∈ g(x)[f(y) 6= ∅]}
rather than

{x : ∃y ∈ g(x)[f(y) 6= ∅]}.
This restriction on the domain of f ◦ g implies that the composition

of realizers for f and g is a realizer for f ◦ g.
Any theorem of the form ∀X[Θ(X)→ ∃Y Λ(X, Y)] corresponds nat-

urally to the multivalued function X 7→ {Y : Λ(X, Y)}, with domain
{X : Θ(X)}. In particular, any Π1

2 statement (such as those studied

MATH 873 F19 NOTES (IN PROGRESS) 7

in reverse mathematics) has a corresponding problem. But our scope
is more general than that; we do not require that Θ and Λ are arith-
metical. We also do not require that X and Y are subsets of N: they
could be elements of any represented space.

Definition 1.14. We say that F :⊆ NN → NN is a realizer of a multi-
valued function f :⊆ X ⇒ Y if

δY (F (p)) ∈ f(δX(p))

for every p ∈ dom(f ◦ δX). In other words, given a name for some
x ∈ dom(f), F outputs a name for some element of f(x).

Note. Given two names for the same x ∈ dom(f), F is free to output
two different names for the same element of f(x), or even names for
two different elements of f(x)!

Various notions can be transferred to problems via their realizers.
For example:

Definition 1.15. A problem is computable if it has a computable real-
izer. A problem is continuous if it has a continuous realizer. A problem
f is pointwise computable if every f -instance x has an x-computable
f -solution.

Since computable single-valued functions preserve pointwise com-
putability (given some input, their output is computable in the input),
computability implies pointwise computability.

Example 1.16. Consider the “compactness” problem HB0: given a
sequence of open sets which cover [0, 1], find a finite subcover. This
problem is computable: since there is a finite subcover, we can simply
enumerate open sets until we have enough to cover [0, 1].

Concretely, given finitely many names for open sets, whether they
cover [0, 1] is a Σ0

1 fact, so we will eventually see it happen.

Example 1.17. Consider the “contrapositive” HB1 of the “compact-
ness” problem: given a sequence of open sets which does not cover
[0, 1], find an element of [0, 1] which is not covered. We show that HB1

is not even pointwise computable. We define a computable list of open
intervals which do not cover [0, 1] but cover every computable real, as
follows. Think of each index e as an enumeration of rationals (qei)i. For
each e, once qee is enumerated, we add the open interval centered at qee
with radius 2−(e+1) to our list.

The total measure of the intervals we enumerate is ≤
∑

e 2−(e+1) =
1/2 < 1, so the intervals do not cover [0, 1].

8 MATH 873 F19 NOTES (IN PROGRESS)

Example 1.18. Consider the problem WKL: given an infinite subtree
of 2<N, produce an infinite path. (The fact that there is always an
infinite path is known as weak König’s lemma.)

WKL is not even pointwise computable, because there is an infinite
computable subtree of 2<N with no computable path (Kleene).

Example 1.19. Consider the problem IVT corresponding to the inter-
mediate value theorem: given a continuous function f : [0, 1]→ R such
that f(0) and f(1) have opposite signs, find a zero of f .

Here’s a realizer of the above problem: if f has a rational zero,
output such a zero. Otherwise, run a bisection algorithm to find smaller
and smaller dyadic intervals such that f takes opposite signs on their
endpoints.

Is this realizer computable? Not as presented, because one cannot
compute whether f has a rational zero. Nevertheless, notice that given
some f , this realizer always outputs some f -computable real!

Hence IVT is pointwise computable.

Proposition 1.20. IVT is not computable.

Proof. For each a ∈ [0, 1], define the piecewise linear function ga whose
graph goes from (0,−1) to (1/3, a) to (2/3, a) to (1, 1). We show that
there is no computable function f such that for each a ∈ [0, 1], f(a) is
a zero of ga.

Suppose otherwise. Then given a name p for 0, f must produce a
name for some x such that g0(x) = 0, i.e., x ∈ [1/3, 2/3]. Suppose that
x > 1/3. By continuity, f must produce reals > 1/3, given any names
which are sufficiently close to p. But then f is wrong for any names for
a > 0 which are sufficiently close to p, since for a > 0, the only zero of
ga lies below 1/3. Contradiction. If we assume that x < 2/3, we get a
similar contradiction. �

Observe that in the above proof, we used a function g0 which is
constantly zero on an interval. In fact,

Theorem 1.21 (see [56, Theorem 6.3.7]). The restriction of IVT to
functions which are not constantly zero on any open interval is com-
putable.

1.4. Reductions between problems. Before formally defining re-
ductions, let us see some examples which we hope to capture.

Example 1.22. Say that a problem P is a special case of another
problem Q, i.e., every P -instance is a Q-instance, and every Q-solution
to every P -instance is also a P -solution to said P -instance. Surely, we
want P to be reducible to Q.

MATH 873 F19 NOTES (IN PROGRESS) 9

Example 1.23. IVT and WKL are related in the following way: sup-
pose we are given a continuous function f : [0, 1] → R such that f(0)
and f(1) have opposite signs. We can find a zero of f using the fol-
lowing bisection algorithm: at the beginning of stage n, we will have
chosen an interval [k/2n, (k+1)/2n] such that f(k/2n) and f((k+1)/2n)
have different signs. There are three possible outcomes:

(1) f has different signs at the endpoints of [2k/2n+1, (2k+1)/2n+1];
(2) f has different signs at the endpoints of [(2k + 1)/2n+1, (2k +

2)/2n+1];
(3) f((2k + 1)/2n+1) = 0, at which point the algorithm stops.

This bisection algorithm is not computable, because the sign function
sgn : R → {0,−,+} is discontinuous and hence not computable. But
we can guess at the sign of a number: the initial guess is that it is 0,
and if it is nonzero it must eventually reveal its sign.

This allows us to simulate the above algorithm using WKL: compute
the binary tree T consisting of all σ such that at stage |σ|, for all n <

|σ|, we have not seen that f
(∑

i<n
σ(i)

2−(i+1)

)
and f

(
2−n +

∑
i<n

σ(i)

2−(i+1)

)
are both positive or both negative. It is easy to see that T has a string
of every length, and is hence infinite. If P is a path on T , we claim
that the real number x with binary expansion P is a zero of f . If
not, by continuity of f , there is some σ which is an initial segment of

P such that f
(∑

i<|σ|
σ(i)

2−(i+1)

)
and f

(
2−|σ| +

∑
i<|σ|

σ(i)

2−(i+1)

)
are both

positive or both negative. But then σ cannot extend to an infinite
path, contradiction.

Example 1.24. WKL and HB1 are related in the following way. Fix a
computable bijection f from 2N to the Cantor middle-thirds set. Given
an infinite subtree of 2<N, we can enumerate its leaves. For each leaf σ,
we enumerate an open interval whose intersection with the Cantor set
is exactly {f(X) : X extends σ}. We also enumerate intervals whose
union is the complement of the Cantor set. Then f is a computable
bijection between the reals which are not covered by these intervals and
paths on the given tree.

Conversely, given an enumeration of open sets which does not cover
[0, 1], we can dovetail it into an enumeration of rational open inter-
vals with the same union. Consider the tree of all σ ∈ 2<N such that
the first |σ| many rational open intervals does not cover the interval[∑

i<|σ|
σ(i)

2−(i+1) , 2
−|σ| +

∑
i<|σ|

σ(i)

2−(i+1)

]
. Then any path on this tree com-

putes a sequence of intervals shrinking rapidly to a real which is not
covered by the given open sets.

10 MATH 873 F19 NOTES (IN PROGRESS)

Now, let us define Weihrauch reducibility on problems.

Definition 1.25. Given problems P andQ, we say that P is Weihrauch
reducible (strongly Weihrauch reducible, respectively) to Q, written
P ≤W Q (P ≤sW Q, respectively), if there is a forward functional
Γ and a backward functional ∆ such that

(1) given a name p for a P -instance, Γ(p) is a name for some Q-
instance;

(2) if p is a name for a P -instance X, then for every name q for a
Q-solution to Γ(p), ∆(p⊕ q) (∆(q), respectively) is a name for
a P -solution to X.

Intuitively, P ≤W Q means that one can uniformly computably
transform a realizer for Q into a realizer for P .

We mention here that a good reference for the theory of Weihrauch
reducibility is the survey paper by Brattka, Gherardi, Pauly [11]. Their
survey also contains extensive bibliographic remarks. In particular, see
[11, pg. 11] for historical remarks about Weihrauch reducibility.

Remark 1.26. A Weihrauch reduction from P to Q is obligated to
“use” Q. In particular, if there is a P -instance which does not compute
any Q-instance, then P cannot be Weihrauch reducible to Q.

It is easy to see that ≤W is reflexive and transitive, so we can define
the associated notion of Weihrauch equivalence and Weihrauch degrees:
for multivalued functions P and Q, we say that P and Q are Weihrauch
equivalent, written P ≡W Q, if P ≤W Q and Q ≤W P . For a multi-
valued function P , its Weihrauch degree p is its ≡W -class. Weihrauch
reducibility lifts to Weihrauch degrees in the usual way; that is, we say
that p ≤W q if and only if there is some P ∈ p and Q ∈ q such that
P ≤W Q, if and only if for all P ∈ p and Q ∈ q, we have P ≤W Q. We
will abuse notation and use P ≤W q to mean that there is some Q ∈ q
such that P ≤W Q, or equivalently, for all Q ∈ q, we have P ≤W Q.
We give P ≡W q the analogous meaning.

We can define strong Weihrauch equivalence and strong Weihrauch
degrees in the same way.

Note the uniformity in the definition of Weihrauch reducibility: Γ
and ∆ have to satisfy the above conditions for all names for P -instances.
In fact, Weihrauch reducibility on multivalued functions was indepen-
dently rediscovered by Dorais, Dzhafarov, Hirst, Mileti, Shafer [21],
who named it uniform reducibility.

Let us look at some examples. From before, we have the following
examples of strong Weihrauch reductions:

MATH 873 F19 NOTES (IN PROGRESS) 11

– if P is a special case of Q, then P ≤sW Q (both backward and
forward functionals are the identity);

– IVT ≤sW WKL;
– WKL ≡sW HB1.

Proposition 1.27. A problem is Weihrauch reducible to id if and only
if it is computable.

Example 1.28. id is Weihrauch reducible but not strongly Weihrauch
reducible to the constant problem X 7→ ∅.

For an nontrivial example of a problem which is Weihrauch reducible
but not strongly Weihrauch reducible to another problem, we turn to
Ramsey’s theorem. For each n ∈ N, [N]n denotes the set of size n
subsets of N, often called the set of n-tuples.

Definition 1.29. Define the problem RTnk corresponding to Ramsey’s
theorem for n-tuples and k colors: given a coloring c : [N]n → k, output
an infinite c-homogeneous set H, i.e., c � [H]n is constant.

In particular, RT2
2 can be thought of as the following problem: given

an infinite undirected graph on N, output either an infinite clique or
anti-clique.

Example 1.30. RT1
2 6≤W id: given any pair of functionals Γ and ∆,

we will construct an instance c : N → 2 of RT1
2 which witnesses that

Γ and ∆ do not form a Weihrauch reduction from RT1
2 to id. In other

words, we will construct c : N → 2 such that ∆(c ⊕ Γ(c)) is not an
infinite c-homogeneous set.

We define one value of c at each step. Keep defining c(n) = 0 until
∆(c⊕Γ(c)) converges at some number. (If ∆(c⊕Γ(c)) never converges
at some number, then we can take c to be the constant coloring 0.)
Then we switch to defining c(n) = 1 forever, ensuring that ∆(c⊕Γ(c))
cannot be an infinite c-homogeneous set. (By the use principle, any
number on which ∆(c⊕ Γ(c)) has converged must be colored 0.)

Proposition 1.31. RTn0
k0
≤sW RTn1

k1
if n0 ≤ n1 and k0 ≤ k1.

Proof. Given c : [N]n0 → k0, define d : [N]n1 → k1 by

d(x0, . . . , xn1−1) = c(x0, . . . , xn0−1).

Then any infinite d-homogeneous set is also c-homogeneous. �

Example 1.32. id ≤W RT1
2 but id 6≤sW RT1

2. To prove the latter, sup-
pose that Γ and ∆ witness that id ≤sW RT1

2. Consider any two inputs
for Γ, e.g., 0∞ and 1∞. Both Γ(0∞) and Γ(1∞) must be 2-colorings.
Then, there is a common RT1

2-solution B of Γ(0∞) and Γ(1∞). But
∆(B) cannot be equal to both 0∞ and 1∞, contradiction.

12 MATH 873 F19 NOTES (IN PROGRESS)

In fact, we can push this much further. Any noncomputable instance
of id witnesses that id 6≤sW RT1

2 in a strong way:

Theorem 1.33 (Dzhafarov, Jockusch [27]). If A is noncomputable and
c : N → 2 is any coloring, then there is an RT1

2-solution for c which
does not compute A.

Their proof uses techniques of Cholak, Jockusch, Slaman [17]. For
now, we will prove a slightly weaker statement: if A is noncomputable,
c : N → 2 is a coloring, and ∆ is a functional, then there is an RT1

2-
solution B to c such that ∆(B) 6= A.

Proof. Case 1. If c is unbalanced (i.e., only finitely many numbers are
colored 0, or only finitely many numbers are colored 1), we are done,
because c has a computable RT1

2-solution.
Case 2. Consider the class P of all S ⊆ N such that:

– for every x ∈ N and every finite F0, F1 ⊆ S, it is not the case
that ∆F0(x)↓6= ∆F1(x)↓;

– for every x ∈ N and every finite F0, F1 ⊆ S, it is not the case
that ∆F0(x)↓6= ∆F1(x)↓.

P is a Π0
1 class.

Case 2a. P is nonempty. By the cone-avoiding basis theorem, we
can choose some S ∈ P such that A 6≤T S. Take B to be any common
RT1

2-solution of c and S (we think of S as a 2-coloring).
Then ∆(B) 6= A, for if ∆(B) = A, then we can compute A using

S as follows: for each x, search for finite F ⊆ S (or S, depending on
whether B ⊆ S or B ⊆ S) such that ∆F (x)↓. Then we must have
∆F (x)↓= A.

Case 2b. P is empty. In particular, let C be the set of numbers which
are colored 0 by c. C does not lie in P . If there is some x ∈ N and some
finite F0, F1 ⊆ C such that ∆F0(x)↓6= ∆F1(x)↓, we can pick F = F0 or
F1 such that ∆F (x)↓6= A(x). Then take B to be F ∪ (C\[0,maxF]).
Otherwise, there is some x ∈ N and some finite F0, F1 ⊆ C such that
∆F0(x)↓6= ∆F1(x)↓. We proceed similarly. �

Another class of problems of interest is stable Ramsey’s theorem:

Definition 1.34. Let SRTnk denote the restriction of RTnk to stable
colorings, i.e., colorings c : [N]n → k such that for all A ∈ [N]n−1,
limn c(A ∪ {n}) exists.

Let COH be the following problem: given an array (Ri)i, produce a
cohesive set C, i.e., for all i, either C ⊆∗ Ri or C ⊆∗ Ri.

SRT2
2 and COH play a crucial role in Cholak, Jockusch, Slaman’s [17]

computability-theoretic and proof-theoretic analysis of RT2
2. Observe

MATH 873 F19 NOTES (IN PROGRESS) 13

that RT2
2 can be solved by applying COH and then SRT2

2 (more on this
later when we discuss compositions of problems).

Observe that RT1
k ≤sW SRT2

k: given a coloring c : N → k, define
d(m,n) = c(m). Then d is stable and any d-homogeneous set is also
c-homogeneous. On the other hand:

Proposition 1.35 (Hirschfeldt, Jockusch [36]). RT1
k+1 6≤W SRT2

k.

Proof. Given any pair of functionals Γ and ∆, we will construct an
instance c of RT1

k+1 and an SRT2
k-solution to Γc which witnesses that

Γ and ∆ do not form a Weihrauch reduction from RT1
k+1 to SRT2

k.
We construct c in stages. At stage s, for each j < k, we search for

the least finite set Fj (if any) such that:

– at this point in time, Fj appears to be an initial segment of
a Γc-homogeneous set of color j (i.e., Fj is Γc-homogeneous of
color j and for each x ∈ Fj, Γc(x, y) = j, where y is the largest
number such that Γc(x, y) is defined);

– ∆c⊕Fj(n)↓= 1 for some n < s.

If such Fj exists, define ij to be c(nj), where nj is least such that
∆c⊕Fj(nj)↓= 1. Finally, we define c(s) to be the least color which is
not equal to any ij.

Now consider the stable coloring Γc : [N]2 → k. Let H be an infinite
Γc-homogeneous set, say of color j < k. Then ∆c⊕H is an infinite c-
homogeneous set. Since H is Γc-homogeneous of color j and ∆c⊕H is
nonempty, it follows that the search for Fj during our construction of
c must terminate. Hence the search stabilizes, with some eventual Fj.
Let nj be least such that ∆c⊕Fj(nj)↓= 1.

But now Fj extends to an infinite Γc-homogeneous set H ′ (e.g., take
the union of Fj and every element of H greater than maxFj which
has color j with every element of Fj). ∆c⊕H′ cannot be an infinite
c-homogeneous set because it contains nj, yet we never color c with
color c(nj) after the search for Fj stabilizes. Contradiction. �

Next, we define some nonuniform notions of reducibility.

Definition 1.36 (Dzhafarov [23]). Given problems P and Q, we say
that P is computably reducible (strongly computably reducible resp.) to
Q, written P ≤c Q (P ≤sc Q resp.), if every P -instance X computes
some Q-instance Y such that for every Q-solution Z to Y , X ⊕ Z (Z
resp.) computes a P -solution to X.

Example 1.37. Being pointwise computable is equivalent to being
computably reducible to id. In particular, IVT ≤c id.

14 MATH 873 F19 NOTES (IN PROGRESS)

Example 1.38. For each k, RT1
k ≤sc id: given a coloring c : N → k,

take c to be an instance of id. Given c, one can nonuniformly com-
pute an infinite c-homogeneous set (simply fix a color which appears
infinitely often and take all elements with that color).

On the other hand, we showed earlier that RT1
2 6≤W id.

Example 1.39. Dzhafarov, Patey, Solomon, Westrick [28] showed that
RT1

3 6≤sc SRT2
2. This is an example of two problems which are ≤c but

not ≤W or ≤sc.

Yet another notion of reducibility is generalized Weihrauch reducibil-
ity, introduced by Hirschfeldt, Jockusch [36, §4.2].

This concludes the basic setup for the framework of Weihrauch re-
ducibility (and other computable reducibilities).

1.5. Reverse mathematics. Another framework which can be used
to classify the strength of theorems is reverse mathematics. We briefly
present the framework of reverse mathematics, in order to compare and
contrast it with the framework of computable reducibilities.

Reverse mathematics begins with the maxim “When the theorem
is proved from the right axioms, the axioms can be proved from the
theorem.” (Friedman, ICM 1974 [29]) In this case, the axioms would
be necessary for proving the theorem! This maxim is justified by the
remarkable “Big Five” phenomenon: in the decades since, it was found
that many basic theorems in algebra, analysis, combinatorics, topology,
etc. are provably equivalent to one of five systems of axioms, over the
base system of RCA0 (defined below). Furthermore, these five systems
are linearly ordered in terms of provability. The standard reference
for reverse mathematics is Simpson [54]. An excellent introduction to
reverse mathematics, with emphasis on computable combinatorics, is
Hirschfeldt [35].

The basic setup is as follows. First, we fix a language which is
sufficiently expressive for formalizing our theorems of interest. The
language of set theory certainly suffices, but in fact the language L2 of
second-order arithmetic (defined below) is already rich enough to for-
malize many theorems of interest. This includes most theorems about
countable objects, and objects that can be represented by countable
objects, such as the real numbers. Most of reverse mathematics has
been conducted in L2. (A notable exception is higher order reverse
mathematics, initiated by Kohlenbach [43].)

Definition 1.40. L2 consists of the usual language of first-order arith-
metic, augmented with set variables and quantifiers over them, and a
binary predicate symbol ∈, relating numbers and sets. We also have

MATH 873 F19 NOTES (IN PROGRESS) 15

the equality symbol relating sets, which always satisfies extensionality.
An L2-structure is a tuple

M = (|M |,SM ,+M , ·M , 0M , 1M , <M),

where SM is a set of subsets of |M |, +M , ·M , and <M are binary
relations on |M |, and 0M and 1M are elements of |M |.

Formulas of L2 are interpreted in M in the obvious way. In partic-
ular, number quantifiers range over |M | and set quantifiers range over
SM . |M | and SM are called the first-order universe and second-order
universe of M respectively. (We often write N instead of |M |, and
X ∈M instead of X ∈ SM .)

Given a structure M , we may expand L2 to include parameters from
M , i.e., a constant for each element of SM . They are treated syntac-
tically as free set variables. Formulas with parameters are interpreted
in M in the obvious way.

Next, we fix a base theory in our language, which is too weak to prove
our theorems outright (hence avoiding triviality), yet strong enough to
prove “basic” facts (hence avoiding intractability). The standard base
theory is a possible formalization of computable mathematics. It is
named RCA0, after the Recursive Comprehension Axiom below.

Definition 1.41. Apart from basic axioms asserting that (N,+, ·, 0, 1, <)
is a discretely ordered commutative semiring, RCA0 consists of:

– the Σ0
1 induction axiom schema:

ϕ(0) ∧ (ϕ(n)→ ϕ(n+ 1))→ ∀nϕ(n),

for any ϕ(n) which is Σ0
1;

– the ∆0
1 (recursive) comprehension axiom schema:

∀n(ϕ(n)↔ ¬ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

for any ϕ(n) and ψ(n) which are Σ0
1.

Note that being ∆0
1 is not a syntactic property, hence the necessity

of the antecedent in the ∆0
1 comprehension schema. Note also that

the formulas ϕ and ψ in the latter two schema are allowed to have set
parameters. This allows us to apply comprehension relative to sets in
a model. For example, if A and B lie in a model M of RCA0, then we
can apply ∆0

1 comprehension to show that their join

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}
lies in M as well.

Note also that we work in classical logic. (The study of reverse
mathematics over intuitionistic logic is known as constructive reverse

16 MATH 873 F19 NOTES (IN PROGRESS)

mathematics, see Diener [20].) In particular, proofs in RCA0 can have
complicated case divisions. For example, the bisection proof of IVT
that we described earlier, which involves a case division into whether
the given function has a rational zero, can be formalized in RCA0.

Having fixed a base theory, our next step is to fix a theorem P , and
investigate what axioms we need to add to our base theory in order
to prove P . There are two directions to this investigation. First we
need to find a sufficiently strong system T (typically consisting of set
existence axioms, such as comprehension axioms) such that T (plus
our base theory) proves P . After doing so, ideally, we want to obtain
a reversal, i.e., we want to show that P (plus our base theory) proves
T . That shows that the axioms T are both sufficient and necessary in
order to prove P .

We have already defined one system from the Big Five, namely RCA0,
which also serves as our base theory. We present the other four systems
in order of increasing strength. The next step up is WKL0, which
consists of RCA0 and Weak König’s Lemma: every infinite subtree of
2<N has an infinite path. Some theorems which are equivalent to WKL0

are:

– every open cover of [0, 1] has a finite subcover (Heine-Borel);
– every continuous function from [0, 1] to R attains a supremum;
– every countable commutative ring has a prime ideal.

Next we have ACA0, which consists of RCA0 together with the Arith-
metical Comprehension Axiom scheme: ∃X∀n(n ∈ X ↔ ϕ(n)), for
any ϕ(n) which is arithmetical. Some theorems which are equivalent
to ACA0 are:

– every infinite finitely branching tree has an infinite path (König’s
lemma);

– every bounded sequence in R has a cluster point (Bolzano-
Weierstrass);

– every countable commutative ring has a maximal ideal;
– Ramsey’s theorem RTnk for n ≥ 3 and k ≥ 2.

Yet another system in the Big Five is Arithmetical Transfinite Re-
cursion (ATR0), which consists of RCA0 together with an axiom stat-
ing that one can iterate arithmetical comprehension along any well-
ordering. It is important to note that being a well-ordering is not
absolute for models of second-order arithmetic, hence in a particular
model of ATR0, one may be able to iterate arithmetical comprehension
along ill-founded linear orderings which appear well-founded. Some
theorems which are equivalent to ATR0 are:

– any two countable well-orderings are comparable;

MATH 873 F19 NOTES (IN PROGRESS) 17

– any uncountable closed subset of R has a perfect subset;
– the open Ramsey theorem.

Finally, the strongest system in the Big Five is Π1
1-Comprehension

(Π1
1-CA0), which consists of RCA0 together with the Π1

1-Comprehension
scheme: ∃X∀n(n ∈ X ↔ ϕ(n)), for any ϕ(n) which is Π1

1. This system
is equivalent to the Cantor-Bendixson theorem: every closed set in R
is the union of a perfect closed set and a countable set.

There is a connection between proof-theoretic strength over RCA0

and computability-theoretic strength. We say that a model of second-
order arithmetic is an ω-model if its first-order universe is the standard
natural numbers (usually denoted by ω). Then:

– The ω-models of RCA0 are exactly the Turing ideals, i.e., the
subsets of P(ω) which are closed under ⊕ and ≤T .

– The ω-models of ACA0 are exactly the Turing ideals which are
closed under the Turing jump.

– Every ω-model of ATR0 is closed under hyperarithmetic reduc-
tion.

One often establishes relationships between a Π1
2 statement and the

Big Five using computability-theoretic methods. Fix a theorem P of
the form ∀A(Θ(A) → ∃BΛ(A,B)), where Θ and Φ are arithmetic
formulas1. If A satisfies Θ(A), then we say that it is a P -instance. If
A is a P -instance and B satisfies Λ(A,B), then we say that B is a
P -solution to A. Then:

– If there is a computable P -instance with no computable P -
solution, then P is not provable in RCA0.

– If there is a computable P -instance with no low P -solution, then
P is not provable in WKL0 (using the Low Basis Theorem).

– If there is a computable P -instance with no arithmetical P -
solution, then P is not provable in ACA0.

Such methods can be used to establish reversals as well. For example,
if one constructs a computable P -instance such that every P -solution
computes ∅′, then this usually yields a proof that P implies ACA0.

The endeavor of demonstrating nonimplications in reverse mathe-
matics (specifically over ω-models) motivates the notion of computable
reduction. Suppose we want to construct an ω-modelM which satisfies
P but not Q. (Note that by absoluteness of arithmetical statements
for ω-models, being a P -instance or P -solution is absolute. Likewise
for Q.) Then, there is some Q-instance X inM such thatM contains

1If Θ and Φ are not arithmetic formulas then we have to be careful because being
a P -instance or P -solution may not be absolute (even for ω-models)!

18 MATH 873 F19 NOTES (IN PROGRESS)

no Q-solution to X. Since any P -instance which is computable in X
(and hence lies in M) must have some P -solution in M, this means
that the Q-instance X witnesses that Q 6≤c P .

In fact, showing that Q 6≤c P is a first step towards constructing
an ω-model M which satisfies P but not Q. For example, a common
method of constructing suchM proceeds by constructing a Q-instance
X with no X-computable Q-solution, such that for any set A0 such
that X has no A0-computable Q-solution, and any A0-computable P -
instance Y , there is some P -solution A1 of Y such that X has no (A0⊕
A1)-computable Q-solution. (The special case A0 = X corresponds to
Q 6≤c P .) Iterating this result shows that the ω-model consisting of all
(
⊕

iAi)-computable sets satisfies P but not Q.
Next, we discuss some differences between the frameworks of reverse

mathematics and computable reducibilities.

(1) Resource sensitivity: Proofs in reverse mathematics can apply
their premises multiple times in parallel or in series, but com-
putable reductions or Weihrauch reductions can only use them
once. Example: Ramsey’s theorem for different number of col-
ors (see below).

(2) Uniformity: Weihrauch reductions can be used to measure the
uniform computational content of problems, while proofs in re-
verse mathematics can have nonuniform case divisions. Exam-
ple: IVT is provable in RCA0 but it is not a computable problem.

(3) Invariance under logical equivalence: Logically equivalent state-
ments can correspond to problems which are not equivalent un-
der computable reductions, depending on what we view as an
instance and what we view as a solution. Example: HB0 and
HB1 have different computational strength.

(4) “Burden of proof”: Proofs in reverse mathematics are only al-
lowed to use certain axioms, while computable reductions can
be constructed using the full metatheory. To quote Gherardi,
Marcone [32]:

[..] the computable analyst is allowed to conduct an
unbounded search for an object that is guaranteed to
exist by (nonconstructive) mathematical knowledge,
whereas the reverse mathematician has the burden of
an existence proof with limited means.

Example: RCA0 does not prove that our algorithm for comput-
ing HB0 terminates. That requires WKL0. This is reflected in
the fact that HB1 ≡W WKL.

MATH 873 F19 NOTES (IN PROGRESS) 19

This phenomenon also arises when we consider concepts that
are not arithmetical (and hence not absolute for models of
second-order arithmetic). For example, if a linear ordering L
is ill-founded but all of its descending sequences are compli-
cated, then a model could think that L is well-founded simply
because none of its descending sequences lie in the model. We
will discuss this more when we discuss ATR later in the course.

(5) Objects of study: Meaningful problems may not correspond to
meaningful theorems. Example: problems of the form “given a
nonempty set, produce a point in it”. These are known as choice
problems. (We will see concrete definitions in the future.)

Usually, classifications in the Weihrauch lattice refine classifications
in reverse mathematics.

Example 1.42. We can prove RT2
4 using two applications of RT2

2: given
c : [N]2 → 4, define d0 : [N]2 → 2 by

d0(m,n) =

{
0 if f(m,n) = 0 or 1

1 if f(m,n) = 2 or 3
.

Apply RT2
2 to obtain an infinite d0-homogeneous set C0. Without loss

of generality, suppose that d0 � [C0]2 has range {0}. Then, we may
apply RT2

2 to d0 � [C0]2 to obtain an infinite c-homogeneous set. This
shows that RT2

2 implies RT2
4 over RCA0 (of course, the converse holds

as well).
The above proof does not translate into a Weihrauch reduction from

RT2
4 to RT2

2, and indeed RT2
4 6≤W RT2

2 (Hirschfeldt, Jockusch [36], Brat-
tka, Rakotoniaina [15]). In fact, Patey [46] showed that SRTnk 6≤c RTnl
for n ≥ 2 and k > l ≥ 2.

Nevertheless, Hirst and Mummert [37] showed that we can prove
RT2

4 using one application of RT2
2. Given c : [N]2 → 4, consider the

following two cases.
Case 1. There is an infinite set X such that c takes at most two colors

on [X]2. If so, fix such X and fix {a0, a1} ⊆ 4 which contains the range
of c � [X]2. Then define d : [X]2 → 2 by

d(m,n) =

{
0 c(m,n) = a0

1 c(m,n) = a1

.

Apply RT2
2 to d to obtain an infinite c-homogeneous set.

20 MATH 873 F19 NOTES (IN PROGRESS)

Case 2. If not, define d : [X]2 → 2 by

d(m,n) =

{
0 c(m,n) = 0 or 1

1 c(m,n) = 2 or 3
.

Apply RT2
2 to d to obtain an infinite d-homogeneous set X. But then

c takes at most 2 colors on [X]2, contradiction. Hence Case 2 cannot
occur.

The above proof appears to use RT2
2 twice, but with a little work we

can define a single coloring d which does the job, instead of defining d
in both Case 1 and 2.

Hirst and Mummert’s proof shows us a difficulty in defining a mean-
ingful notion of “the number of times you use a theorem in a proof”.
The above proof relies heavily on the use of the law of excluded middle.
In fact, working in the intuitionistic higher-order system iRCAω0 , Hirst
and Mummert [37] establish an equivalence between proofs which “use
their premise once” and formal Weihrauch reducibility.

2. Operations on problems and their algebraic properties

There are several natural operations on problems, which lift to corre-
sponding operations on the Weihrauch degrees. Here are some reasons
to study them:

– to investigate whether the Weihrauch lattice models some logic
(see Brattka, Gherardi [9]);

– to provide precise calibrations of problems of interest (e.g., a
problem may not be equivalent to any known problem, but it
could be equivalent, or at least reducible, to a product of two
known problems);

– to aid in establishing reductions and nonreductions between
problems (we will see examples in due course).

Here are some basic operations:

– Composition: f ◦ g has instances {X : ∀Y ∈ g(X)[f(Y) 6= ∅]},
and each instance X has solution set f(g(X)).

– Coproduct: f0tf1 has instances
⋃
i=0,1{(i,X) : X is an fi-instance}.

For i = 0, 1, (i, Y) is a (f0 t f1)-solution to (i,X) if Y is a fi-
solution to X.

– Meet: f0 u f1 has instances {(X0, X1) : Xi is a fi-instance}.
For i = 0, 1, (i, Y) is a (f0 u f1)-solution to (X0, X1) if Y is a
fi-solution to Xi.

MATH 873 F19 NOTES (IN PROGRESS) 21

– Parallel product: f0×f1 has instances {(X0, X1) : Xi is a fi-instance}.
(Y0, Y1) is a (f0× f1)-solution to (X0, X1) if for each i = 0, 1, Yi
is an fi-solution to Xi.

– Finite parallelization: f ∗ has instances which are sequences of
f -instances of any finite length, with f ∗-solutions being a se-
quence of f -solutions for each given f -instance.

– (Infinite) parallelization: f̂ has instances which are N-sequences

of f -instances, with f̂ -solutions being a sequence of f -solutions
for each given f -instance.

It is easy to see that all of the above operations, except composition,
are monotone with respect to both ≤W and ≤sW . Hence they lift to the
Weihrauch degrees and the strong Weihrauch degrees. Now we address
some natural questions about the Weihrauch degrees:

– There is a least Weihrauch degree, consisting of the problems
with empty domain.

– There is no greatest Weihrauch degree, if we assume choice
(which implies that every problem has a realizer). See Brattka,
Pauly [13, §2.1] for details. In these notes, we always assume
the axiom of choice.

– id is the identity with respect to the coproduct, meet, and par-
allel product on the Weihrauch degrees.

– The problems above id are known as pointed. They are exactly
the problems with some computable instance. (Recall that in
≤W or ≤sW , you are obliged to make use of the given problem.)

– The Weihrauch degrees with u and t form a distributive lattice
(Pauly [48]), i.e., meets and joins are distributive.

– The coproduct operation is not a join in the strong Weihrauch
degrees. Nevertheless, the strong Weihrauch degrees form a
(nondistributive) lattice (Dzhafarov [25]).

2.1. Parallel product. First, a basic fact:

Proposition 2.1. If every f -instance computes some g-instance, then
f ≤W f×g. It follows that if f and g are pointed, then f tg ≤W f×g.

The parallel product characterizes when ≤W and ≤sW agree:

Proposition 2.2. For any problem f , id× f ≤sW f if and only if for
all problems g,

g ≤W f ⇔ g ≤sW f.

Proof. (⇒). Suppose that id× f ≤sW f and g ≤W f . Fix functionals
Γ0 and ∆0 witnessing that id × f ≤sW f . Fix functionals Γ1 and ∆1

witnessing that g ≤W f .

22 MATH 873 F19 NOTES (IN PROGRESS)

We show that g ≤sW f : given a g-instance X, compute the (id× f)-
instance (X,Γ1(X)). Then compute the f -instance Γ0(X,Γ1(X)). If
Y is an f -solution to Γ0(X,Γ1(X)), then (∆0(Y))0 = X and (∆0(Y))1

is an f -solution to Γ1(X), so ∆1(∆0(Y)) is a g-solution to X.
(⇐). Take g = id× f . �

Definition 2.3. A problem f is called a cylinder if id× f ≤sW f .

Proposition 2.4. Every problem f is Weihrauch equivalent to a cylin-
der, e.g., id× f .

Definition 2.5. Define the limit problem for a computable metric
space X, written limX , as follows: given a convergent sequence in X,
output its limit.

We denote limNN by lim.

Note that limX is single-valued.

Example 2.6. lim and WKL are cylinders. RT1
2 is not a cylinder (we

showed earlier that id 6≤sW RT1
2).

It is often useful to know when one is working with cylinders, because
a Weihrauch reduction to a cylinder yields a strong Weihrauch reduc-
tion, and conversely, a strong Weihrauch nonreduction to a cylinder
yields a Weihrauch nonreduction.

2.2. Finite and infinite parallelization. Let us begin with the infi-
nite parallelization, since it occurs much more often. It is not hard to
show that parallelization is a closure operator with respect to ≤W , i.e.,

f ≤W f̂ ,
̂̂
f ≤W f̂ , and (f ≤W g → f̂ ≤W ĝ).

It is also a closure operator with respect to ≤sW .

Example 2.7. lim and WKL are closed under parallelization.

Note that closure under parallelization implies closure under parallel
product. We will see later that the converse fails (choice on natural
numbers CN). Speaking of choice:

Definition 2.8. Define the problem of closed choice in a computable
metric space X, written CX , as follows: given a closed set (represented
negatively), choose an element of the closed set.

Closed choice is the most common type of choice problem that comes
up, so we will simply refer to it as choice.

Example 2.9. WKL ≡sW C2N and HB1 ≡sW C[0,1].

MATH 873 F19 NOTES (IN PROGRESS) 23

Proposition 2.10 (essentially Brattka, Presser [14]). CX is strongly
Weihrauch equivalent to the problem of finding a zero of a continuous
function f : X → R.

Proof. (≤sW .) Given an enumeration of rational open balls (B(qi, ri))i ⊆
X, we want to compute a continuous function f : X → R such that
f−1(0) = X\

⋃
iB(qi, ri). Define

f(x) =
∞∑
i=0

max{0, ri − d(qi, x)}
ri

· 2−i−1.

Observe that f−1(0) = X\
⋃
iB(qi, ri) and that f is computable in

(B(qi, ri))i.
(≥sW .) Given a continuous function f : X → R with a zero, we

want to enumerate rational open balls (Bi)i ⊆ X such that f−1(0) =
X\
⋃
iBi. We can do so because for each qi, if f(qi) 6= 0, then we will

eventually discover that, together with an open ball about qi whose
image under f does not contain 0. (By feeding f arbitrarily long ini-
tial segments of a name of qi, we must obtain arbitrarily long initial
segments of a name of f(qi).) �

There are several useful variants of closed choice; we will define them
as required.

Next, we give our first example of a problem which is equivalent to
the parallelization of another problem.

Proposition 2.11 (Brattka, Gherardi [8]). Ĉ2 ≡sW ÎVT ≡sW WKL.

Proof. First, we show that C2 ≤sW IVT. For each a ∈ [0, 1], consider the
piecewise linear function ga whose graph goes from (0,−1) to (1/3, a)
to (2/3, a) to (1, 1). Given a C2-instance, if it enumerates i ∈ {0, 1} at
stage n, then we compute g(−1)i2−n . Otherwise we compute g0.

Given a zero x of ga (as computed above), x will eventually reveal
that x > 1/3 or x < 2/3. If x > 1/3, then a cannot be 2−n, so 0 is
a solution to the given C2-instance. Similarly, if x < 2/3, then 1 is a
solution to the given C2-instance.

It follows that Ĉ2 ≤sW ÎVT.

Next, we showed earlier that IVT ≤sW WKL. So ÎVT ≤sW ŴKL ≤sW
WKL.

Finally, we show that WKL ≤sW Ĉ2: given some infinite T ⊆ 2<N,
one might think of using C2 to choose, for each σ ∈ T , some i such
that σ_i is extendible. But for nonextendible σ, neither σ_0 or σ_1
are extendible, so this is not an instance of C2.

24 MATH 873 F19 NOTES (IN PROGRESS)

Instead, for each σ ∈ T , consider

{i ∈ 2 : ∀n(σ_(1− i) has an extension of length n

→ σ_i has an extension of length n)}.

For each σ ∈ T , the above set is Π0
1 (in T) and nonempty. Hence it

can be thought of as an instance of C2. Given a solution for each such
instance of C2, we can compute an infinite path on T . �

Definition 2.12. LPO is the following (single-valued) function: given
p ∈ NN, LPO(p) = 0 if p(n) = 0 for all n, otherwise LPO(p) = 1.

LPO corresponds to the limited principle of omniscience, which is
a weak form of the law of excluded middle, studied in constructive
mathematics.

Note that C2 ≤W LPO. This reduction is strict, as we will see below.

Proposition 2.13. L̂PO is a cylinder.

Proof. It suffices to observe that id ≤sW L̂PO, because we then have

that id× L̂PO ≤sW L̂PO× L̂PO ≤sW L̂PO. �

Proposition 2.14 (Brattka, Gherardi [7]). lim ≡sW L̂PO ≡sW ĈN.

Proof. lim ≤sW L̂PO: Since L̂PO is a cylinder, it suffices to show that

lim ≤W L̂PO. Given (pn)n, for each m and k, define an LPO-instance
as follows:

qm,k(n) =

{
0 if pm(k) = pm+n(k)

1 otherwise
.

Given answers to all of these LPO-instances, we can compute limn pn(k)
as follows: search for sufficiently large m such that LPO(qm,k) = 0.
Then limn pn(k) = pm(k).

L̂PO ≤sW ĈN: It suffices to show that LPO ≤sW CN. Given p ∈ NN,
we enumerate a proper subset of N as follows. At stage s, as long as
p(n) 6= 0 for all n ≤ s, we enumerate s+ 1. Otherwise, if p(s) = 0, we
enumerate 0. Then:

– if p(n) 6= 0 for all n, then 0 is the only CN-solution;
– otherwise, 0 is not a CN-solution.

ĈN ≤sW lim: It is easy to see that CN ≤sW lim (we show below that

CN ≡sW limN), so ĈN ≤sW l̂im ≤sW lim as desired. �

It follows that Ĉ2 ≡sW WKL <sW lim ≡sW L̂PO, so C2 <W LPO.
(See Brattka, Gherardi [8, Theorem 7.13] for a different proof.)

MATH 873 F19 NOTES (IN PROGRESS) 25

Since CN is pointwise computable, the above also shows that ĈN is
not even computably reducible to CN. Hence CN is not closed under
parallelization. It is, however, closed under parallel product (exercise).

Proposition 2.15. CN ≡sW maxN ≡sW limN.

Proof. CN ≤sW maxN: Given an enumeration of a proper subset S of
N, define a sequence (mi)i as follows: mi is the largest number which
has not been enumerated by stage i. Then maximi lies outside S.

maxN ≤sW limN: Given a sequence (mi)i, apply limN to the sequence
(maxj≤imj)i.

limN ≤sW CN: Given a convergent sequence (mi)i, enumerate the
complement of {〈m, s〉 : (∀i > s)[mi = m]}. If 〈m, s〉 is a CN-solution,
then limimi = m. �

As for minN, we can characterize it using finite parallelization.

Proposition 2.16. minN ≡sW LPO∗.

Proof. minN ≤sW LPO∗: given p ∈ NN, we construct p(0)-many in-
stances of LPO as follows. For each i < p(0), the ith instance encodes
whether i appears in p.

LPO∗ ≤sW minN: given instances p0, . . . , pk−1 of LPO, we define
q ∈ NN by q(n) =

∑
i<k pi(n) · 2i. Then we can compute the answer to

each LPO-instance using minn q(n). �

Note that LPO∗ is pointwise computable, hence lim (and equivalently,

L̂PO) is not even computably reducible to LPO∗.
Here are some nontrivial examples where finite parallelization has

proven useful:

– characterizing the problem of finding Nash equilibria
(Pauly [47]);

– characterizing some combinatorial principles which are equiv-
alent (in reverse mathematics) to weak induction principles
(Davis, Hirschfeldt, Hirst, Pardo, Pauly, Yokoyama [19]).

2.3. Composition and compositional product. Recall the defini-
tion of the composition of problems f and g: the problem f ◦ g has
instances {X : ∀Y ∈ g(X)[f(Y) 6= ∅]}, and each instance X has so-
lution set f(g(X)). Unlike the other operations we have introduced,
the composition does not lift to an operation on Weihrauch degrees.
In fact, note that f ◦ g only makes sense if the codomain of g and the
domain of f are the same represented space. Whenever we write f ◦ g
we will implicitly assume that this is the case.

26 MATH 873 F19 NOTES (IN PROGRESS)

Furthermore, the composition does not fully reflect how we compose
problems in practice. In particular, we might want to modify the out-
put of g before feeding it to f . This modification might use both the
given input of g and the output of g.

Therefore, we need a new definition.

Definition 2.17. The compositional product of f and g, denoted f ∗g,
is the maximum Weihrauch degree among {f0◦g0 : f0 ≤W f, g0 ≤W g}.

It is clear that whenever f ∗g is defined, then it induces an operation
on Weihrauch degrees, which is monotone in each component. It turns
out that f ∗g is always defined (Theorem 2.19). Before presenting that
result, we mention the following basic property:

Proposition 2.18. For any problems f and g, f×g ≤W f ∗g whenever
f ∗ g is defined (which, by Theorem 2.19, is always the case.)

Proof. Observe that f × g ≡W (f × id) ◦ (id× g).2 Since f × id ≤W f
and id×g ≤W g, we have that (f×id)◦(id×g) ≤W f ∗g as desired. �

In other words, if one has the power to solve problems in series, then
one can also solve them in parallel.

Theorem 2.19 (Brattka, Pauly [13]). For any problems f and g, f ∗g
is always defined.

Partial sketch. Suppose f :⊆ U ⇒ V is a cylinder and g :⊆ X ⇒ Y is
a problem. (The proof for general f follows by replacing f with id×f .)

Consider f0 ◦ g0, where f0 ≤W f and g0 ≤W g. Since f is a cylinder,
f0 ≤sW f . Fix Γ and ∆ witnessing that f0 ≤sW f . Fix Φ and Ψ wit-
nessing that g0 ≤W g. We claim that there is a computable multivalued
function Θ :⊆ NN × Y ⇒ U such that

f0 ◦ g0 ≤sW f ◦Θ ◦ (id× g).

For the forward functional, we use id× Φ. We define

Θ = δU ◦ Γ ◦Ψ ◦ (id× δ−1
Y).

Θ is computable because Γ◦Ψ realizes Θ. For the backward functional,
we use ∆. This proves our claim.

Next, we want to define a problem gt ≤W g such that for any com-
putable multivalued function Θ :⊆ NN × Y ⇒ U ,

f ◦Θ ◦ (id× g) ≤W f ◦ gt.
2In order for the types to match, we should say (fr × id) ◦ (id × gr), where if

f :⊆ X ⇒ Y , then fr :⊆ NN ⇒ NN is defined to be δ−1Y ◦ f ◦ δX . fr is called the
realizer version of f ; indeed fr and f have the same realizers.

MATH 873 F19 NOTES (IN PROGRESS) 27

If gt could take computable multivalued functions (such as Θ) as
part of its input, then we could define gt(Θ, p, x) = Θ(p, g(x)) and
prove the above reduction. However, we do not have a “nice” rep-
resentation for the space of computable (or continuous) multivalued
functions. Instead, Brattka and Pauly [13] introduce the represented
space of strongly computable (and strongly continuous) multivalued
functions, and use it to complete the proof. �

The (complete) proof of Theorem 2.19 yields a cylindrical decompo-
sition lemma:

Lemma 2.20 (Brattka, Pauly [13]). Let f and g be problems. If F ≡W
f and G ≡W g are cylinders, then there is some computable function
K such that f ∗ g ≡W F ◦K ◦G.

We proceed to consider some problems for which it is natural to
consider their compositional product. Our first example comes from
Cholak, Jockusch, Slaman’s [17] splitting of RT2

2 into its stable part
SRT2

2 and the cohesive principle COH.

Proposition 2.21. RT2
2 ≤W SRT2

2 ∗ COH.

Proof. Given c : [N]2 → 2, apply COH to the array (Ra)a where Ra is
defined to be {b > a : c(a, b) = 0}. We obtain a cohesive set S. Then
c � [S]2 is stable: for each a ∈ S, limb∈C,b→∞ c(a, b) is equal to 0 if
S ⊆∗ Ra, and is equal to 1 if S ⊆∗ Ra. Therefore we may apply SRT2

2

to c � [S]2 to obtain an infinite c-homogeneous set H.
Concretely, define P to be the problem whose instances are colorings

c : [ω]2 → 2, with solutions being stable colorings c � S : [S]2 → 2.
Then P is Weihrauch reducible to COH, and the previous paragraph
shows that RT2

2 ≤W SRT2
2 ◦ P. Hence RT2

2 ≤W SRT2
2 ∗ COH. �

At Dagstuhl 2015, Brattka asked about the relationship between
RT2

2, SRT2
2 ∗ COH, and SRT2

2 × COH up to Weihrauch reducibility.
Let NON denote the problem of producing a set which is not com-

putable in the given set. Then:

Theorem 2.22 (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly [26]). LPO×
NON 6≤W RT2

2.

In fact, the result holds for the restriction of NON to the instance ∅.
Hence if Φ and Ψ form a Weihrauch reduction from LPO to RT2

2, then
there must be some instance S of LPO such that ΦS is a coloring with
some infinite computable homogeneous set.

A key notion in the proof of the above theorem is the following:

28 MATH 873 F19 NOTES (IN PROGRESS)

Definition 2.23. A coloring c : [ω]2 → 2 is balanced on X ⊆ ω if for
each i < 2, there is some infinite c-homogeneous subset of X of color i.

Theorem 2.24 (Jockusch [41]). Let c be a computable 2-coloring. If
an infinite set X does not contain any infinite c-homogeneous set of
color i, then it must contain an infinite X-computable c-homogeneous
set (of color 1− i).

Proof. We define a binary branching Π0,X
1 class C in NN as follows.

f ∈ NN lies in C if f(0) = minX and for each k, there is i < 2 such
that f(k + 1) is the least number in X greater than f(k) satisfying

– for all j < k, c(f(j), f(j + 1)) = c(f(j), f(k + 1));
– c(f(k), f(k + 1)) = i.

(Note that if c(f(k), f(k+ 1)) = i, then c(f(k), f(l)) = i for all l > k.)
It is not hard to see that ∅′′′ computes a path in C, so C is nonempty3.

Fix any f in C. For i < 2, define Hi = {f(k) : c(f(k), f(k + 1)) = i}.
Then each Hi is homogeneous for color i.

Since we assumed thatX does not contain any infinite c-homogeneous
set of color 1, H1 must be finite. Hence there is m such that for all
k > m, c(f(k), f(k+1)) = 0. This shows that H0 is X-computable. �

Lemma 2.25 ([26]). Let c : [ω]2 → 2 be computable, with no infinite
computable c-homogeneous set. Then for any nonempty Π0

1 class C
consisting of 2-partitions of ω, there is some 〈P0, P1〉 in C and some
i < 2 such that c is balanced on Pi.

The proof of the above lemma uses a variant of Mathias forcing, with
conditions being tuples (E0,0, E1,0, E0,1, E1,1, X,D) satisfying:

– X is an infinite computable set;
– for each i, j, maxEi,j < minX;
– for every x ∈ X, c avoids the color i on Ei,j ∪ {x};
– D ⊆ C is a nonempty Π0

1 class such that for every 〈P0, P1〉 in
D, Ei,j ⊆ Pj.

Proof that LPO× NON 6≤W RT2
2. Towards a contradiction, fix Φ and Ψ

witnessing that LPO × NON ≤W RT2
2. We will build an instance S of

LPO (S will be 0ω or 0n1ω for some n) such that Φ and Ψ fail for the
(LPO× NON)-instance 〈S, ∅〉.

For any LPO-instance S, ΦS⊕∅ is an RT2
2-instance. For any infinite

homogeneous set H for ΦS⊕∅, ΨS⊕∅⊕H = {LPO(S)} ⊕ Y , where Y is
some noncomputable set. We will show that we can always find some
infinite ΦS⊕∅-homogeneous set H such that one of the following hold:

3Once we know that C is nonempty, we can obtain better complexity bounds.
Jockusch [41] showed that C has a path which is low over ∅′.

MATH 873 F19 NOTES (IN PROGRESS) 29

(1) H is computable, in which case Y cannot be noncomputable;
(2) S = 0∞ and Ψ0∞⊕∅⊕H(0) ' 0 (i.e., it converges and equals 0 or

it diverges);
(3) S = 0n1∞ for some n, and Ψ0n1∞⊕∅⊕H(0)↓= 1.

To show that, let c denote the coloring Φ0∞⊕∅. Consider the Π0
1 class

C consisting of all 2-partitions 〈P0, P1〉 of ω such that

(∀i < 2)(∀ finite F ⊆ Pi)[F is c-homogeneous of color i→ Ψ0∞⊕∅⊕F (0) ' 0].

Case 1. Suppose C is nonempty. If there is some infinite c-computable
homogeneous set, we satisfy (1), with S = 0∞. Otherwise, by Lemma
2.25, there is some 〈P0, P1〉 in C and i < 2 such that c is balanced on
Pi. Let H ⊆ Pi be an infinite c-homogeneous set of color i. Then we
satisfy (2), with S = 0∞.

Case 2. If C is empty, then by compactness, there is some m such that
for every 〈P0, P1〉, there is some i < 2 and some F ⊆ Pi � m such that F
is c-homogeneous of color i and Ψ0∞⊕∅⊕F (0)↓= 1. Hence there is some
u sufficiently large such that the above holds, with Ψ0u⊕∅⊕F (0)↓= 1.
Then, we can take some n > u such that Φ0n⊕∅ agrees with c below u
(hence the F ’s are Φ0n⊕∅-homogeneous with the same color as before).
Now, let S = 0n1∞, and let d denote the coloring Φ0n1∞⊕∅.

If d has an infinite computable homogeneous set, then we satisfy (1).
Otherwise, we will show that we satisfy (3), by showing that one of the
above F ’s extends to an infinite d-homogeneous set.

First, we may compute an infinite set B such that minB > m and
for every a < m, limb∈B d(a, b) exists. (Construct B in m stages; at
stage a, shrink B to whichever of {b : d(a, b) = 0} or {b : d(a, b) = 1}
is infinite.) This lets us define a 2-partition of m: define P0 = {a <
m : limb∈B d(a, b) = 0}, and define P1 to be its complement.

Then there is some i < 2 and some F ⊆ Pi � m such that F is
d-homogeneous of color i and Ψ0n1∞⊕∅⊕F (0)↓= 1. Since there is no in-
finite (B-)computable d-homogeneous set, B must contain an infinite d-
homogeneous set H of color i. Then F ∪H is an infinite d-homogeneous
set such that Ψ0n1∞⊕∅⊕(F∪H)(0)↓= 1, i.e., we satisfy (3). �

Since LPO ≤W SRT2
2 (trivially) and NON ≤W COH (Jockusch,

Stephan [40] showed that every set which is cohesive for all primitive
recursive sets is hyperimmune, and hence noncomputable), it follows
that SRT2

2 × COH 6≤W RT2
2. In particular, SRT2

2 ∗ COH 6≤W RT2
2.

Note that RT2
2 is not even computably reducible to SRT2

2×COH, be-
cause both SRT2

2 and COH have ∆0
2-solutions to computable instances,

while RT2
2 does not (Jockusch [41]).

30 MATH 873 F19 NOTES (IN PROGRESS)

Another example of a problem where it is natural to consider the
compositional product is the Bolzano-Weierstrass theorem.

Definition 2.26. For any computable metric space X, define BWTX
to be the following problem: given a sequence (xi)i in X with compact
closure, produce a cluster point of (xi)i.

Define WBWTX to be the following problem: given a sequence (xi)i
in X with compact closure, produce a sequence in NN which converges
to a name of a cluster point of (xi)i.

Example 2.27. BWTk ≡W RT1
k. Note that RT1

k 6≤sc BWTk: take any
(noncomputable) RT1

k-instance without any computable solutions.

It is easy to see that BWTX and limNN ◦WBWTX are the same prob-
lem. Furthermore:

Theorem 2.28 (Brattka, Hendtlass, Kreuzer [12]). lim2N ∗WBWT2N ≤W
BWT2N. Therefore BWT2N ≡W lim2N ∗WBWT2N.

Proof. Since lim2N is a cylinder, by the cylindrical decomposition lemma
(Lemma 2.20), there is some computable single-valued function G such
that

lim2N ∗WBWT2N ≡W lim2N ◦G ◦ (id×WBWT2N).

We show below that the right-hand side is strongly Weihrauch re-
ducible to J × BWT2N , where J denotes the problem of producing the
Turing jump of a given set. This completes the proof because

J× BWT2N ≤W BWT2N × BWT2N ≤W BWT2N .

Take the forward functional to be the identity. For the backward
functional, suppose we are given 〈J(p), q〉, where q is a name for some el-
ement of BWT2N(p). We compute a solution to lim2N(G(p,WBWT2N(p)))
as follows.

Note that any sequence in NN which converges to q is a solution to
WBWT2N(p). We will use 〈J(p), q〉 to construct a sequence of finite
strings (us)s such that (us0

∞)s converges to q. Along the way, we
“force” lim2N(G(p, (us0

∞)s)) (analogous to how one forces the jump in
recursion theory).

We construct (us)s in stages. At stage 〈i, k, b〉 (where i, k ∈ N, b ∈ 2),
suppose we have constructed u0, . . . , usj . Use J(p) to search for some
l > maxi<sj |ui| and finitely many strings usj+1, . . . , usj+1

of length l,
each extending q � 〈i, k, b〉, such that

G(p, (u00l−|u0|, . . . , usj0
l−|usj |, usj+1, . . . , usj+1

))

produces at least k many b’s in the ith row. (We think of the columns
of G(p, (us0

∞)s) as binary sequences, where each row has a limit.) If

MATH 873 F19 NOTES (IN PROGRESS) 31

such usj+1, . . . , usj+1
exist, then we take the least such strings and add

them to our sequence. Otherwise, we do nothing. This completes the
construction for stage 〈i, k, b〉.

Observe that for each i and k, we must make an extension in either
stage 〈i, k, 0〉 or 〈i, k, 1〉. This is becauseG(p, (u00∞, . . . , usj0

∞, q, q, . . .))
is an instance of lim2N . Hence (us)s is an infinite sequence. Define u to
be (us0

∞)s.
We now show how to use 〈J(p), q〉 to compute lim2N(G(p, u)). For

each i, there must be some m and b such that we did not make an
extension in stage 〈i,m, b〉. Using 〈J(p), q〉, we can search for such a
stage. Then lim2N(G(p, u))(i) cannot be b, hence it must be 1− b. �

We note that BWT2N is equivalent to BWTX for several spaces X
that we care about:

Proposition 2.29 (Brattka, Gherardi, Marcone [10]). If X is a com-
putable metric space such that 2N computably embeds into X (e.g., Rn

and NN), then BWT2N ≡sW BWTX .

Hence we will write BWT to mean BWT2N .
As for WBWT2N , it turns out to be equivalent to a familiar combi-

natorial principle. First, we make a definition:

Definition 2.30 ([12]). Define SBWTX to be the following problem:
given a sequence (xi)i in X with compact closure, produce a convergent
subsequence of (xi)i, i.e., produce s ∈ NN such that (xs(n))n converges.

The proof of the following proposition is left to the reader.

Proposition 2.31 ([12]). WBWTX ≡W SBWTX .

Proposition 2.32. SBWT2N ≡sW COH.

Proof. SBWT2N ≤sW COH: Given a sequence (xi)i in 2N, compute the
following array (Rn)n: for each n, Rn = {i : xi(n) = 0}. Apply COH
to obtain an infinite set C which is cohesive for (Ri)i. Then if p is the
principal function of C, (xp(j))j converges because for each n, xp(j)(n)
is eventually always 0 or always 1.

COH ≤sW SBWT2N : Given an array (Ri)i, compute a sequence (xi)i
in 2N by xi(n) = Rn(i). Apply SBWT2N to obtain a sequence (s(i))i in
N such that (xs(i))i converges. Let C denote the set of si’s. Then C is
cohesive for (Ri)i. �

Corollary 2.33 ([12]). BWT ≡W lim ∗COH.

32 MATH 873 F19 NOTES (IN PROGRESS)

2.4. Implication.

Definition 2.34 (Brattka, Pauly [13]). Let f and g be problems. The
implication g → f is defined to be min≤W

{h : f ≤W g ∗ h}.
In other words, the implication captures the minimal Weihrauch de-

gree that is needed in advance of g in order to compute f .

Theorem 2.35 ([13]). g → f is always defined.

Proof idea. A representative of g → f can be defined as follows. Given
an f -instance u, consider the problem of producing a g-instance x and
a strongly computable multivalued function Ψ, such that Ψ(g(x)) ⊆
f(u). �

Remark 2.36. In the notation of the theory of residuated lattices, the
implication is the right co-residual of the compositional product. See
Brattka, Gherardi [9] for further discussion.

We give some examples of the implication.

Proposition 2.37 (Brattka, Hendtlass, Kreuzer [12]). WBWTX ≡W
limNN → BWTX .

Proof. We observed earlier that BWTX = lim ◦WBWTX ≤W lim ∗WBWTX .
On the other hand, suppose that BWTX ≤W lim ∗h. Without loss of
generality, we may assume that h is a cylinder. By the cylindrical de-
composition lemma, there is some computable function K such that
lim ∗h ≡W lim ◦K ◦ h. So BWTX ≤W lim ◦K ◦ h, say via Γ and ∆.
This allows us to show that WBWTX ≤W K ◦ h ≤W h, as follows.

Given a WBWTX-instance (xi)i, apply Γ to produce an instance of
lim ◦K ◦ h. Suppose that (pn)n is a (K ◦ h)-solution to Γ((xi)i). Then
(pn)n is an instance of lim. We know that ∆((xi)i, lim((pn)n)) is a
name for a BWTX-solution for (xi)i. We want to produce a sequence
(qn)n in NN such that lim(qn)n = ∆((xi)i, lim((pn)n)). To define qn, run
∆((xi)i, pn) for n steps. Then extend its output by defining qn(j) = 0
if ∆((xi)i, pn)(j) has not been determined in n steps. Then (qn)n is a
WBWTX-solution to (xi)i. �

Definition 2.38. Let MLR : 2N ⇒ 2N denote the problem of producing
a (Martin-Löf) random sequence relative to a given sequence.

Let WWKL denote the restriction of WKL to trees T such that the
set of infinite paths of T has positive measure.

Proposition 2.39 ([13]). MLR ≡W CN → WWKL.

Proof. First, we show that WWKL ≤W CN ∗ MLR. This follows from
(the relativization of) a result of Kučera (see Downey, Hirschfeldt [22,

MATH 873 F19 NOTES (IN PROGRESS) 33

Lemma 6.10.1]), which states that for any Π0
1 class C of positive measure

and any random A, some tail of A is an element of C.
Proof of Kučera’s lemma. Define an ML-test as follows. Let S0 enu-
merate the set of leaves of a tree whose paths are exactly the elements
of C. If Sn is defined, define Sn+1 = {σ_τ : σ ∈ Sn ∧ τ ∈ S0}. For
each n, let Un be the set of reals which extend some string in Sn. It is
easy to check that (Un)n can be thinned down into an ML-test. Next,
since A is random, there is some n such that A /∈ Un. That shows that
some tail of A lies in C. (Take the largest m such that A ∈ Um. Let
σ ∈ Sm be such that A extends σ. Let B be the tail of A starting from
σ. Then B lies in C because none of its initial segments lie in S0.) �

By applying CN, we can find a tail of A which is an element of C.
Second, suppose that WWKL ≤W CN ∗ h for some h. Without loss

of generality, we may assume that h is a cylinder, so WWKL ≤W f ◦ g
for some f ≤W CN and g ≤sW h. We show that MLR ≤W g (hence
MLR ≤W h as desired). The point is that MLR is Weihrauch reducible
to WWKL with finite error, and CN can be computed with finitely many
mind-changes.

Given X, let (UX
i)i be a universal Martin-Löf test relative to X.

(There is a single index defining (UX
i)i which works for all X.) Consider

the complement C of UX
0 . It is a Π0,X

1 class of positive measure, and
every element of C is random. Transform C into an (f ◦ g)-instance.
This completes the definition of the forward functional.

Suppose we apply g to obtain a g-solution X, which is itself an f -
instance. By assumption, X uniformly enumerates a proper subset
S ⊆ N, such that given any s /∈ S, we can uniformly (in C ⊕ X)
compute an element of C. Instead of appealing to CN, we guess a CN-
solution and attempt to compute an element of C, changing our guess
whenever it is proven wrong by the X-computable enumeration. Since
we only change our guess finitely many times, we end up producing
some q which differs from an element of C on an initial segment (at
most). But then q differs with a random on an initial segment, hence
it is random as well. �

Note that WWKL is not Weihrauch equivalent to CN ∗MLR because
CN 6≤W WWKL (or even WKL, as shown by Brattka, de Brecht, Pauly
[6, Corollary 5.2]).

Another example of an implication involving CN is:

Proposition 2.40 (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly [26]).
RT2

2 with finite error (i.e., solutions agree with some infinite homoge-
neous set on a cofinite set) is a representative of the degree CN → RT2

2.

34 MATH 873 F19 NOTES (IN PROGRESS)

2.5. Jumps.

Definition 2.41 (Brattka, Gherardi, Marcone [10]). The jump of a
represented space (X, δ) is defined to be (X, δ′), where δ′ = δ ◦ lim.

The jump of a problem f :⊆ (X, δX) ⇒ (Y, δY), denoted f ′, is defined
to be f :⊆ (X, δ′X) ⇒ (Y, δY).

In other words, f ′ is the following problem: given a sequence in NN

which converges to a name of an f -instance, solve said f -instance.

Example 2.42. id′ ≡sW lim.

We always have f ≤sW f ′, but we need not have f <sW f ′.

Example 2.43. If f is a pointed constant function, then f ≡sW f ′.

It follows that the jump is not monotone with respect to Weihrauch
reducibility: take f to be any computable pointed constant function.
Then id ≤W f but id′ ≡sW lim 6≤W f ≡sW f ′.

Nevertheless, the jump is monotone with respect to strong Weihrauch
reducibility. First, we need a lemma:

Lemma 2.44. Given any computable single-valued function ∆ :⊆ NN →
NN and any convergent sequence (pn)n in NN such that lim((pn)n) ∈
dom(∆), we can uniformly compute some sequence (qn)n in NN such
that lim((qn)n) = ∆(lim((pn)n)).

The proof of the lemma is similar to that of Proposition 2.37 (indeed,
we should have proved this lemma earlier and used it to prove said
proposition).

Proposition 2.45 ([10]). If f ≤sW g, then f ′ ≤sW g′.

Proof. Fix Γ and ∆ witnessing that f ≤sW g. Given a sequence (pn)n
in NN which converges to a name for an f -instance X, we want to
compute a sequence (qn)n in NN which converges to a name for the
g-instance Γ(X). This can be done by Lemma 2.44. This completes
the definition of the forward functional. Take the backward functional
to be ∆. �

Observe that the above proof fails for ordinary Weihrauch reducibil-
ity because in that case, in order for the backward functional to utilize
∆, it has to first produce lim((pn)n).

The above proposition exhibits the utility of strong Weihrauch re-
ducibility as a technical tool; strong Weihrauch reductions between
problems yield strong Weihrauch reductions between their jumps.

Next, observe that f ′ ≤W f ∗lim. If f is a cylinder, then the converse
holds.

MATH 873 F19 NOTES (IN PROGRESS) 35

Proposition 2.46 ([10]). If f is a cylinder, then f ′ is a cylinder and
f ′ ≡W f ′ × lim ≡W f ∗ lim.

Proof. If id× f ≤sW f , then

id× f ′ ≤sW id′ × f ′ ≡sW lim×f ′ ≤sW (id× f)′ ≤sW f ′,

so f ′ is a cylinder. Since f ′ ≤sW id × f ′, it also follows that f ′ ≡sW
f ′ × lim.

It remains to show that f ∗ lim ≤W f ′. By the cylindrical decompo-
sition lemma, there is some computable single-valued function Φ such
that f ∗ lim ≡W f ◦ Φ ◦ lim. We show that f ◦ Φ ◦ lim ≤sW f ′. For
the forward functional, given an instance (pn)n of f ◦ Φ ◦ lim, we can
uniformly compute a sequence (qn)n in NN which converges to a name
for Φ(lim((pn)n)) (Lemma 2.44). For the backward functional, use the
identity. �

Corollary 2.47. If g is a cylinder, then f ≤W g implies f ′ ≤sW g′.
Therefore for any g, (g × id)′ ≡W max≤W

{f ′ : f ≤W g}.

This would allow us to lift the jump operation to Weihrauch degrees.
But we will not do so; in particular, we will still use f ′ to denote the
jump of f , rather than the jump of id× f .

For problems which may not be cylinders, we still have the following:

Proposition 2.48 ([10]). For any problem f ,

max
≤sW

{f0 ◦ g0 : f0 ≤sW f, g0 ≤sW lim}

exists and is strongly Weihrauch equivalent to f ′.

Proof. Let f r :⊆ NN ⇒ NN be the realizer version of f , i.e., f r =
δY ◦ f ◦ δ−1

X . Then f r ≡sW f and f ′ ≡sW f r ◦ lim.
Conversely, it suffices (by the usual arguments) to show that for any

computable single-valued function Φ, f ◦ Φ ◦ lim ≤sW f ′. Proceed as
in the proof of Proposition 2.46. �

Next, we present some examples of jumps among the problems that
we have discussed in this course.

Proposition 2.49. C′k ≡sW BWTk. (Recall BWTk ≡W RT1
k.)

Proof. BWTk ≤sW C′k: Consider the problem f , defined as follows:
given a sequence (xi)i in kN, enumerate every number which is not
a cluster point of (xi)i, i.e., enumerate every number below k which
appears at most finitely many times in (xi)i. Observe that BWTk ≤sW
Ck ◦f . By Proposition 2.48, if we show that f ≤sW lim, it would follow
that BWTk ≤sW C′k as desired.

36 MATH 873 F19 NOTES (IN PROGRESS)

To reduce f to lim, use lim to compute, for each j < k and each
n ∈ N, whether j appears in (xi)i>n. If there is some n ∈ N such that
j does not appear in (xi)i>n, then we enumerate j.

C′k ≤sW BWTk: Suppose we are given a sequence (pn)n in NN which
converges to a name for an enumeration of a proper subset A ⊆ k.
(For concreteness, the enumeration named by p ∈ NN enumerates p(s)
at stage s if p(s) < k, otherwise it does not enumerate any number.)
We want to compute a sequence (xi)i in kN whose cluster points are
exactly the numbers not in A, i.e., every number in A occurs at most
finitely often, while every number outside A occurs infinitely often.

We define (xi)i by checking for each s and j whether the following
Σ0

1 fact holds:

(∃n > s)(pn has not enumerated j by stage s).

Whenever we realize that the above holds for (j, s, n), we put j in the
sequence we are defining.

If j lies in A, then there is some t and m such that for all n > m,
pn enumerates j at stage t. Hence the above Σ0

1 fact must fail for all
s > max{t,m}. So j occurs at most finitely often in our sequence.

On the other hand, if j does not lie in A, then for all s, there is
some n > s such that pn has not enumerated j by stage s. (Otherwise,
by the infinite pigeonhole principle, there would be some t < s such
that for infinitely many n > s, pn enumerates j at stage t. Since (pn)n
converges, this implies that j is enumerated in the limit.) So j occurs
infinitely often in our sequence. �

Note that the above proposition is a special case of the following:

Theorem 2.50 ([10, Theorem 9.4]). C′X is strongly Weihrauch equiv-
alent to the problem of producing a cluster point of a sequence (with
domain being the set of sequences which have some cluster point).

Corollary 2.51. BWT ≡sW WKL′.

Proof. It is easy to see that WKL ≡sW C2N . By Proposition 2.45,
WKL′ ≡sW C′2N . Next, by Theorem 2.50, C′2N ≡sW BWT2N . (The
cluster point problem for 2N is equivalent to BWT2N because 2N is com-
pact.) �

Proposition 2.52. WKL′ ≡sW B̂WT2.

Proof. We showed earlier that WKL ≡sW Ĉ2 (Proposition 2.11). By

Proposition 2.45, WKL′ ≡sW
(
Ĉ2

)′
. It is easy to see that parallelization

MATH 873 F19 NOTES (IN PROGRESS) 37

commutes with jumps, so WKL′ ≡sW Ĉ′2. Finally, we showed above that

C′2 ≡sW BWT2, so Ĉ′2 ≡sW B̂WT2. �

For computable metric spaces X which are not necessarily compact,
BWTX is known to be equivalent to the jump of the compact choice
problem, defined as follows. If X is a computable metric space, we
represent the set of compact subsets of X as follows: p is a name for a
compact set K ⊆ X if p enumerates all tuples which code a finite cover
of K by rational open balls.

Observe that given a name for K as a compact set, we can compute
a name for K as a closed set. This follows from the following two
facts. First, given any finite collection of rational open balls, we can
enumerate all rational open balls which are disjoint from their union.
Second, any element not in K is contained in some open ball whose
closure is disjoint from K. By compactness of K, any such open ball
is disjoint from some finite open cover of K.

Definition 2.53. Define the problem of compact choice in a com-
putable metric space X, written KX , as follows: given a compact set
(represented as above), choose an element of the compact set.

Proposition 2.54. For any computable metric space X, KX ≤sW CX .

Proof. For the forward functional, see the paragraph above Definition
2.53. Take the backward functional to be the identity. �

In general, KX is weaker than CX .

Example 2.55 ([10, Corollary 10.10]). KN ≡sW C∗2 <W CN.

Theorem 2.56 ([10, Theorem 11.2]). BWTX ≡sW K′X .

Finally, we show that BWT is equivalent to König’s lemma KL.

Definition 2.57. Let KL denote the following problem: given an infi-
nite finitely branching subtree of N<N, produce an infinite path.

Theorem 2.58. KL ≡sW BWT ≡sW WKL′ ≡sW B̂WT2.

Proof. First, we show that KL ≤sW BWTNN . Given an infinite finitely
branching tree T = {σ0, σ1, . . . }, consider the sequence (σi0

∞)i in NN.
Since T is finitely branching, (σi0

∞)i has compact closure. If p is a
cluster point of (σi0

∞)i, that means that for each n, there are infinitely
many i such that p � n is an initial segment of σi0

∞. Since there are
only finitely many strings in T of length shorter than n, it follows that
there is some i such that p � n is an initial segment of σi. So p � n lies
in T . Therefore p is an infinite path on T .

38 MATH 873 F19 NOTES (IN PROGRESS)

Next, Corollary 2.51 states that BWT ≡sW WKL′. Proposition 2.52

states that WKL′ ≡sW B̂WT2.

To complete the proof, we show that B̂WT2 ≤sW K̂L ≤sW KL. First,

we show that BWT2 ≤sW KL (and hence B̂WT2 ≤sW K̂L). Given a
binary sequence (bi)i, define an infinite finitely branching tree T as
follows. For each n ≥ 1 and b < 2, define the string σbn of length n as
follows: σbn(0) = b, and σbn(1) < σbn(2) < · · · < σbn(n − 1) lists the first
(n− 1)-many i’s such that bi = b. Let T = {σbn : n ≥ 1, b < 2}.

Since T contains at most two strings at each level, it is finitely
branching. It is clear that T is infinite, and if p is an infinite path
on T , then p(0) appears infinitely many times in (bi)i. This proves
that BWT2 ≤sW KL.

The proof that K̂L ≤sW KL is the same as the proof that ŴKL ≤sW
WKL. �

See Brattka, Rakotoniaina [15, Theorem 5.13] for a direct reduction
from BWTNN to KL.

Remark 2.59. In reverse mathematics, König’s lemma and the Bolzano-
Weierstrass theorem are both equivalent to ACA0 over the standard
base theory RCA0.

Corollary 2.60 ([15, Corollary 5.14]). KL ≤W RT3
2.

Proof. First, KL ≡sW B̂WT2 (Theorem 2.58). Since BWT2 ≡W RT1
2, it

follows that KL ≡W R̂T1
2. We show that for any k, R̂T1

k ≤sW RT3
2. Given

a sequence (ci)i of colorings ci : N → k, define a coloring c : [N]3 → 2
by

c(m,x, y) =

{
0 if (∀i < m)[ci(x) = ci(y)]

1 otherwise
.

Suppose that H is an infinite c-homogeneous set. We claim that the
c-color of H must be 0. Let m = min(H). If H has color 1, we can
define a coloring d : [H]2 → m by taking d(x, y) to be the least i < m
such that ci(x) 6= ci(y). By Ramsey’s theorem for pairs, there is some
infinite d-homogeneous set H ′ ⊆ H. But the range of each ci is at
most k, so d cannot have a homogeneous set of size greater than k.
Contradiction. This proves our claim.

Finally, for each i, we compute an infinite ci-homogeneous set as
follows. Let m be the least number in H above i. Since H\[0,m) is
c-homogeneous, H\[0,m] is ci-homogeneous. �

The above result was obtained independently by Hirschfeldt, Jockusch
[36, Corollary 2.3]. Their proof does not involve BWT. Instead, given

MATH 873 F19 NOTES (IN PROGRESS) 39

an X-computable infinite finitely branching tree, they construct an
X-computable 2-coloring of triples such that if H is an infinite homo-
geneous set, then X ⊕H has PA degree over ∅′.

Next, we turn to stable Ramsey’s theorem. We would like to say that
SRT2

k ≡W (RT1
k)
′. It is true that (RT1

k)
′ ≤sW SRT2

k, but Dzhafarov [24,
Corollary 3.3] showed that SRT2

2 6≤W (RT1
k)
′.

Definition 2.61 (Brattka, Rakotoniaina [15]). CRTnk is defined by en-
riching the output of RTnk with the color of the homogeneous set in
the output, i.e., given a coloring c : [N]n → k, output an infinite c-
homogeneous set and its color.

Trivially RTnk ≤sW CRTnk and CRTnk ≤W RTnk . However, CRTnk is
not strongly Weihrauch reducible to RTnk (or even (RTnk)′). Intuitively,
this is because any finite number of RTnk -instances have a common
solution, so one cannot uniformly extract much information from an
RTnk -solution. See [15, Corollary 3.15] for details.

Theorem 2.62 (Brattka, Rakotoniaina [15, Theorem 4.3]). SRT2
k ≡W

(CRT1
k)
′.

Proof. (CRT1
k)
′ ≤W SRT2

k: Suppose we are given a sequence (ci)i which
converges to a coloring c∞ : N → k. By adjusting the ci’s, we may
assume that each ci is a coloring ci : N→ k as well.

Define a coloring c : [N]2 → k as follows: c(x, i) = ci(x). c is sta-
ble because for all x, limi ci(x) exists. Any infinite c-homogeneous set
is also c∞-homogeneous with the same color. (This is not a strong
Weihrauch reduction because we use our access to c to determine
the color of the homogeneous set. But the above proof shows that
(RT1

k)
′ ≤sW SRT2

k.)
SRT2

k ≤W (CRT1
k)
′: Given a stable coloring c : [N]2 → k, we define a

sequence of colorings cn : N→ k as follows:

cn(x) =

{
c(x, n) x < n

0 otherwise
.

The sequence (cn)n converges because for all x, limn c(x, n) exists. De-
note its limit by c∞ : N→ k. Now given any infinite c∞-homogeneous
set H of color j, we may thin it out (using both the coloring c and the
color j!) to obtain an infinite c-homogeneous set. �

2.6. Other algebraic properties.

Definition 2.63. A mass problem is a subset of NN. A mass problem
A is Medvedev reducible to a mass problem B, written A ≤M B, if
given any element of B, one can uniformly compute an element of A.

40 MATH 873 F19 NOTES (IN PROGRESS)

For any mass problems A and B, their join A + B is defined to be
{a⊕ b : a ∈ A, b ∈ B}. Their meet A× B is defined to be the disjoint
union of A and B, i.e., {0_a : a ∈ A} ∪ {1_b : b ∈ B}.

Medvedev reducibility induces a degree structure on mass problems.
The join and meet lift to the Medvedev degrees. The Medvedev degrees
form a distributive lattice with minimum element NN and maximum
element ∅.

There are two ways to embed the Medvedev degrees into the Weihrauch
degrees:

– map nonempty A ⊆ NN to the problem cA of producing an
element of A, given an arbitrary element of NN ([8]);

– map A ⊆ NN to the problem dA: given an element of A, produce
0 ([34]).

The first embedding is order-preserving and meet-preserving. How-
ever, cA+B ≡W cA × cB rather than cA t cB, so this is not a lattice
embedding.

The second embedding reverse-embeds the Medvedev lattice into the
Weihrauch lattice, i.e.,

– A ≤M B if and only if dB ≤W dA;
– dA+B ≡W dA u dB;
– dA×B ≡W dA t dB.

Higuchi, Pauly [34] observed that the image of A 7→ dA in the
Weihrauch degrees is exactly the cone below id. As for A 7→ cA:

Proposition 2.64 (Brattka, Pauly [13, §5]). The image of A 7→ cA
in the Weihrauch degrees is exactly every degree of the form a → id.
Moreover, for each A, cA ≡W dA → id.

The many-one semilattice can be embedded into the Weihrauch lat-
tice as well (Brattka, Gherardi, Pauly [11, Proposition 9.2]). Fix
Turing-incomparable p, q ∈ NN. For each A ⊆ N, define mA : N→ NN

by

mA(n) =

{
p if n ∈ A
q if n /∈ A

.

This is a join-semilattice embedding from the many-one semilattice into
the Weihrauch lattice.

Proposition 2.65 (Higuchi, Pauly [34, Proposition 3.15]). The Weihrauch
lattice has no nontrivial countable suprema, i.e., if {fn : n ∈ N}
has a supremum g, then g ≤W

⊔
i<n fi for some n. Equivalently, if

f0 <W f1 <W . . . , then sup≤W
{fn : n ∈ N} does not exist.

MATH 873 F19 NOTES (IN PROGRESS) 41

Proof. Suppose that g ≡W sup≤W
{fn : n ∈ N}. Without loss of gener-

ality, we may assume that g and each fn are (possibly partial) multi-
valued functions on NN.

We will construct some h :⊆ NN ⇒ NN such that fn ≤W h for every
n. In order to do so, we will construct an appropriate sequence (an)n
in N and define h(an

_p) = fn(p) for each p ∈ dom(fn).
We construct (an)n by “diagonalizing” against every possible forward

reduction from g to h. At stage n, define an as follows. Let Φn denote
the nth Turing functional. If there is some p ∈ dom(g) such that
Φn(p)(0) converges and is greater than an−1, then take any such p and
define an = Φn(p)(0) + 1. Otherwise, define an = an−1 + 1.

Now, since fn ≤W h for every n, we have that g ≤W h. Suppose
that Φn and Ψ witness that g ≤W h. In particular, for all p ∈ dom(g),
Φn(p)(0) converges. If there is some p ∈ dom(g) such that Φn(p)(0)
is greater than an−1, we would have ensured that Φn(p) /∈ dom(h),
contradiction. Hence for all p ∈ dom(g), Φn(p)(0) ≤ an−1. This implies
that g ≤W

⊔
i≤an−1

fi via Φn and Ψ. �

As for infima, the analogous result holds if we restrict ourselves to
the pointed Weihrauch degrees:

Proposition 2.66 ([34, Corollary 3.18]). The pointed Weihrauch lat-
tice has no nontrivial countable infima, i.e., if f0 >W f1 >W . . . are
pointed, then inf≤W

{fn : n ∈ N} does not exist.

Proof. Suppose that g ≤W fn for every n. Without loss of generality,
we may assume that g and each fn are (possibly partial) multivalued
functions on NN. For each m < n, fix Γn,m and ∆n,m witnessing that
fn ≤W fm.

For each i, j, we will construct some problem h〈i,j〉 such that if Φi and
Φj witness that h〈i,j〉 ≤W g, then f〈i,j〉 ≤W g (which is a contradiction).
We will also construct an auxiliary sequence (a〈i,j〉)i,j in N. Then we
will define h =

⋃
n hn.

At stage n = 〈i, j〉, we construct hn and an as follows. Suppose that
in earlier stages we have defined a0, . . . , am−1. In order to motivate the
definition of an, we begin by presenting the definition of hn, assuming
that an has been defined. An instance of hn is a tuple

〈n,Γn,0(p), . . . ,Γn,n−1(p), p〉,
where p is an instance of fn. For ease of notation, we denote the above
tuple by α(n, p). This is purely notational; note that α(n, p) cannot,
in general, be computed uniformly from n and p.

An hn-solution to the above tuple is some a_q ∈ NN which satisfies
one of the following conditions:

42 MATH 873 F19 NOTES (IN PROGRESS)

(1) a = am for some m < n and q is an fm-solution to Γn,m(p);
(2) a = an and q is an fn-solution to p;
(3) a > an and q = 0N.

Condition (3) will be useful later, for showing that h ≤W fm for
every m. This completes the definition of hn, assuming a0, . . . , an have
been defined.
an is defined as follows. If there is some fn-instance p such that

Φi(α(n, p)) is a g-instance, and some q which is a g-solution to Φi(α(n, p))
such that Φj(α(n, p), q)(0) > an−1, then we define

an = Φj(α(n, p), q)(0) + 1.

Otherwise, define an = an−1 + 1.
We claim that if n = 〈i, j〉 and Φi and Φj witness that hn ≤W g,

then fn ≤W g. First note that for every fn-instance p, Φi(α(n, p)) is
a g-instance. If there is some fn-instance p and some g-solution q to
Φi(α(n, p)) such that Φj(α(n, p), q)(0) > an−1, then by definition of an,

an−1 < Φj(α(n, p), q)(0) < an.

By definition of hn, there is no hn-solution to α(n, p) which begins with
Φj(α(n, p), q). This contradicts our assumption that Φi and Φj witness
that hn ≤W g.

Therefore, for every fn-instance p and g-solution q to Φi(α(n, p)),
we have that Φj(α(n, p), q)(0) ≤ an−1. By definition of hn, this means
that Φj(α(n, p), q) must be of the form am

_r, where m < n and r is
an fm-solution to Γn,m(p).

This allows us to reduce fn to g, as follows. Our reduction will use
the following finite information for each m < n: am, Γn,m, and ∆n,m.
Given an fn-instance p, compute the g-instance Φi(α(n, p)). This can
be done uniformly using the above finite information.

Given a g-solution q to Φi(α(n, p)), let Φj(α(n, p), q) = a_r. We can
check a against our list a0, . . . , an−1 to find m < n such that a = am.
Then r is an fm-solution to Γn,m(p). So ∆n,m(p, r) is an fn-solution to
p. This completes the proof of our claim.

Next, define h =
⋃
n hn. It follows from our claim that h 6≤W g.

It remains to show that for every m, h ≤W fm. Fix m. Since fm is
pointed, we may fix a computable fm-instance c. Our reduction from
h to fm will use the finite information a0, . . . , am.

Suppose we are given an h-instance α(n, p). If n < m, we compute
the fm-instance c which we fixed above. Apply fm to c. By condition
(3) in our definition of hn, (an + 1)_0N is an h-solution to α(n, p).

If n = m, then apply fm to p to obtain some fm-solution q. Then by
condition (2) in our definition of hn, am

_q is an h-solution to α(n, p).

MATH 873 F19 NOTES (IN PROGRESS) 43

Finally, if n > m, then apply fm to Γn,m(p) to obtain some fm-
solution q. (This is why we included Γn,m(p) in α(n, p)!) Then by
condition (1) in our definition of hn, am

_q is an h-solution to α(n, p).
This proves that h ≤W fm, as desired. �

We mention that the Weihrauch lattice (specifically the cone below
id) does have nontrivial countable infima. This is because there are
nontrivial countable suprema in the Medvedev lattice, which is reverse-
isomorphic to the cone below id in the Weihrauch lattice.

3. Some hyperarithmetic theory

The goal of this section is to present enough hyperarithmetic theory
for the reader to follow the arguments in subsequent sections. For an
introduction to hyperarithmetic theory, the following references may
be helpful: Sacks [51], Ash, Knight [3], Chong, Yu [18].

Definition 3.1. Let L be a linear ordering with first element 0L, and
let A ⊆ N. We say that 〈Xa〉a∈L is a jump hierarchy on L which starts
with A if X0 = A and for all b >L 0L, Xb = (

⊕
a<Lb

Xa)
′. If we do not

specify the starting set of a jump hierarchy, we assume that it is ∅.
We say that A ⊆ N is B-hyperarithmetic, or A is hyperarithmetically

reducible to B, written A ≤h B, if A is computable in some jump
hierarchy on some B-computable well-ordering L which starts with B.
The class of all B-hyperarithmetic sets is denoted HYP(B). For B
computable, we simply denote it by HYP.

Note that by transfinite recursion and transfinite induction, for any
well-ordering L and any set A, there is a unique jump hierarchy on L
which starts with A.

The B-hyperarithmetic sets can also be characterized as the class
of subsets of N which are definable by some B-computable infinitary
formula (see [3, Chapter 7]).

The least ordinal which is not the ordertype of a B-computable well-
ordering, is denoted ωB1 . For B computable, we denote it by ωCK1

(Church-Kleene). We can define the αth jump of B for each α < ωB1 ,
which by work of Spector is canonical up to Turing degree. There-
fore the B-hyperarithmetical sets are stratified by the ordertypes of
B-computable well-orderings.

The most important technique in hyperarithmetical theory is effec-
tive transfinite recursion. We start with the recursion theorem:

Theorem 3.2. If F : N→ N is total X-computable, then there is some
e ∈ N such that ϕXe = ϕXF (e), i.e., ϕXe and ϕXF (e) have the same domain

44 MATH 873 F19 NOTES (IN PROGRESS)

and agree on said domain. Furthermore, we can compute some such e
from an index of F as an X-computable function, which satisfies the
above property for all X.

Then we present effective transfinite recursion:

Theorem 3.3. Let L be a linear ordering. Suppose that F : N→ N is
a total X-computable function such that for any e ∈ N and any b ∈ L,(

∀a <L b[ϕ
X
e (a)↓]

)
→ ϕXF (e)(b)↓ .

Then there is some e ∈ N such that ϕXe = ϕXF (e) and {b ∈ L : ϕXe (b)↑}
is either empty or contains an infinite <L-descending sequence. Fur-
thermore, we can compute some such e from an index of F as an X-
computable function, which satisfies the above property for all X.

Proof. By the recursion theorem, compute some e such that ϕXe =
ϕXF (e). If {b ∈ L : ϕXe (b)↑} is nonempty, then it cannot have an <L-
least element because for any b ∈ L,(

∀a <L b[ϕ
X
e (a)↓]

)
→ ϕXe (b)↓ .

�

Observe that effective transfinite recursion does not require L to be
effective in any way.

To illustrate effective transfinite recursion, we prove that every jump
hierarchy on a well-ordering is a Π0

2-singleton (relative to appropriate
parameters).

Theorem 3.4. Let L be a well-ordering, and let X = 〈Xa〉a∈L be a

jump hierarchy on L which starts with A. Then each Xa is a Π0,L⊕A
2 -

singleton, i.e., there is a Π0,L⊕A
2 predicate P (Y) such that P (Y) holds

if and only if Y = Xa.

Let Pe denote the eth Π0
2 predicate. We prove the theorem assuming

that L and A are computable. The proof of the full theorem follows by
relativization.

Proposition 3.5. If X is a Π0
2-singleton, then so is X ′. Furthermore,

we can compute an index for X ′ as a Π0
2-singleton from an index for

X as a Π0
2-singleton.

Proof. Fix an index e such that ΦZ′
e = Z for any Z, and ΦY

e is total
for all Y . Then X ′ is the unique set Y which satisfies the following Π0

2

formula:
ΦY
e = X and ∀n(n ∈ Y ↔ ΦΦY

e
n (n)↓).

�

MATH 873 F19 NOTES (IN PROGRESS) 45

Proof of Theorem 3.4. We proceed by effective transfinite recursion along
L. Define a total computable function F : N→ N as follows. Given d,
we define F (d) by defining ϕF (d)(b) for each b.

If b /∈ L, let ϕF (d)(b) diverge. If b is the least element of L, let ϕF (d)(b)
be an index for the Π0

2 formula Y = A. Otherwise, let e be an index
for the following Π0

2 formula P (Y):

∀a(if (a <L b ∧ ϕd(a)↓) then Pϕd(a)(Y
[a]), otherwise Y [a] = ∅)

Then define ϕF (d)(b) = h(e), where h is a total computable function
such that if e is an index for a Π0

2-singleton X, then h(e) is an index
for X ′.

Observe that for any d ∈ N and any b ∈ L, ϕF (d)(b)↓. By effective
transfinite recursion, we obtain some d ∈ N such that ϕd = ϕF (d). Then
ϕd(b)↓ for all b ∈ L. Finally, by transfinite induction along L, we can
show that for each b ∈ L, Pϕd(b) has unique solution Xb. �

Next, we prove Kleene’s theorem, which states that HYP = ∆1
1. This

is the effective analog of Suslin’s theorem, which states that Borel =
∆1

1.

Theorem 3.6. HYP ⊆ ∆1
1.

Proof. The point is that both the Σ1
1 and Π1

1 sets are uniformly closed
under jump, Turing reducibility, and recursive join. This allows us to
prove that HYP ⊆ ∆1

1 by effective transfinite recursion. For details,
see [3, §5.2]. �

For the reverse inclusion, we follow Moschovakis’s [45, Theorem 3E.1]
presentation of Spector’s proof of Kleene’s theorem.

Definition 3.7. For each e, let Le denote the eth computable linear
ordering. Let W ⊆ N be the set of all indices for computable well-
orderings. For each a ∈ W , let Wa ⊆ W be the set of all indices for
computable well-orderings which embed into a proper initial segment
of La.

Clearly W is Π1
1. As for Wa:

Proposition 3.8. For each a ∈ W , Wa is ∆1
1.

Proof. TFAE:

– b ∈ Wa;
– there is some embedding from Lb into a proper initial segment

of La;
– b ∈ W and there is no embedding from La into Lb.

The second clause is Σ1
1 and the third clause is Π1

1. �

46 MATH 873 F19 NOTES (IN PROGRESS)

This suggests that one can “enumerate” W in ωCK1 many steps, such
that at each step of the enumeration, one has only enumerated a ∆1

1

set. Hence the analogy

Π1
1 ∼ recursively enumerable

∆1
1 ∼ finite.

This analogy is explored further in metarecursion theory, see Sacks
[51, Chapter V].

The following result is a useful step towards proving that ∆1
1 ⊆ HYP.

Theorem 3.9. For each a ∈ W , Wa is hyperarithmetic.

We give an (undoubtedly mistake-riddled) sketch.

Sketch. Fix a computable well-ordering L. Let 〈Xa〉a∈L be the jump
hierarchy along L. We use L′-effective transfinite recursion along L to
define a total L′-recursive function f : L→ N such that for each b ∈ L,
ΦXb

f(b) is total and defines {e : Le properly embeds into L � b}.
For b = 0L, do the obvious.
For b which is a successor in L, observe that Le properly embeds into

L � b if and only if for all c ∈ Le, there is some a <L b such that Le � c
properly embeds into L � a.

For b which is a limit in L, observe that Le properly embeds into
L � b if and only if there is some a <L b such that Le properly embeds
into L � a. �

In order to extend the above result to all ∆1
1 sets, the following result

is useful:

Theorem 3.10. W is Π1
1-complete, i.e., W is Π1

1 and every Π1
1 set is

many-one reducible to W .

Proof. First we need a normal form for Π1
1 predicates. Let A be a

Π1
1 subset of N. Then one can show that there is some computable

predicate R such that

x ∈ A ⇔ (∀f ∈ NN)(∃n)R(f � n, x),

and if R(σ, x) holds and σ is an initial segment of τ , then R(τ, x) holds
as well.

Next, for each x ∈ N, consider the computable tree

Tx = {σ ∈ N<N : ¬R(σ, x)}.
Observe that x ∈ A if and only if Tx is well-founded.

The connection from trees to linear orderings is given by the Kleene-
Brouwer ordering (also known as the Luzin-Sierpinski ordering). If T is
a tree, we define a linear ordering <KB(T) as follows. For any σ, τ ∈ T ,
we say that σ <KB(T) τ if one of the following hold:

MATH 873 F19 NOTES (IN PROGRESS) 47

– τ is an initial segment of σ;
– σ and τ are incomparable in T and σ is to the left of τ , i.e., if
n is the least number such that σ(n) 6= τ(n), then σ(n) < τ(n).

One can check that T is well-founded if and only if KB(T) is well-
ordered. This yields a many-one reduction from A to W : x ∈ A if and
only if KB(Tx) ∈ W . �

Theorem 3.11 (Spector’s Σ1
1-boundedness). If B ⊆ N is Σ1

1 and is a
subset of W , then B is contained in Wa for some a ∈ W .

Proof. Let Pe be the eth Π1
1 subset of N. Then {e : e ∈ Pe} is Π1

1, so
we can fix a many-one reduction g from it to W , i.e.,

e ∈ Pe ⇔ g(e) ∈ W.
Given a Σ1

1 set B ⊆ W , consider the Σ1
1 set

S = g−1({a : La embeds into Lb for some b ∈ B}).
If B is the complement of Pi, then we can compute an index f(i) such
that S is the complement of Pf(i). We prove that B ⊆ Wg(f(i)).

Since B ⊆ W , it follows that g(S) ⊆ W . By choice of g, for any
e ∈ S, e ∈ Pe. Since S is the complement of Pf(i), it follows that
f(i) ∈ Pf(i). (If f(i) /∈ Pf(i), then f(i) ∈ S, but then f(i) ∈ Pf(i) after
all.) This implies two facts:

(1) f(i) /∈ S, i.e., Lg(f(i)) does not embed into Lb for any b ∈ B.
(2) g(f(i)) ∈ W .

We conclude that B ⊆ Wg(f(i)). �

Theorem 3.12. ∆1
1 ⊆ HYP.

Proof. Let A ⊆ N be ∆1
1. Since A is Π1

1 and W is Π1
1-complete, there

is some many-one reduction g such that e ∈ A if and only if g(e) ∈ W .
Next, since A is Σ1

1, the set g(A) is Σ1
1 as well. Since g(A) ⊆ W , by

Σ1
1-boundedness, there is some α < ωCK1 such that g(A) ⊆ Wα.
We conclude that e ∈ A if and only if g(e) ∈ Wα. Since Wα is

hyperarithmetic, this implies that A is hyperarithmetic as well. �

Definition 3.13. Define the problem of unique closed choice in a com-
putable metric space X, written UCX , as follows: given a singleton in
X (represented negatively as a closed set), produce the unique element
in the singleton.

Example 3.14. UCN ≡sW CN and UC2N is computable.

Proposition 3.15. CNN is strongly Weihrauch equivalent to the follow-
ing problem: given an ill-founded subtree of N<N, produce any path on
the tree.

48 MATH 873 F19 NOTES (IN PROGRESS)

UCNN is strongly Weihrauch equivalent to the following problem: given
an ill-founded subtree of N<N with a unique path, produce said path.

Proposition 3.16. If T ⊆ N<N has a unique path, then said path is
T -hyperarithmetic.

Proof. If X is the unique path on T , then x ∈ X if and only if there
exists some path P on T such that x ∈ P if and only if for every
path P on T , x ∈ P . Hence X is ∆1

1 in T . We conclude that X is
T -hyperarithmetic. �

Remark 3.17. One can leverage the above fact to show that if T ⊆
N<N has no T -hyperarithmetic path, then T must contain a perfect
tree. Hence T must have continuum many paths. See, for example,
[51, III.6.2].

Proposition 3.18. There is some computable ill-founded tree T ⊆ N<N

which has no hyperarithmetic path.

Proof. Observe that the predicate X ∈ HYP is Π1
1. (X ∈ HYP if and

only if there exists some e ∈ W such that every jump hierarchy on Le
computes X.) Therefore the predicate X /∈ HYP is Σ1

1. We can put
this predicate in the normal form

(∃f ∈ NN)(∀n)R(f � n,X � n)

for some recursive predicate R, with the property that if R(σ0, σ1)
holds and σ0 � τ0 and σ1 � τ1, then R(τ0, τ1) holds as well. Consider
then the tree T consisting of all 〈σ0, σ1〉 such that R(σ0, σ1) fails to
hold. T is computable, ill-founded, and every path on T computes
some X /∈ HYP (project to the second component). �

Corollary 3.19. CNN 6≤c UCNN.

4. Higher levels of the Weihrauch lattice

Thus far, we have studied several problems which correspond to the-
orems at the level of ACA0 or below, such as IVT, WKL, KL, RTnk , BWT.
Roughly speaking, we have the following correspondence between prob-
lems and theorems in reverse mathematics:

– RCA0 corresponds to the computable problems;
– WKL0 corresponds to WKL;
– ACA0 corresponds to lim and finite compositions of lim.

We have seen exceptions to the above correspondences (e.g., IVT),
but these are the exception rather than the norm.

How about problems corresponding to theorems which are strictly
stronger than ACA0? The next highest step of the Big Five is ATR0,

MATH 873 F19 NOTES (IN PROGRESS) 49

so that is a natural place to start. The study of the Weihrauch lattice
at this higher level was initiated by Marcone in 2015. Examples of
statements at the level of ATR0 are:

– comparability of well-orderings;
– Ulm’s theorem on invariants of abelian p-groups;
– the perfect tree theorem;
– Lusin’s separation of analytic sets;
– open determinacy;
– the open Ramsey theorem;
– the König duality theorem on matchings and covers of infinite

bipartite graphs.

Examples of statements slightly below ATR0 (but still stronger than
ACA0) are:

– Σ1
1-choice;

– ∆1
1-comprehension.

Let us formulate some problems which correspond to the above state-
ments. First, we formulate a problem which corresponds to ATR0 itself.

Definition 4.1. Define ATR to be the following single-valued problem:
given a pair (L,A) where L is a well-ordering and A ⊆ N, produce the
jump hierarchy 〈Xa〉a∈L which starts with A.

There are significant differences between the problem ATR and the
system ATR0 in reverse mathematics, as expounded in the remark after
Theorem 3.2 in Kihara, Marcone, Pauly [42]. For example, in the
setting of reverse mathematics, different models may disagree on which
linear orderings are well-orderings.

Theorem 4.2. ATR ≤W UCNN.

Proof. By Theorem 3.4, given some computable well-ordering L and
some A ⊆ N, we can uniformly compute an index e for the jump
hierarchy on L which starts with A as a Π0,L⊕A

2 -singleton. That means
that the jump hierarchy on L which starts with A is the unique X which
satisfies the Π0,L⊕A

2 -formula ∀x∃yRL⊕A
e (x, y,X), where Re denotes the

eth computable predicate.
Given e, we can produce an index for a Π0,L⊕A

1 -singleton by “Skolem-
izing” as follows. We say that f : N → N<N is the minimal Skolem
function which witnesses that X satisfies ∀x∃yRL⊕A

e (x, y,X) if for each
x,

– RL⊕A
e (x, f(x)(0), X) holds;

– |f(x)| = f(x)(0);

50 MATH 873 F19 NOTES (IN PROGRESS)

– for each w < f(x)(0), f(x)(w) is the least number such that
RL⊕A
e (x,w,X � f(x)(w))↓ and fails to hold.

Then (f,X) is the unique solution to the Π0,L⊕A
1 predicate “f is the

minimal Skolem function witnessing thatX satisfies ∀x∃yRL⊕A
e (x, y,X)”.

This allows us to uniformly compute a subtree T of N<N with a unique
path, such that the projection to the second component of the path is
the desired jump hierarchy. �

Next, we formulate a problem which corresponds to comparability
of well-orderings:

Definition 4.3. Define CWO to be the following single-valued problem:
given a pair (L,M) of well-orderings, produce either an embedding of
L onto an initial segment of M , or an embedding of M onto a proper
initial segment of L.

Friedman (see [54, notes for Theorem V.6.8, pg. 199]) showed that
comparability of well-orderings is equivalent to ATR0.

Proposition 4.4. CWO ≤W ATR.

Proof. Given (L,M), define N by adding a first element 0N and a last
element mN to L. We can use ATR to obtain a hierarchy 〈Xa〉a∈N such
that:

– X0N = L⊕M ;

– for all b >N 0N , Xb =
(⊕

a<N b
Xa

)′′′
.

For the backward reduction, we start by using effective transfinite
recursion along L to define a (possibly partial) recursive function f :
L → N such that {(a,ΦXa

f(a)(0)) ∈ L×M : ΦXa

f(a)(0)↓} is an embedding

of an initial segment of L into an initial segment of M .
To define f , if we are given any b ∈ L and f � {a : a <L b}, we

need to define f(b), specifically ΦXb

f(b)(0). Use Xb = (
⊕

a<Lb
Xa)

′′′ to

compute whether {ΦXa

f(a)(0) : a <L b,ΦXa

f(a)(0)↓} is a proper subset of

M . (This is where X0N = L⊕M comes in useful, because Xa uniformly
computes X0N for each a ∈ L.) If so, we compute and output the <M -
least element of their difference; otherwise diverge. This completes the
definition of ΦXb

f(b).

Apply the recursion theorem to the definition above to obtain a
partial recursive function f : L→ N. By transfinite induction along L,
for each b ∈ L, if ΦXb

f(b)(0)↓, then:

– ΦXa

f(a)(0)↓ for all a <L b;

MATH 873 F19 NOTES (IN PROGRESS) 51

– ΦXb

f(b)(0) is the <M -least element of

M\{ΦXa

f(a)(0) : a <L b,Φ
Xa

f(a)(0)↓},

while if ΦXb

f(b)(0)↑, then M\{ΦXa

f(a)(0) : a <L b,Φ
Xa

f(a)(0)↓} is empty.

To complete the definition of the backward reduction, we consider
the following cases.

Case 1. {a ∈ L : ΦXa

f(a)(0)↓} = L. Then {(a,ΦXa

f(a)(0)) : a ∈ L} is an

embedding from L onto an initial segment of M .
Case 2. Otherwise, {(ΦXa

f(a)(0), a) : a ∈ L,ΦXa

f(a)(0)↓} is an embedding

from M onto a proper initial segment of L.
Finally, note that the last column XmN

of 〈Xa〉a∈N can compute
which case holds and compute the appropriate embedding for each
case. �

Next, we work towards showing that ATR ≤W CWO.

Definition 4.5. Let Q be the following problem: given well-orderings
L and M , decide whether L < M or M ≤ L.

Theorem 4.6. UCNN ≤W Q̂.

Proof. Suppose we are given some T ⊆ N<N which has a unique path.
For each σ ∈ T , consider the trees

Sσ = {τ ∈ T : τ does not extend σ}
Tσ = {τ ∈ T : τ and σ are comparable}.

If σ lies on the unique path on T , then Sσ is well-founded and Tσ
is ill-founded. Otherwise, Sσ is ill-founded and Tσ is well-founded. So
we could compute the unique path on T if we were able to compare
KB(Sσ) and KB(Tσ), for each σ ∈ T . However, Q can only compare
well-orderings.

In order to overcome this issue, we consider the double descent tree
of a pair of linear orderings. Given any linear orderings L and M ,
define L ∗M to be the Kleene-Brouwer ordering of the tree of finite
sequences of the form 〈(a0, b0), . . . , (ak, bk)〉 such that a0 >L · · · >L ak
and b0 >M · · · >M bk. Then the following hold:

– If either L or M is a well-ordering, then so is L ∗M .
– If L is a well-ordering but M is not, then L embeds into L ∗M .
– If M is a well-ordering, then L ∗M embeds into η ∗M , where
η denotes a computable copy of the rational numbers.

52 MATH 873 F19 NOTES (IN PROGRESS)

Proofs of the first two facts can be found in Simpson [54, Lemma V.6.5].
The third fact (and its usage in this proof) is due to Kihara, Marcone,
Pauly [42, Lemma 2.7]4.

Next, consider the following well-orderings:

(η ∗M) ∗ L
(((η ∗M) ∗ L) + 1) ∗M.

If L is well-ordered but M is not, then

(η ∗M) ∗ L < ((η ∗M) ∗ L) + 1 ≤ (((η ∗M) ∗ L) + 1) ∗M.

If M is well-ordered but L is not, then

((η ∗M) ∗ L) ∗M ≤ η ∗M ≤ (η ∗M) ∗ L.
Therefore, for each σ ∈ T , if we define L = KB(Sσ) and M =

KB(Tσ), we may apply Q to compare the above pair of well-orderings.
This allows us to compute the unique path on T . �

Remark 4.7. Another proof of the above result can be derived from
Greenberg, Montalbán [33, Proposition 2.6].

Proposition 4.8. Q̂ ≤W CWO.

Proof. Suppose we are given a Q̂-instance (Ln,Mn)n. Let N = 1 +∑
n(Ln +Mn). Apply CWO to the following well-orders:∑

n

(Ln +N · ω)∑
n

(Mn +N · ω).

Note that for each n, Ln +N · ω and Mn +N · ω are both isomorphic
to N · ω. Hence the above well-orders are isomorphic. Furthermore,
given an isomorphism from

∑
n(Ln +N ·ω) to

∑
n(M +N ·ω), we can

restrict it to obtain isomorphisms from each Ln +N ·ω to Mn +N ·ω.
That allows us to compute whether Ln < Mn: Ln < Mn if and only
if the first element of the first copy of N is mapped into Mn by the
isomorphism. �

Corollary 4.9 (Kihara, Marcone, Pauly). ATR ≡W UCNN ≡W Q̂ ≡W
CWO.

Corollary 4.10. ATR, UCNN, and CWO are parallelizable.

Next, we turn our attention to weak comparability of well-orderings:

4I took the liberty of modifying their proof slightly. Any mistakes are my own.

MATH 873 F19 NOTES (IN PROGRESS) 53

Definition 4.11. Define WCWO to be the following problem: given
a pair (L,M) of well-orderings, produce either an embedding from L
into M or an embedding from M into L.

Friedman and Hirst [30] showed that in reverse mathematics, weak
comparability of well-orderings is equivalent to ATR0.

Question 4.12 (Marcone). Do we have ATR ≡W UCNN ≡W WCWO?

Observe that:

Proposition 4.13. Q ≤W WCWO.

Proof. Given (L,M), apply WCWO to (L ·ω+ 1,M ·ω). If L ·ω+ 1 ≤
M · ω, then L < M . Otherwise, M · ω ≤ L · ω + 1, which implies that
M ≤ L. �

It follows from Theorems 4.2, 4.6, and Proposition 4.4 that

Theorem 4.14 (Kihara, Marcone, Pauly). UCNN ≡W ŴCWO.

5. ATR ≤W WCWO

In this section, we show that ATR ≡W UCNN ≡W WCWO. First, we
need to figure out how to extract an infinite amount of useful informa-
tion from a single embedding between two well-orderings.

As a warm-up:

Proposition 5.1 (essentially Shore [52]). There is a computable well-
ordering L of ordertype ω2 such that from any embedding from ω2 into
L, we can uniformly compute ∅′.

Proof. Fix a computable 1-1 enumeration k : N → N of ∅′. We say
that t is a true stage if after stage t, every number enumerated by k
lies above k(t), i.e., ∅′t � k(t) = ∅′ � k(t). Observe that for each n, there
is an nth true stage. Let the true stage function denote the function
which maps n to the nth true stage.

The set of true stages is Π0
1 and uniformly computes ∅′. Further-

more, any function which majorizes the true stage function uniformly
computes ∅′. (If h majorizes the true stage function, then for each n,
n ∈ ∅′ if and only if n ∈ ∅′h(n).)

Now, we construct L as follows. For each t, define Lt to be the set
of stages s ≥ t at which t appears to be a true stage, ordered by the
natural number ordering. Observe that if t is indeed a true stage, then
Lt has ordertype ω, otherwise Lt is finite. Define L =

∑
t Lt. Since

there are infinitely many true stages, L has ordertype ω2.

54 MATH 873 F19 NOTES (IN PROGRESS)

Suppose we are given an embedding f from ω2 into L. For each n,
if f sends the first element of the (n + 1)st copy of ω into Lt, define
h(n) = t. Then one can show by induction that h : N → N majorizes
the true stage function, and hence uniformly computes ∅′. �

There are several ideas that make the above proof work. The first
idea is that of computing ∅′ by majorizing its true stage function. This
overcomes the basic problem with a coding strategy: if we put coding
locations in the target well-ordering, an embedding could skip above
our coding locations. This idea of computing via majorization can be
generalized to compute jump hierarchies, as we will see.

The second idea is to exploit certain order-theoretic properties of ω,
specifically:

If ω · k embeds into a finite sum of well-orderings, some
of which have ordertype ω and some of which have or-
dertype < ω, there must be at least k many orderings
in the sum with ordertype ω.

More generally, the above property holds for indecomposable well-
orderings:

Definition 5.2. A well-ordering M is indecomposable if it embeds into
every final segment of itself.

Lemma 5.3. Let L be a linear ordering and let M be an indecomposable
well-ordering which does not embed into L. If F embeds M into a finite
sum of L’s and M ’s, then the range of M under F must be cofinal in
some copy of M .

Therefore, if M · k embeds into a finite sum of L’s and M ’s, then
there must be at least k many M ’s in the sum.

Proof. There are three cases regarding the position of the range of M
in the sum. Case 1. F maps some final segment of M into some copy
of L. Since M is indecomposable, it follows that M embeds into L,
contradiction. Case 2. F maps some final segment of M into a bounded
segment of some copy of M . Since M is indecomposable, that implies
that M maps into a bounded segment of itself. This contradicts well-
foundedness of M . Case 3. The remaining case is that the range of M
is cofinal in some copy of M , as desired. �

We remark that for our purposes, we do not need to pay attention to
the computational content of the above lemma. In addition, unlike in
reverse mathematics, we do not need to distinguish between “M does
not embed into L” and “L strictly embeds into M”.

MATH 873 F19 NOTES (IN PROGRESS) 55

Indecomposable well-orderings played an essential role in Friedman
and Hirst’s [30] proof that WCWO implies ATR0 in reverse mathematics.

Next, we show how to reduce the problem of computing a jump hier-
archy into the problem of comparing an indecomposable well-ordering
with a sequence of well-orderings. (We did something similar in order
to prove Theorem 4.6, but it is not clear whether that approach can be
modified to yield this result.)

First, we need to define another version of ATR. When we define re-
ductions from ATR to other problems by effective transfinite recursion,
we will often want to perform different actions at the first step, succes-
sor steps, and limit steps. If we want said reductions to be uniform,
we want to be able to compute which step we are in. This motivates
the following definition:

Definition 5.4. A labeled well-ordering is a tuple L = (L, 0L, S, p)
where L is a well-ordering, 0L is the first element of L, S is the set of
all successor elements in L, and p : S → L is the predecessor function.

Proposition 5.5 (Goh). ATR is Weihrauch equivalent to the following
problem: instances are pairs (L, c) where L is a labeled well-ordering
and c ∈ L, with unique solution being Yc, where 〈Ya〉a∈L is the unique
hierarchy such that:

– Y0L = L;
– if b is the successor of a, then Yb = Y ′a;
– if b is a limit, then Yb =

⊕
a<Lb

Ya.

Next, we present a uniform analog of a theorem of Chen [16]. (Chen’s
results concern the many-one degree of We, for each e ∈ W .) Our proof
is adapted from Shore [52, Theorem 3.5].

Theorem 5.6 (Goh). Given a labeled well-ordering L, we can uni-
formly compute an indecomposable well-ordering M and well-orderings
〈K(a, n)〉n∈N,a∈L such that:

– if n ∈ Ya, then K(a, n) ≡M .
– if n /∈ Ya, then K(a, n) < M .

In order to prove the above theorem, we define some computable
operations on trees.

Definition 5.7 (Shore [52, Definition 3.9], slightly modified). For any
(possibly finite) sequence of trees 〈Ti〉, we define their maximum by
joining all Ti’s at the root, i.e.,

max(〈Ti〉) = {〈〉} ∪ {i_σ : σ ∈ Ti}.

56 MATH 873 F19 NOTES (IN PROGRESS)

Next, we define the minimum of a sequence of trees to be their “stag-
gered common descent tree”. More precisely, for any (possibly finite)
sequence of trees 〈Ti〉, a node at level n of the tree min(〈Ti〉) consists
of, for each i < n such that Ti is defined, a chain in Ti of length n. A
node extends another node if for each i in their common domain, the
ith chain in the former node is an end-extension of the ith chain in the
latter node.

It is easy to see that the maximum and minimum operations play
well with the ranks of trees:

Lemma 5.8 (Shore [52, Lemma 3.10]). Let 〈Ti〉i be a (possibly finite)
sequence of trees.

(1) If rk(Ti) < α for all i, then rk(max(〈Ti〉i)) ≤ α.
(2) If there is some i such that Ti is ill-founded, then max(〈Ti〉i) is

ill-founded.
(3) If some Ti is well-founded, then rk(min(〈Ti〉)i) ≤ rk(Ti) + i.
(4) If every Ti is ill-founded, then min(〈Ti〉i) is ill-founded as well.

With the maximum and minimum operations in hand, we may prove
an analog of Theorem 3.11 in Shore [52]:

Theorem 5.9. Given a labeled well-ordering L, we can uniformly com-
pute sequences of trees 〈g(a, n)〉n∈N,a∈L and 〈h(a, n)〉n∈N,a∈L such that:

– if n ∈ Ya, then rk(g(a, n)) ≤ ω · otp(L � a) and h(a, n) is ill-
founded;

– if n /∈ Ya, then rk(h(a, n)) ≤ ω · otp(L � a) and g(a, n) is ill-
founded.

Proof. We define g and h by L-effective transfinite recursion on L. For
the base case (recall Y0L = L), define g(0L, n) to be an infinite path of
0’s for all n /∈ L, and the empty node for all n ∈ L. Define h(0L, n)
analogously.

For b limit, define g(b, 〈a, n〉) = g(a, n) and h(b, 〈a, n〉) = h(a, n) for
any n ∈ N and a <L b.

For b = a+ 1, fix a recursively enumerable set W which enumerates
X ′ from X for any X. In particular,

n ∈ Yb iff (∃〈P,Q, n〉 ∈ W)(P ⊆ Ya and Q ⊆ Y c
a).

Then define

h(b, n) = max(〈min(〈{h(a, p) : p ∈ P}, {g(a, q) : q ∈ Q}〉) : 〈P,Q, n〉 ∈ W 〉).
If n ∈ Yb, then there is some 〈P,Q, n〉 ∈ W such that P ⊆ Ya

and Q ⊆ Y c
a . Then every tree in the above minimum for 〈P,Q, n〉

MATH 873 F19 NOTES (IN PROGRESS) 57

is ill-founded, so the minimum is itself ill-founded. Hence h(b, n) is
ill-founded.

If n /∈ Yb, then for all 〈P,Q, n〉 ∈ W , either P 6⊆ Ya or Q 6⊆ Y c
a .

Either way, all of the above minima have rank < ω · otp(L � a) + ω.
Hence h(b, n) has rank at most ω · otp(L � a) + ω = ω · otp(L � b).

Similarly, define

g(b, n) = min(〈max(〈{g(a, p) : p ∈ P}, {h(a, q) : q ∈ Q}〉) : 〈P,Q, n〉 ∈ W 〉).
This completes the construction for the successor case. �

Next, we adapt the above construction to obtain well-founded trees.
To that end, for each well-ordering L, we aim to compute a tree (T (ω ·
L))∞ which is universal for all trees of rank ≤ ω · otp(L). Shore [52,
Definition 3.12] constructs such a tree by effective transfinite recursion.
Instead, we use a simpler construction of Greenberg and Montalbán
[33].

Definition 5.10. Given a linear ordering L, define T (L) to be the tree
of finite <L-decreasing sequences, ordered by extension.

It is easy to see that L is well-founded if and only if T (L) is well-
founded, and if L is well-founded, then rk(T (L)) = otp(L).

Definition 5.11 ([33, Definition 3.20]). Given a tree T , define a tree

T∞ = {〈(σ0, n0), . . . , (σk, nk)〉 : 〈〉 6= σ0 (· · · (σk ∈ T, n0, . . . , nk ∈ N},
ordered by extension.

Lemma 5.12 (essentially [33, §3.2.2]). Let T be well-founded. Then

(1) T∞ is well-founded and rk(T∞) = rk(T).
(2) For every σ ∈ T∞ and γ < rkT∞(σ), there are infinitely many

immediate successors τ of σ in T∞ such that rkT∞(τ) = γ.
(3) KB(T) embeds into KB(T∞).
(4) KB(T∞) ≡ ωrk(T) + 1, hence KB(T∞)− {∅} is indecomposable.
(5) If rk(S) ≤ rk(T) (rk(S) < rk(T) resp.), then KB(S) embeds

(strictly resp.) into KB(T∞).

Finally, we prove our analog of Chen’s theorem.

Proof of Theorem 5.6. Given L, we may use Theorem 5.9, Definition
5.10 and Definition 5.11 to uniformly compute

M = KB(T (ω · L)∞)− {∅}
K(a, n) = KB(min{T (ω · L)∞, h(a, n)})− {∅} for n ∈ N, a ∈ L.

By Lemma 5.12(4), M is indecomposable. We want to show that:

– if n ∈ Ya, then K(a, n) ≡M .

58 MATH 873 F19 NOTES (IN PROGRESS)

– if n /∈ Ya, then K(a, n) < M .

First,

rk(T (ω · L)∞) = ω · otp(L)

so rk(min{T (ω · L)∞, h(a, n)}) ≤ ω · otp(L).

It then follows from Lemma 5.12(5) that K(a, n) ≤M .
If n ∈ Ya, then h(a, n) is ill-founded. Fix some descending sequence
〈σi〉i in h(a, n). Then we may embed T (ω · L)∞ into

min{T (ω ·L)∞, h(a, n)} while preserving <KB: map τ to 〈〈τ � i, σi〉〉|τ |i=0.
Therefore M ≤ K(a, n), showing that K(a, n) ≡M in this case.

If n /∈ Ya, then rk(h(a, n)) ≤ ω · otp(L � a). Therefore

rk(min{T (ω · L)∞, h(a, n)}) ≤ ω · otp(L � a) + 1.

Since ω · otp(L � a) + 1 < ω · otp(L), by Lemma 5.12(5), K(a, n) <
M . �

The final ingredient, presented below, will allow us to compute Ya
by majorizing an appropriate function, just as we computed ∅′ by ma-
jorizing its true stage function. (For more on this topic, see Slaman
and Groszek [55] and Gerdes’s thesis [31].)

Proposition 5.13 (essentially Jockusch, McLaughlin [39, Theorem
3.1]). Given a labeled well-ordering L and a ∈ L, we can uniformly

compute an index for a Π0,L
1 -singleton {f} which is strictly increasing,

and Turing reductions witnessing that f ≡T Ya.

Proof. This result can be obtained by analyzing the reduction ATR ≤W
UCNN . Given L and a ∈ L, we can uniformly compute an index for Ya
as a Π0,L

2 -singleton. Then we define f to be the join of Ya and the
lex-minimal Skolem function F which witnesses that Ya satisfies the
Π0,L

2 predicate that we computed. We can uniformly compute an index

for f as a Π0,L
1 -singleton. Also, f computes Ya by projection.

It remains to compute an index for a Turing reduction from F to
Ya. The point is that L ⊕ Ya can compute F by exhaustive search.
Also, Ya uniformly computes Y0L = L. We conclude that Ya uniformly
computes f = Ya ⊕ F .

Finally, we replace f : N → N with the strictly increasing function
n 7→

∑
m≤n(f(m) + 1). For the new f , we can uniformly compute

indices for it as a Π0,L
1 -singleton, and Turing reductions witnessing that

f ≡T Ya. �

Proposition 5.14 (see [39, Lemma 4.9(2)]). If {f} is a Π0,L
1 -singleton

and g majorizes f , then L ⊕ g uniformly computes f .

MATH 873 F19 NOTES (IN PROGRESS) 59

Proof. This follows from König’s lemma. Think of f as the unique
path on an L-computable tree T . If g majorizes f , then the g-bounded
subtree of T is a finitely branching L-computable tree with a unique
path f . From L ⊕ g, we can compute f inductively, by waiting for all
other g-bounded strings in T to die out. �

Finally, we combine Theorem 5.6 with the above results to prove
that

Theorem 5.15 (Goh). ATR ≤W WCWO.

Proof. We reduce the version of ATR in Proposition 5.5 to WCWO.
Given a labeled well-ordering L and a ∈ L, there is some strictly in-
creasing f such that if g majorizes f , then L ⊕ g uniformly computes
Ya.

Furthermore, we may compute reductions witnessing range(f) ≤T
f ≤T Ya. From that we may compute a many-one reduction r from
range(f) to Ya+1 (the (a + 1)th column of the unique hierarchy on
(L � {b : b ≤L a}) + 1).

Next, use L to compute labels for (L � {b : b ≤L a}) + 1. Apply
Theorem 5.6 to (L � {b : b ≤L a}) + 1 (and its labels) to compute
an indecomposable well-ordering M and for each n, a well-ordering
Ln := K(a+ 1, r(n)), such that

n ∈ range(f) ⇔ r(n) ∈ Ya+1 ⇔ Ln ≡M

n /∈ range(f) ⇔ r(n) /∈ Ya+1 ⇔ Ln < M.

For the forward functional, consider the following WCWO-instance:∑
n

M and

(∑
n

Ln

)
+ 1.

Since M is indecomposable, Ln ≤ M for all n, and there are infin-
itely many n such that Ln ≡ M , it follows that

∑
n Ln has the same

ordertype as
∑

nM . Hence any WCWO-solution F must go from left to
right. Furthermore, since M is indecomposable, it has no last element,
so F must embed

∑
nM into

∑
n Ln.

For the backward functional, we start by uniformly computing any
element m0 of M . Then we use F to compute the following function:

g(n) = π0(F (〈n+ 1,m0〉)).
We show that g majorizes f . For each n, F embeds M · n into∑
i≤g(n) Li. It follows from Lemma 5.3 that at least n of the Li’s for

i ≤ g(n) must have ordertype M . That means that there must be at
least n elements in the range of f which lie below g(n), i.e., f(n) ≤ g(n).

60 MATH 873 F19 NOTES (IN PROGRESS)

Since g majorizes f , L ⊕ g uniformly computes Ya, as desired. �

It follows from Theorem 5.15 and Proposition 4.4 that

Corollary 5.16 (Goh). CWO ≡W ATR ≡W WCWO.

6. The König duality theorem

In this section, we study König’s duality theorem from the point of
view of computable reducibilities.

First we state some definitions from graph theory. A graph G is
bipartite if its vertex set can be partitioned into two sets such that
all edges in G go from one of the sets to the other. It is not hard to
see that G is bipartite if and only if it has no odd cycle. (Hence the
property of being bipartite is Π0

1.) A matching in a graph is a set of
edges which are vertex-disjoint. A (vertex) cover in a graph is a set of
vertices which contains at least one endpoint from every edge. König’s
duality theorem states that:

Theorem 6.1. For any bipartite graph G, there is a matching M and
a cover C which are dual, i.e., C is obtained by choosing exactly one
vertex from each edge in M . Such a pair (C,M) is said to be a König
cover.

König proved the above theorem for finite graphs, where it is com-
monly stated as “the maximum size of a matching is equal to the min-
imum size of a cover”. For infinite graphs, this latter form would have
little value. Instead of merely asserting the existence of a bijection, we
want such a bijection to respect the structure of the graph. Hence the
notion of a König cover. Podewski and Steffens [50] proved König’s
duality theorem for countable graphs. Finally, Aharoni [1] proved it
for graphs of arbitrary cardinality. In this course, we will only study
the theorem for countable graphs.

Definition 6.2. KDT is the following problem: given a (countable)
bipartite graph G, produce a König cover (C,M).

Note that we represent bipartite graphs as their vertex set and edge
relation. Alternatively, our representation of a bipartite graph could
also include a partition of its vertex set which witnesses that the graph
is bipartite. Even though these two representations are not computably
equivalent5, all of our results hold for either representation.

5In fact, there is a computable bipartite graph such that no computable partition
of its vertices witnesses that the graph is bipartite. This was known to Bean [4,
remarks after Theorem 7] (we thank Jeff Hirst for pointing this out.) See also Hirst
[38, Corollary 3.17].

MATH 873 F19 NOTES (IN PROGRESS) 61

Aharoni, Magidor, Shore [2] studied König’s duality theorem for
countable graphs from the point of view of reverse mathematics. They
showed that ATR0 is provable from König’s duality theorem. They
also showed that König’s duality theorem is provable in the system
Π1

1-CA0, which is strictly stronger than ATR0. Simpson [53] then closed
the gap by showing that König’s duality theorem is provable in (hence
equivalent to) ATR0.

We now translate the proof of ATR0 from König’s duality theorem
in [2] into a Weihrauch reduction from ATR to KDT. For our forward
reduction, the bipartite graphs we construct will be sequences of sub-
trees of N<N. Let us define our notation regarding trees. For us, a
rooted subtree of N<N is a subset T of N<N for which there is a unique
r ∈ T (called the root) such that:

– no proper prefixes of r lie in T ;
– for every s ∈ T , s extends r and every prefix of s which extends
r lies in T .

A rooted subtree of N<N whose root is the empty node 〈〉 is just a
prefix-closed subset of N<N.

If r ∈ N<N and R ⊆ N<N, we define r_R = {r_s : s ∈ R}. In
particular, if T ⊆ N<N is prefix-closed, then r_T is a subtree of N<N

with root r. Conversely, if a rooted subtree of N<N has root r, it is
equal to r_T for some such T . If T is prefix-closed, we sometimes refer
to a tree of the form r_T as a copy of T . (Our usage of “copy” is more
restrictive than its usage in computable structure theory.)

If T is a rooted subtree of N<N, for any t ∈ T , the subtree of T above
t is the subtree {s ∈ T : t � s} with root t.

Henceforth, we will use “tree” as a shorthand for “rooted subtree of
N<N”.

Next, we describe our backward reduction for ATR ≤W KDT. It only
uses the cover in a König cover and not the matching. First we define
a coding mechanism:

Definition 6.3. Given a tree T (with root r) and a König cover (C,M)
of T , we can decode the bit b, which is the Boolean value of r ∈ C. We
say that (C,M) codes b.

More generally, given any sequence of trees 〈Tn : n ∈ X〉 (with roots
rn) and a König cover (Cn,Mn) for each Tn, we can uniformly decode
the following set from the set 〈(Cn,Mn)〉:

A = {n ∈ X : rn ∈ Cn}.

We say that 〈(Cn,Mn)〉 codes A.

62 MATH 873 F19 NOTES (IN PROGRESS)

Note that every König cover of a disjoint union of graphs restricts
to a König cover for each graph in the disjoint union. Therefore we
will not distinguish between a König cover of the disjoint union of a
sequence of trees, and a sequence of König covers, one for each of the
trees in the sequence.

A priori, different König covers of the same tree or sequence of trees
can code different bits or sets respectively. A tree or sequence of trees
is good if that cannot happen:

Definition 6.4. A tree T is good if its root r lies in C for every König
cover (C,M) of T , or lies outside C for every König cover (C,M) of T .
A sequence of trees 〈Tn〉 is good if every Tn is good. In other words,
〈Tn〉 is good if all of its König covers code the same set.

If 〈Tn〉 is good and every (equivalently, some) König cover of 〈Tn〉
codes A, we say that 〈Tn〉 codes A.

We will use this coding mechanism to define the backward reduction
in ATR ≤W KDT. Here we make a trivial but important observation:
for any s ∈ N<N and any tree T , the König covers of T and the König
covers of s_T are in obvious correspondence, which respects whichever
bit is coded. Hence T is good if and only if s_T is good.

Next, we set up the machinery for our forward reduction. Aharoni,
Magidor, and Shore’s [2] proof of ATR0 from KDT uses effective trans-
finite recursion along the given well-ordering to construct good trees
which code complicated sets. The base case is as follows:

Lemma 6.5. Given any A ⊆ N, we can uniformly compute a sequence
of trees 〈Tn〉 which codes A.

Proof. The tree {〈〉} codes the bit 0. This is because any matching
must be empty, hence any dual cover must be empty.

The tree {〈〉, 〈0〉, 〈1〉} codes the bit 1. This is because any matching
must contain exactly one of the two edges. Hence any cover dual to
that must consist of a single node. But the root node is the only node
which would cover both edges.

By defining each Tn to be either of the above trees as appropriate,
we obtain a sequence 〈Tn〉 which codes A. �

We may use this as the base case for our construction as well. As
for the successor case, we will prove

Lemma 6.6. Given a sequence of trees 〈Ti : i ∈ N〉 (each with the
empty node as root), we can uniformly compute a sequence of trees
〈Se : e ∈ N〉 (each with the empty node as root) such that if 〈Ti〉 codes
a set A, then 〈Se〉 codes A′.

MATH 873 F19 NOTES (IN PROGRESS) 63

In order to prove the above lemma, we state a sufficient condition on
a König cover of a tree and a node in said tree which ensures that the
given König cover, when restricted to the subtree above the given node,
remains a König cover. The set of all nodes satisfying this condition
form a subtree, as follows:

Definition 6.7. For any tree T (with root r) and any König cover
(C,M) of T , define the subtree T ∗ (with root r):

T ∗ = {t ∈ T : ∀s(r ≺ s � t→ (s /∈ C ∨ (s � (|s| − 1), s) /∈M))}.

The motivation behind the definition of T ∗ is as follows. Suppose
(C,M) is a König cover of T . If s ∈ C and (s � (|s| − 1), s) ∈ M ,
then C restricted to the subtree of T above s would contain s, but M
restricted to said subtree would not contain any edge with endpoint
s. This means that the restriction of (C,M) to said subtree is not a
König cover. Hence we define T ∗ to avoid this situation.

When we use the notation T ∗, the cover (C,M) will always be clear
from context. Observe that T ∗ is uniformly computable from T and
(C,M).

Lemma 6.8 ([2, Lemma 4.5]). For any T and any König cover (C,M)
of T , define T ∗ as above. Then for any t ∈ T ∗, (C,M) restricts to a
König cover of the subtree of T (not T ∗!) above t.

Proof. It is clear that C restricts to a cover and M restricts to a match-
ing, in the subtree of T above t. It is also clear that no edge in M in
the subtree above t has both endpoints in (the restriction of) C.

It remains to show that each s ∈ C which extends t is the endpoint
of some edge in M in the subtree of T above t.

If s strictly extends t, then the desired fact follows from our assump-
tion that (C,M) is a König cover.

If s = t, that means that t ∈ C. Since t ∈ T ∗, we have that
(t � (|t| − 1), t) /∈ M . Since (C,M) is a König cover, there must be
some t′ immediately extending t such that (t, t′) ∈M , as desired. �

Using Definition 6.7 and Lemma 6.8, we may easily show that:

Proposition 6.9. Let (C,M) be a König cover of T . Suppose that
t ∈ T ∗. Let S denote the subtree of T above t. Then S∗ is the subtree
of T ∗ above t, where S∗ is calculated using the restriction of (C,M) to
S.

Next, we define a computable operation on trees which forms the
basis of the proofs of [2, Lemmas 4.9, 4.10].

64 MATH 873 F19 NOTES (IN PROGRESS)

Definition 6.10. Given a (possibly finite) sequence of trees 〈Ti〉, each
with the empty node as root, we may combine it to form a single tree
S, by adjoining two copies of each Ti to a root node r. Formally,

S = {r} ∪ {r_(i, j)_σ : σ ∈ Ti, j < 2}.

Logically, the combine operation can be thought of as ¬∀:

Lemma 6.11. Suppose 〈Ti : i ∈ X〉 combine to form S. Let r denote
the root of S, and for each i ∈ X, let ri,0 and ri,1 denote the roots
of the two copies of Ti in S (i.e., ri,0 = r_(i, 0) and ri,1 = r_(i, 1)).
Given any König cover (C,M) of S, for each i ∈ X, we can uniformly
computably choose one of ri,0 or ri,1 (call our choice ri) such that:

– ri ∈ S∗;
– r /∈ C if and only if for all i ∈ X, ri ∈ C.

Therefore if 〈Tn : n ∈ X〉 codes the set A ⊆ X, then S codes the bit 0
if and only if A = X.

Proof. Given a König cover (C,M) of S and some i ∈ X, we choose ri as
follows. If neither (r, ri,0) nor (r, ri,1) lie inM , then define ri = ri,0 ∈ S∗.

Otherwise, since M is a matching, exactly one of (r, ri,0) and (r, ri,1)
lie in M , say (r, ri,j). If r /∈ C, we choose ri = ri,1−j ∈ S∗. If r ∈ C,
note that since (r, ri,j) ∈ M , we have (by duality) that ri,j /∈ C. Then
we choose ri = ri,j ∈ S∗. This completes the definition of ri.

If r /∈ C, then for all i ∈ X and j < 2, ri,j ∈ C because (r, ri,j) must
be covered by C. In particular, ri ∈ C for all i ∈ X.

If r ∈ C, then (by duality) there is a unique i ∈ X and j < 2 such
that (r, ri,j) ∈M . In that case, we chose ri = ri,j /∈ C. �

In the above lemma, it is important to note that our choice of each
ri depends on the König cover (C,M); in fact it depends on both C
and M .

We can now use the combine operation to implement ¬.

Definition 6.12. The complement of T , denoted T , is defined by com-
bining the single-element sequence 〈T 〉.

By Lemma 6.11, if T codes the bit i, then T codes the bit 1− i.

Lemma 6.13 ([2, Lemma 4.7]). Given a sequence of trees 〈Ti : i ∈ N〉
which codes a set A ⊆ N, we can uniformly compute a sequence of trees
〈Se : e ∈ N〉 which codes A′.

MATH 873 F19 NOTES (IN PROGRESS) 65

Proof. For each e, we construct Se as follows. Observe that e ∈ A′ if
and only if

¬∀(σ, s) ∈ {(σ, s) : Φσ
e,s(e)↓}¬∀i ∈ dom(σ)[(σ(i) = 1 ∧ i ∈ A)

∨ (σ(i) = 0 ∧ ¬(i ∈ A))].

Each occurrence of ¬∀ or ¬ corresponds to one application of the com-
bine operation in our construction of Se.

Formally, for each finite partial σ : N → 2 and i ∈ dom(σ), define
T σi = Ti if σ(i) = 1, otherwise define T σi = Ti. Now, for each σ and s
such that Φσ

e,s(e)↓, define Tσ,s by combining 〈T σi : i ∈ dom(σ)〉. Finally,
combine 〈Tσ,s : Φσ

e,s(e)↓〉 to form Se. �

Theorem 6.14. ATR ≤W KDT.

Proof. Given a labeled well-ordering L and a set A, we will use (L ⊕
A)-effective transfinite recursion on L to define an (L ⊕ A)-recursive
function f : L→ ω such that for each b ∈ L, ΦL⊕Af(b) is interpreted as a

sequence of trees 〈T bn〉n (each with the empty node as root). We will
show that 〈T bn〉n codes the bth column of the jump hierarchy on L which
starts with A.

For the base case, we use Lemma 6.5 to compute a sequence of trees
〈T 0L

n 〉n which codes A. Otherwise, for b >L 0L, we use Lemma 6.13 to
compute a sequence of trees 〈T bn〉n such that if for each a <L b, ΦL⊕Af(a) is

(interpreted as) a sequence of trees 〈T an 〉n which codes Ya, then 〈T bn〉n
codes

(⊕
a<Lb

Ya
)′

.

We may view the disjoint union of 〈〈T bn〉n〉b∈L as a KDT-instance.
This defines the forward reduction from ATR to KDT.

For the backward reduction, let 〈〈(Cb
n,M

b
n)〉n〉b∈L be a solution to

the above KDT-instance. We may uniformly decode said solution to
obtain a sequence of sets 〈Yb〉b∈L.

By transfinite induction along L using Lemmas 6.5 and 6.13, 〈T bn〉n
is good for all b ∈ L, and 〈Yb〉b∈L is the jump hierarchy on L which
starts with A. �

Do we have KDT ≤W ATR as well? It turns out this is far from true.
In order to prove this, we need to discuss how we represent trees. The
usual way to represent a tree (at least in computable structure theory)
is by a pair (e,X), where ΦX

e is total and defines a subset of N<N which
is a tree.

Instead, we use an alternative representation. For each r ∈ N<N,
e ∈ N and X ⊆ N, (r, e,X) is a name for the following tree T with root
node r: r_σ ∈ T if and only if for all k < |σ|, ΦX

e,k+maxi<k σ(i)(σ � k)↓= 1.

66 MATH 873 F19 NOTES (IN PROGRESS)

This representation clearly reduces to the usual representation. The
converse may not hold (I don’t have a proof that it does not), but they
yield equivalent versions of KDT.

Proposition 6.15. The strong Weihrauch degree of KDT for sequences
of trees is the same regardless of which of the above two representations
we use.

Proof. It suffices to prove the desired statement for KDT for trees.
Suppose we are given some (e,X) such that ΦX

e is a tree (with empty
node as root).

We define another tree T with empty node as root as follows. For
each σ such that ΦX

e (σ)↓= 1, define a string σ′ as follows: for k <
|σ|, σ′(k) is defined to be 〈σ(k), s〉, where s is the least stage such
that ΦX

e,s(σ � (k + 1)) ↓= 1. It is clear that we can enumerate T
sufficiently quickly. For example, for each σ′, we can decide by stage
|σ′|+ maxk<|σ′| π1(σ′(k)) whether it should be enumerated into T .

Observe that there is a uniformly computable isomorphism from T
to ΦX

e : map each σ′ in T to the string σ, defined by σ(k) = π0(σ′(k))
for each k < |σ′|. Given a König cover of T , we can uniformly compute
a König cover of ΦX

e via this isomorphism. �

The advantage of our representation is that every (r, e,X) names
some tree.

Definition 6.16. A representation δ :⊆ NN → X is total if dom(δ) =
NN.

Since we can interpret every p ∈ NN as some (r, e,X), our represen-
tation of trees is total.

Observe that our reduction from ATR to KDT can be modified to
work with our alternative representation of trees. (For example, in the
proof of Lemma 6.5, in order to code that n ∈ A, we should use the
tree {〈〉, 〈s〉, 〈s+ 1〉}, where s is the stage at which n enters A.)

We are ready to prove:

Theorem 6.17 ([2, Theorem 4.12]). There is a computable bipartite
graph G such that every König cover of G computes every hyperarith-
metic set.

Proof. For any e which is an index for a computable well-ordering Le,
we have showed how to uniformly construct a sequence of trees which
code the jump hierarchy on Le.

The point is that even if e is an index for a computable ill-founded
linear ordering, we can still perform the above construction. Since our

MATH 873 F19 NOTES (IN PROGRESS) 67

representation is total, we obtain a sequence of trees in any case. (We
can no longer show by induction that the resulting trees are good, but
that does not matter.)

Then, take the disjoint union of the sequences of the trees produced
above. Apply KDT to obtain a König cover for each tree. For sequences
of trees which are produced from well-orderings Le, their König covers
code the jump hierarchy on Le. Hence the entire sequence of König
covers computes every hyperarithmetic set. �

Corollary 6.18. KDT 6≤c ATR, hence KDT 6≤W ATR.

Proof. Every computable instance of ATR has a hyperarithmetic solu-
tion, while the above theorem shows that there is a computable instance
of KDT with no hyperarithmetic solution. �

7. Interlude: Two-sided problems

Many of the problems we have considered thus far have domains
which are Π1

1. For instance, the domain of CWO is the set of pairs of
well-orderings. In that case, being outside the domain is a Σ1

1 prop-
erty. Now, any Σ1

1 property can be thought of as a problem whose
instances are sets satisfying said property and solutions are sets which
witness that said property holds. This suggests that we combine a
problem which has a Π1

1 domain with the problem corresponding to
the complement of its domain.

One obvious way to combine such problems is to take their union.
For example, a “two-sided” version of ATR could map a well-ordering
to a jump hierarchy on it, and map an ill-founded linear ordering to an
infinite descending sequence in it. We will not consider such problems
here, because they are not Weihrauch reducible (or even arithmetically
Weihrauch reducible) to CNN . (Any such reduction could be used to
give a Σ1

1 definition for the set of indices of pairs of well-orderings. See
also Brattka, de Brecht, Pauly [6, Theorem 7.7].) On the other hand,
it is not hard to see that all of the problems that we have considered
thus far, including KDT, are Weihrauch reducible to CNN .

However, some ill-founded linear orderings support jump hierarchies
(known as pseudohierarchies)! This suggests the following two-sided
version of ATR.

Definition 7.1. ATR2 is the following problem: given a linear ordering
L and a set A ⊆ N, either produce an infinite <L-descending sequence
S, or a jump hierarchy 〈Xa〉a∈L on L which begins with A. In either
case we indicate which type of solution we produce.

68 MATH 873 F19 NOTES (IN PROGRESS)

Observe that ATR2 is Weihrauch reducible to CNN , because it is de-
fined by an arithmetical predicate.

We defer the study of other basic properties of ATR2 to a later sec-
tion.

8. Reducing ATR2 to KDT

Our forward reduction from ATR2 to KDT will be the same as that
from ATR to KDT. By “effective transfinite recursion” along a given
linear ordering L, we may construct trees 〈T bn〉b∈L,n∈N as before.

If L is ill-founded, there may be some a ∈ L and i ∈ N such that
T ai is not good, i.e., there may be some r, s ∈ N<N and some König
covers of r_T ai and s_T ai which code different bits. In order to salvage
the situation, we will check for such inconsistencies in the backward
reduction. If they are present, we use them to compute an infinite
<L-descending sequence.

Before doing so, we need to state a more general and more informa-
tive version of [2, Lemma 4.7]. The construction is the same as that in
the proof of Lemma 6.13.

Lemma 8.1. Given a sequence of trees 〈Ti : i ∈ N〉 (each with the
empty node as root), we can uniformly compute a sequence of trees
〈Se : e ∈ N〉 (each with the empty node as root) such that given a
König cover (Ce,Me) of Se, we can uniformly compute a sequence of
sets of nodes 〈Re,i〉i in S∗e such that

(1) each r ∈ Re,i has length two or three;
(2) for each i and each r ∈ Re,i, the subtree of Se above r is r_Ti;
(3) if the set A ⊆ N is such that

i ∈ A ⇒ Re,i ⊆ Ce

i /∈ A ⇒ Re,i ⊆ Ce,

then e ∈ A′ if and only if the root of Se lies in Ce.

Therefore, if 〈Ti〉 codes a set A, then 〈Se〉 codes A′.

There are several things to point out regarding the statement of the
above lemma:

(1) For each e and i, instead of choosing a single node ri as in
Lemma 6.11, we now have to choose a set of nodes Re,i. This
is because we might want to copy the tree Ti more than twice,
at multiple levels of the tree Se. If Ti is not good, these copies
could code different bits (according to appropriate restrictions
of (Ce,Me)), so we could have Re,i 6⊆ Ce and Re,i 6⊆ Ce. In that

MATH 873 F19 NOTES (IN PROGRESS) 69

case, we have little control over whether the root of Se lies in
Ce.

(2) Conclusion (1) will not be needed for our subsequent proofs. It
is easily observed from the proof of Lemma 6.13.

(3) In the premise of conclusion (3), we write ⇒ instead of ⇔ be-
cause writing ⇔ would require us to specify separately that we
do not restrict whether i ∈ A in the case that Re,i is empty.
(In the proof of the above lemma, Re,i could be empty if the
construction of Se does not involve Ti at all.)

Suppose that we are given a König cover (Cb
n,M

b
n) of T bn. Then we

can apply the above lemma to compute, for each a <L b and i ∈ N, a
set of nodes Ra

n,i in (T bn)∗ such that:

– for each r ∈ Ra
n,i, the subtree of T bn above r is r_T ai ;

– if for each i, either Ra
n,i ⊆ Cb

n or Ra
n,i ⊆ Cb

n, then (Cb
n,M

b
n) codes

the nth bit of (
⊕

a Ya)
′, where for each a,

Ya = {i ∈ N : Ra
n,i ⊆ Cb

n}.

Next, we define the sets Rb,a
n,i as follows:

Definition 8.2. Fix a labeled linear ordering L and use the forward
reduction in Theorem 6.14 to compute 〈〈T bn〉n〉b∈L. For each n and b,
fix a König cover (Cb

n,M
b
n) of T bn. For each a <L b and each i, n ∈ N,

we define a set of nodes Rb,a
n,i in T bn as follows: Rb,a

n,i is the set of all r for
which there exist j ≥ 1 and

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r in T bn
b = c0 >L c1 >L · · · >L cj = a in L
n = i0 , i1 , · · · , ij = i in N

such that for all 0 < l ≤ j, rl lies in Rcl
il−1,il

as calculated by applying

Lemma 6.13 to (Cb
n,M

b
n) restricted to the subtree of T bn above rl−1.

We make two easy observations about Rb,a
n,i:

(1) By induction on l, rl lies in (T bn)∗ and the subtree of T bn above

rl is rl
_T clil . In particular, for each r ∈ Rb,a

n,i, r ∈ (T bn)∗ and the

subtree of T bn above r is r_T ai .

(2) Rb,a
n,i is uniformly c.e. in L ⊕ (Cb

n,M
b
n). (A detailed analysis

shows that Rb,a
n,i is uniformly computable in L ⊕ (Cb

n,M
b
n), but

we do not need that.)

70 MATH 873 F19 NOTES (IN PROGRESS)

Definition 8.3. In the same context as the previous definition, we say
that a ∈ L is consistent if for all i ∈ N:

the root of T ai ∈ Ca
i ⇒ Rb,a

n,i ⊆ Cb
n for all b >L a, n ∈ N

the root of T ai /∈ Ca
i ⇒ Rb,a

n,i ⊆ Cb
n for all b >L a, n ∈ N.

Observe that if T ai is good for all i, then observation (1) above implies
that a is consistent, regardless of what 〈(Cb

n,M
b
n)〉b,n may be. However,

unless L is well-founded, we cannot be certain that T ai is good. Con-
sistency is a weaker condition which suffices to ensure that we can still
obtain a jump hierarchy on L, as we show in Corollary 8.6. We will
also show that inconsistency cannot come from nowhere, i.e., if b0 is in-
consistent, then there is some b1 <L b0 which is inconsistent, and so on,
yielding an infinite <L-descending sequence of inconsistent elements.

Furthermore, consistency is easy to check: by observation (2) above,
whether a is consistent is Π0

1 (in L ⊕ 〈(Cb
n,M

b
n)〉b,n).

We prove two lemmas that will yield the desired result when com-
bined:

Lemma 8.4. Fix König covers 〈(Cb
n,M

b
n)〉b,n for 〈T bn〉b,n. Now fix n

and b. Suppose that for each a <L b, the set Ya ⊆ N is such that

i ∈ Ya ⇒ Rb,a
n,i ⊆ Cb

n

i /∈ Ya ⇒ Rb,a
n,i ⊆ Cb

n.

Then for each n, n ∈
(⊕

a<Lb
Ya
)′

if and only if the root of T bn lies in

Cb
n. In other words, (Cb

n,M
b
n) codes the nth bit of

(⊕
a<Lb

Ya
)′

.

Proof. Recall that 〈T bn〉n∈N is computed by applying Lemma 6.13 to

〈〈T an 〉n∈N〉a<Lb. By definition of Rb,a
n,i, R

a
n,i (as obtained from Lemma

6.13) is a subset of Rb,a
n,i (this is the case j = 1). So for all a <L b,

i ∈ Ya ⇒ Ra
n,i ⊆ Rb,a

n,i ⊆ Cb
n

i /∈ Ya ⇒ Ra
n,i ⊆ Rb,a

n,i ⊆ Cb
n.

The desired result follows from Lemma 6.13(3). �

Lemma 8.5. Fix König covers 〈(Cc
m,M

c
m)〉c,m for 〈T cm〉c,m. Now fix m

and b <L c. Suppose that for each a <L b, the set Ya ⊆ N is such that

i ∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m

i /∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m.

MATH 873 F19 NOTES (IN PROGRESS) 71

Then for all n ∈ N,

n ∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m

n /∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m.

Proof. If Rc,b
m,n is empty, then the desired result is vacuously true. Oth-

erwise, consider r ∈ Rc,b
m,n. As we observed right after Definition 8.2,

r ∈ (T cm)∗ and the subtree of T cm above r is r_T bn. T bn was constructed
by applying Lemma 6.13 to 〈〈T an 〉n∈N〉a<Lb, so we can use the restriction
of (Cc

m,M
c
m) to r_T bn to compute sets 〈Ra

n,i〉a<Lb,i∈N of nodes in (r_T bn)∗

satisfying the conclusions of Lemma 6.13.
We claim that for all a <L b, R

a
n,i ⊆ Rc,a

m,i.

Proof of claim. Consider s ∈ Ra
n,i. We know that s extends r and

r ∈ Rc,b
m,n. Fix j ≥ 1 and

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r in T cm
c = c0 >L c1 >L · · · >L cj = b in L
m = i0 , i1 , · · · , ij = n in N

which witness that r ∈ Rc,b
m,n. Then we can append one column:

〈〉 = r0 ≺ r1 ≺ · · · ≺ rj = r ≺ rj+1 = s in T cm
c = c0 >L c1 >L · · · >L cj = b >L cj+1 = a in L
m = i0 , i1 , · · · , ij = n , ij+1 = i in N

Since s ∈ Ra
n,i, this witnesses that s ∈ Rc,a

m,i. �

By our claim, we have that

i ∈ Ya ⇒ Ra
n,i ⊆ Rc,a

m,i ⊆ Cc
m

i /∈ Ya ⇒ Ra
n,i ⊆ Rc,a

m,i ⊆ Cc
m.

By Lemma 6.13(3), n ∈
(⊕

a<Lb
Ya
)′

if and only if r ∈ Cc
m. This

concludes the proof. �

Putting the previous two lemmas together, we obtain

Corollary 8.6. Fix König covers 〈(Cb
n,M

b
n)〉b,n for 〈T bn〉b,n. For each

b ∈ L, define Yb by decoding 〈(Cb
n,M

b
n)〉n, i.e.,

Yb = {n ∈ N : the root of T bn lies in Cb
n}.

If all a <L b are consistent, then b is consistent and Yb =
(⊕

a<Lb
Ya
)′

.

72 MATH 873 F19 NOTES (IN PROGRESS)

Proof. 0L is consistent because every T 0L
n is good (as constructed in

the proof of Lemma 6.5). Consider now any b >L 0L. Every a <L b is
consistent, so for all a <L b:

i ∈ Ya ⇒ Rc,a
m,i ⊆ Cc

m for all c >L a,m ∈ N
i /∈ Ya ⇒ Rc,a

m,i ⊆ Cc
m for all c >L a,m ∈ N.

By Lemma 8.4, Yb =
(⊕

a<Lb
Ya
)′

.
Also, by Lemma 8.5, for all n ∈ N:

n ∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m for all c >L b,m ∈ N

n /∈

(⊕
a<Lb

Ya

)′
⇒ Rc,b

m,n ⊆ Cc
m for all c >L b,m ∈ N.

It follows that b is consistent. �

We are finally ready to construct a reduction from ATR2 to KDT.

Theorem 8.7 (Goh). ATR2 ≤W LPO ∗ KDT. In particular, ATR2 ≤c
KDT and ATR2 ≤arith

W KDT.

Proof. Given a labeled linear ordering L and a set A, we apply the for-
ward reduction in Theorem 6.14 to produce some KDT-instance 〈T bn〉b,n.
For the backward reduction, given a KDT-solution 〈〈(Cb

n,M
b
n)〉n〉b∈L, we

start by uniformly decoding it to obtain a sequence of sets 〈Yb〉b∈L.

Next, since Rb,a
n,i is uniformly c.e. in L ⊕ (Cb

n,M
b
n), whether some

a ∈ L is inconsistent is uniformly c.e. in L ⊕ 〈(Cb
n,M

b
n)〉b,n. Therefore

we can use LPO to determine whether every a ∈ L is consistent.
If so, by Corollary 8.6, 〈Yb〉b∈L is a jump hierarchy on L which starts

with A.
If not, by Corollary 8.6, every inconsistent element is preceded by

some other inconsistent element. Since whether some a ∈ L is incon-
sistent is uniformly c.e. in L⊕ 〈(Cb

n,M
b
n)〉b,n, we can use it to compute

an infinite <L-descending sequence of inconsistent elements. �

9. A proof of KDT

In this section, we present a proof of KDT, following Aharoni, Magi-
dor, Shore [2]. Fix a countable bipartite graph G, with sides X and
Y .

First of all, it will be helpful to think of our matchings as going
in certain directions: we say that F is a matching from A into B if
every vertex in A is matched to some vertex in B. Note that F is an

MATH 873 F19 NOTES (IN PROGRESS) 73

injection from A into B, so for each x, we will denote the vertex which
is matched to x by F (x). The overall strategy consists of two steps:

(1) construct some A∗ ⊆ X and a matching from A∗ into D ⊆ Y ;
(2) construct some matching from Y −D into X − A∗.

Clearly the union of the above two matchings is itself a matching.
As for the cover, we take the union of A∗ and Y − D. In order for
A∗ ∪ (Y −D) to cover G, we will choose D to be the set of all vertices
whose neighbors all lie in A∗. We set up notation for that: for each
vertex x, we denote its set of neighbors by NG(x). For each set A of
vertices in X, we define the demand of A, denoted DG(A), to be the
set of all vertices whose neighbors all lie in A, i.e.,

DG(A) = {y ∈ Y : NG(y) ⊆ A}.

The set D in the strategy above is in fact DG(A∗).
Just to get ourselves thinking about the definition, here are some

properties:

– if A ⊆ B ⊆ X, then DG(A) ⊆ DG(B);
– if {x, y} ∈ E andA ⊆ X does not contain x, thenDG−{x,y}(A) ⊇
DG(A).

One good reason to consider the demand set is to allow us to build
matchings step by step. As we match more and more vertices, how do
we ensure we do not get stuck? By always staying within the demand
set of our domain thus far.

Proposition 9.1. Suppose that we have a class {(Aα, Fα)} where each
Aα is a set of vertices (possibly infinite) and Fα is a matching from Aα
into DG(Aα). Then there is a matching F from

⋃
Aα into

⋃
DG(Aα)

(which, by the way, is contained in DG (
⋃
Aα)).

Proof. Define F by matching each x to Fα(x), where α is least such
that x ∈ Aα. We show that F is a matching: suppose that F (x0) =
y = F (x1). Suppose that xi first appears in Aαi

for i = 0, 1. Then
Fα0(x0) = y = Fα1(x1).

Since Fα0(x0) = y, we have y ∈ DG(Aα0). That means that NG(y) ⊆
Aα0 . Similarly, NG(y) ⊆ Aα1 . But x0, x1 ∈ NG(y), so x0, x1 ∈ Aα0 ∩
Aα1 . It follows that x0 and x1 first appear in the same Aα (i.e., α0 =
α1). Since Fα is a matching, we conclude that x0 = x1 as desired. �

This gives us a way to implement step (1) in our strategy: simply
combine all pairs (A,F) such that A ⊆ X and F is a matching from A
into DG(A). This gives us a matching F ∗ from A∗ into DG(A∗).

74 MATH 873 F19 NOTES (IN PROGRESS)

We move on to step (2), where we have to construct a matching from
Y ∗ := Y −DG(A∗) into X∗ := X − A∗. We will do a clever inductive
construction preserving the following property:

Proposition 9.2. For all A ⊆ X and all matchings F : A→ DG(A),
every y ∈ DG(A) ∩ Y ∗ is matched by F .

Proof. By maximality of A∗, we have A ⊆ A∗. Therefore, DG(A) ⊆
DG(A∗) which implies that DG(A) ∩ Y ∗ is empty. �

In the following, we will consider (induced) subgraphs G′ of G ob-
tained by removing finitely many vertices from Y ∗ and X∗. We will
denote the sides of G′ by X ′ and Y ′. Note that for all such G′, we have
A∗ ⊆ X ′ and DG(A∗) ⊆ Y ′.

Definition 9.3. We say that G′ is good if for all A ⊆ X ′ and all
matchings F : A→ DG′(A), every y ∈ DG′(A) ∩ Y ∗ is matched by F .

The previous proposition states that G is good. The definition of
goodness and our matching F ∗ was carefully chosen to have the follow-
ing combinatorial property:

Lemma 9.4. Suppose that G′ is good. Then for all y ∈ Y ′ ∩ Y ∗, there
is some x ∈ X∗ ∩NG′(y) such that G′ − {x, y} is still good.

Now we may construct the desired matching from Y ∗ into X∗ by
repeatedly applying Lemma 9.4. To prove König’s duality theorem, it
remains to prove Lemma 9.4.

The following sub-lemma suffices to prove Lemma 9.4.

Lemma 9.5. Suppose G′ is good and x ∈ X ′∩X∗ and y ∈ Y ′∩Y ∗ are
such that G′ − {x, y} is not good. Then there is A′ ⊆ X ′ containing x,
and a matching F ′ from A′ into DG′(A

′) which leaves y unmatched.

Proof of Lemma 9.4 using Lemma 9.5. We prove the contrapositive. Sup-
pose that there is y ∈ Y ′ ∩ Y ∗ such that for all x ∈ X∗ ∩ NG′(y),
G′ − {x, y} is not good. We show that G′ is not good.

First, we claim that for all x ∈ NG′(y), there is a pair (Ax, Fx) such
that Ax ⊆ X ′, Ax contains x, and Fx is a matching from Ax into
DG′(Ax) which leaves y unmatched.

If x ∈ X∗, then this is exactly the conclusion of Lemma 9.5. On the
other hand, if x ∈ X ′−X∗ ⊆ A∗, then by definition of A∗, there is a pair
(Ax, Fx) such that Ax ⊆ A∗, Ax contains x, and Fx is a matching from
Ax into DG(Ax). We show that (Ax, Fx) satisfies the desired properties.

First note that Ax ⊆ A∗ ⊆ X ′. Also, DG(Ax) ⊆ DG(A∗) ⊆ Y ′.
Therefore DG(Ax) ⊆ DG′(A

∗). Finally, we note that y is unmatched:

MATH 873 F19 NOTES (IN PROGRESS) 75

this is because the range of Fx is contained in DG(Ax) ⊆ DG(A∗), but
y lies in Y ∗ = Y −DG(A∗).

This completes the proof of the claim. Now, use Proposition 9.1 to
combine (Ax, Fx) for all x ∈ NG′(y) into some (A,F). Then (A,F)
witnesses that G′ is not good: it is easy to see that A ⊆ X ′, the range
of F lies in DG′(A), and that y is not matched by F . One only needs
to check that y ∈ DG′(A), which holds because A contains NG′(y). �

Finally, we prove Lemma 9.5, which is where the actual combina-
torics happens. We will use the machinery of alternating paths. For
any graph G and any matching F in G, an F -alternating path is a finite
path in G such that alternate edges lie in F . If both the start and end
vertices of an F -alternating path are not matched by F , then the path
is said to be F -augmenting.

If we have an augmenting path for a matching, then said matching
can be expanded by taking its symmetric difference with the augment-
ing path. The new matching will match all of the vertices which were
previously matched, plus the start and end vertices of the augmenting
path.

Proof of Lemma 9.5. Since G′ − {x, y} is not good, there is A ⊆ X ′ −
{x}, a matching F fromA intoDG′−{x,y}(A), and some y∗ ∈ DG′−{x,y}(A)∩
Y ∗ which is not matched by F . We define A′ = A∪{x}. We have to con-
struct a matching F ′ from A′ into DG′(A

′) which leaves y unmatched.
Suppose that we have an F -alternating path in G′ from y∗ to x. Note

that neither y∗ nor x are matched by F . Let F ′ be the augmentation of
F using such a path. Since y∗ lies in DG′−{x,y}(A), the range of F ′ still
lies in DG′−{x,y}(A), which is contained in DG′(A

′). Also, y remains
unmatched by F ′. Hence F ′ is as desired.

It remains to show that there is indeed an F -alternating path in G′

from y∗ to x. To prove this, let S be the set of all x′ ∈ X ′−{x} which
can be reached via an F -alternating path in G′ − {x, y} starting from
y∗, and let T be the set of all y′ ∈ Y ′ − {y} which can be reached
via an F -alternating path in G′−{x, y} starting from y∗. Observe the
following:

– S ⊆ A, because y∗ ∈ DG′−{x,y}(A) and range(F) ⊆ DG′−{x,y}(A);
– y∗ ∈ T ⊆ DG′−{x,y}(S);
– F � S is a matching from S into T .

If T were to be a subset of DG′(S), then S, F � S, and y∗ ∈ T ⊆ DG′(S)
would witness that G′ is not good, contradicting our assumption. Fix
y′ ∈ T −DG′(S). Since y′ ∈ DG′−{x,y}(S), it follows that y′ is adjacent
to x in G′. This allows us to construct the desired F -alternating path:

76 MATH 873 F19 NOTES (IN PROGRESS)

first take an F -alternating path in G′−{x, y} from y∗ to y′, then extend
the path by adding the edge from y′ to x. �

9.1. Proof of KDT in Π1
1-CA0. Aharoni, Magidor, Shore [2] showed

how to carry out the above proof in Π1
1-CA0. There are three places

in the proof which deserve our attention (the rest of the proof can be
carried out in ACA0):

(1) in step (1) of our strategy, obtaining the set of all pairs (A,F)
such that A ⊆ X and F is a matching from A into DG(A);

(2) in the proof of Lemma 9.4 using Lemma 9.5, obtaining the set
of all pairs (Ax, Fx) satisfying certain conditions;

(3) in the proof of the theorem by induction on Lemma 9.4.

In (1), the immediate issue is that the set of all pairs (A,F) such
that A ⊆ X and F is a matching from A into DG(A) is uncountable.
We can work around that. First use Π1

1-CA0 to define the set

A∗ = {x ∈ X : there is A 3 x and a matching F : A→ NG(A)}.
Then use Σ1

1-AC0 to obtain some

{(Ax, Fx) : x ∈ A∗, x ∈ Ax, Fx : Ax → NG(Ax)},
which we may then combine to obtain F ∗ : A∗ → NG(A∗).

(2) is also an application of Σ1
1-AC0.

In (3), we can use Π1
1-CA0 to obtain the set

{{x0, . . . , xn, y0, . . . , yn} : G− {x0, . . . , xn, y0, . . . , yn} is good}.
We then do recursion to construct a matching of Y ∗ into X∗.

9.2. Countable coded ω-models, proof of KDT in ATR0.

Definition 9.6 (RCA0). A countable coded ω-model is a set M ⊆ N,
whose columns encode the second-order part of an L2-structure.

Recursive comprehension with parameter M ensures that the set
of L2-sentences ϕ with parameters from M exists. For any such ϕ,
we say that a valuation for ϕ is a Boolean function f on the set of
L2-sentences ψ which are substitution instances of subformulas of ϕ,
satisfying certain properties, such as f(∀Xψ(X)) = 1 iff f(ψ((M)n)) =
1 for all n ∈ N.

We say that M satisfies ϕ if there exists a valuation f for ϕ such
that f(ϕ) = 1.

ACA0 suffices to ensure that valuations exist for every ϕ.

Theorem 9.7 (Simpson). ATR0 proves that for any G ⊆ N, there is a
countable coded ω-model M satisfying Σ1

1-AC0, such that G ∈M.

MATH 873 F19 NOTES (IN PROGRESS) 77

With the above result on countable coded ω-models of Σ1
1-AC0 on

hand, we describe how to carry out the proof of König’s duality theorem
in ATR0.

Working in ATR0, take M as above which contains our countable
bipartite graph G. Now, we will relativize the constructions in the pre-
vious proof and the notion of goodness toM. To start off, consider the
set of all pairs (A,F) ∈M such that A ⊆ X and F is a matching from
A into DG(A). Magic happens: this set is definable from a code of M
(we can quantify over columns of the code), and hence exists by ACA0

(in the ambient theory of ATR0!) Therefore, we can combine those
(A,F) to obtain a matching F ∗ from A∗ into DG(A∗). Of course, F ∗ is
only maximal “relative to M”, but that will suffice for our purposes.
This completes step (1) of our strategy. Next,

Definition 9.8. We say that G′ is M-good if for all A ⊆ X ′ and
all matchings F : A → DG′(A) such that (A,F) ∈ M, every y ∈
DG′(A) ∩ Y ∗ is matched by F .

The maximality of F ∗ relative to M is enough to ensure that G is
M-good!

Lemma 9.9. Suppose G′ is M-good and x ∈ X ′ ∩ X∗ and y ∈ Y ′ ∩
Y ∗ are such that G′ − {x, y} is not M-good. Then there is A′ ⊆ X ′

containing x, and a matching F ′ from A′ into DG′(A
′) which leaves y

unmatched, such that (A′, F ′) ∈M.

The proof proceeds as before, using alternating paths. M satisfies
ACA0, which is enough to ensure that the various sets in the proof lie
in M.

Lemma 9.10. Suppose that G′ is M-good. Then for all y ∈ Y ′ ∩ Y ∗,
there is some x ∈ X∗ ∩NG′(y) such that G′ − {x, y} is still M-good.

As before, we prove the contrapositive of Lemma 9.10. Assume that
there is y ∈ Y ′∩Y ∗ such that for all x ∈ X∗∩NG′(y), G′−{x, y} is not
M-good. We may show that for each x ∈ NG′(y), there is (A,F) ∈M
such that A ⊆ X ′ contains x and F : A→ NG′(A) leaves y unmatched.

We then use Σ1
1-AC0 inM to show that some set of choices {(Ax, Fx) :

x ∈ NG′(y)} lies in M. Combining them, we obtain some F : A →
NG′(A) inM which leaves y unmatched. This witnesses that G′ is not
M-good.

Finally, we prove KDT by induction on Lemma 9.10. The set of G′

which is M-good is arithmetic (in M), so ACA0 suffices to complete
the induction.

78 MATH 873 F19 NOTES (IN PROGRESS)

10. Reducing KDT to ATR2

In this section, we prove that KDT is arithmetically Weihrauch re-
ducible to ATR2. Our basic strategy is to follow Simpson’s proof of
KDT in ATR0.

Consider the following problem: given a set G, produce a countable
coded ω-model of Σ1

1-AC which contains G.

Theorem 10.1 (Goh). The above problem is arithmetically Weihrauch
reducible to ATR2.

Definition 10.2. Let L be a linear ordering. I ⊆ L is a cut if:

– I is downward-<L-closed;
– I has no <L-largest element;
– the complement of I has no <L-least element.

I ⊆ L is a proper cut if I is a proper subset of L.

The following result is extracted from the proof of Simpson [53,
Lemma 1].

Lemma 10.3. If 〈Xa〉a∈L is a jump hierarchy on L which does not
compute any proper cut of L and I is a proper cut of L, then the
countable coded ω-modelM = {A : ∃a ∈ I(A ≤T Xa)} satisfies Σ1

1-AC.

Proof. Suppose we are given an arithmetic predicate ϕ(n, Y) which is
an instance of Σ1

1-AC in M. For each n, we claim that there is some
<L-least an ∈ I such that Xan computes a solution to ϕ(n, ·). Fix
b ∈ L\I and consider the set

S = {a <L b : Xa computes a solution to ϕ(n, ·)}.
SinceM contains a solution to ϕ(n, ·), S intersects I. Also, as long as
we fix b small enough, S is computable in 〈Xa〉a∈L. Hence (L � b)\S is
also computable in 〈Xa〉a∈L. It follows that (L � b)\S is not a proper
cut in L.

There are two possibilities: either S has a <L-least element, in which
case we are done, or (L � b)\S has a <L-largest element. The lat-
ter case cannot happen because there would then be a computable
<L-descending sequence, contradicting a theorem of Friedman which
states that any linear ordering which supports a jump hierarchy has no
hyperarithmetic descending sequence.

We conclude that for each n, there must be some <L-least an ∈ I
such that Xan computes a solution to ϕ(n, ·).

Next, since I is a proper cut, for any a ∈ I and b ∈ L\I, Xb computes
every Xa-hyperarithmetic set. Therefore if b ∈ L\I, then Xb computes
(an)n∈ω.

MATH 873 F19 NOTES (IN PROGRESS) 79

Hence (an)n∈ω is not cofinal in I, otherwise I would be computable
in X ′b for every b ∈ L\I, which implies that I is computable in 〈Xa〉a∈L.
Fix b ∈ I which bounds (an)n∈ω. Then there is a Σ1

1-AC-solution to ϕ
which is arithmetic in Xb (and hence lies in M), as desired. �

References

[1] Ron Aharoni. König’s duality theorem for infinite bipartite graphs. J. London
Math. Soc. (2), 29(1):1–12, 1984.

[2] Ron Aharoni, Menachem Magidor, and Richard A. Shore. On the strength of
König’s duality theorem for infinite bipartite graphs. J. Combin. Theory Ser.
B, 54(2):257–290, 1992.

[3] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical
hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[4] Dwight R. Bean. Effective coloration. J. Symbolic Logic, 41(2):469–480, 1976.
[5] Vasco Brattka. Computability over topological structures. In Computability

and models, Univ. Ser. Math., pages 93–136. Kluwer/Plenum, New York, 2003.
[6] Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a

uniform low basis theorem. Annals of Pure and Applied Logic, 163:986–1008,
2012.

[7] Vasco Brattka and Guido Gherardi. Effective choice and boundedness prin-
ciples in computable analysis. The Bulletin of Symbolic Logic, 17(1):73–117,
2011.

[8] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles
and weak computability. The Journal of Symbolic Logic, 76(1):143–176, 2011.

[9] Vasco Brattka and Guido Gherardi. Weihrauch goes Brouwerian. arXiv
1809.00380, 2018.

[10] Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-
Weierstrass theorem is the jump of weak Kőnig’s lemma. Annals of Pure and
Applied Logic, 163:623–655, 2012.

[11] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in
computable analysis. arXiv 1707.03202, 2017.

[12] Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform
computational content of computability theory. Theory of Computing Systems,
61(4):1376–1426, 2017.

[13] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch de-
grees. Logical Methods in Computer Science, 14(4:4):1–36, 2018.

[14] Vasco Brattka and Gero Presser. Computability on subsets of metric spaces.
volume 305, pages 43–76. 2003. Topology in computer science (SchloßDagstuhl,
2000).

[15] Vasco Brattka and Tahina Rakotoniaina. On the uniform computational con-
tent of Ramsey’s theorem. Journal of Symbolic Logic, 82(4):1278–1316, 2017.

[16] Keh Hsun Chen. Recursive well-founded orderings. Ann. Math. Logic,
13(2):117–147, 1978.

[17] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength
of Ramsey’s theorem for pairs. J. Symbolic Logic, 66(1):1–55, 2001.

80 MATH 873 F19 NOTES (IN PROGRESS)

[18] Chi Tat Chong and Liang Yu. Recursion theory, volume 8 of De Gruyter Series
in Logic and its Applications. De Gruyter, Berlin, 2015. Computational aspects
of definability, With an interview with Gerald E. Sacks.

[19] Caleb Davis, Denis R. Hirschfeldt, Jeffry L. Hirst, Jake Pardo, Arno Pauly,
and Keita Yokoyama. Combinatorial principles equivalent to weak induction.
arXiv 1812.09943, 2018.

[20] Hannes Diener. Constructive Reverse Mathematics. arXiv 1804.05495, 2018.
[21] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti,

and Paul Shafer. On uniform relationships between combinatorial problems.
Transactions of the American Mathematical Society, 368(2):1321–1359, 2016.

[22] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and
complexity. Theory and Applications of Computability. Springer, New York,
2010.

[23] Damir D. Dzhafarov. Cohesive avoidance and strong reductions. Proceedings
of the American Mathematical Society, 143(2):869–876, 2015.

[24] Damir D. Dzhafarov. Strong reductions between combinatorial principles.
Journal of Symbolic Logic, 81(4):1405–1431, 2016.

[25] Damir D. Dzhafarov. Joins in the strong Weihrauch degrees. Mathematical
Research Letters, (to appear), 2018.

[26] Damir D. Dzhafarov, Jun Le Goh, Denis R. Hirschfeldt, Ludovic Patey, and
Arno Pauly. Ramsey’s theorem and products in the Weihrauch degrees. arXiv
1804.10968, 2018.

[27] Damir D. Dzhafarov and Carl G. Jockusch, Jr. Ramsey’s theorem and cone
avoidance. J. Symbolic Logic, 74(2):557–578, 2009.

[28] Damir D. Dzhafarov, Ludovic Patey, Reed Solomon, and Linda Brown
Westrick. Ramsey’s theorem for singletons and strong computable reducibility.
Proceedings of the American Mathematical Society, 145, 2017.

[29] Harvey Friedman. Some systems of second order arithmetic and their use.
Proceedings of the International Congress of Mathematicians (Vancouver, B.
C., 1974), Vol. 1, pages 235–242, 1975.

[30] Harvey M. Friedman and Jeffry L. Hirst. Weak comparability of well orderings
and reverse mathematics. Ann. Pure Appl. Logic, 47(1):11–29, 1990.

[31] Peter Gerdes. Moduli of computation. PhD thesis, University of California,
Berkeley, 2008.

[32] Guido Gherardi and Alberto Marcone. How incomputable is the separable
Hahn-Banach theorem? Notre Dame Journal of Formal Logic, 50(4):393–425,
2009.

[33] Noam Greenberg and Antonio Montalbán. Ranked structures and arithmetic
transfinite recursion. Trans. Amer. Math. Soc., 360(3):1265–1307, 2008.

[34] Kojiro Higuchi and Arno Pauly. The degree structure of Weihrauch reducibil-
ity. Log. Methods Comput. Sci., 9(2):2:02, 17, 2013.

[35] Denis R. Hirschfeldt. Slicing the truth, volume 28 of Lecture Notes Series.
Institute for Mathematical Sciences. National University of Singapore. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. On the computable
and reverse mathematics of combinatorial principles, Edited and with a fore-
word by Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and
Yue Yang.

MATH 873 F19 NOTES (IN PROGRESS) 81

[36] Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability-
theoretic reduction between Π1

2 principles. Journal of Mathematical Logic,
16(1):1650002, 59, 2016.

[37] Jeffry L. Hirst and Carl Mummert. Using Ramsey’s theorem once. Archive for
Mathematical Logic, pages 1–10, 2019.

[38] Jeffry Lynn Hirst. Combinatorics in Subsystems of Second Order Arithmetic.
ProQuest LLC, Ann Arbor, MI, 1987. Thesis (Ph.D.)–The Pennsylvania State
University.

[39] C. G. Jockusch, Jr. and T. G. McLaughlin. Countable retracing functions and
Π0

2 predicates. Pacific J. Math., 30:67–93, 1969.
[40] Carl Jockusch and Frank Stephan. A cohesive set which is not high. Math.

Logic Quart., 39(4):515–530, 1993.
[41] Carl G. Jockusch, Jr. Ramsey’s theorem and recursion theory. J. Symbolic

Logic, 37:268–280, 1972.
[42] Takayuki Kihara, Alberto Marcone, and Arno Pauly. Searching for an analogue

of ATR in the Weihrauch lattice. arXiv 1812.01549, 2018.
[43] Ulrich Kohlenbach. Higher order reverse mathematics. In Reverse mathematics

2001, volume 21 of Lect. Notes Log., pages 281–295. Assoc. Symbol. Logic, La
Jolla, CA, 2005.

[44] Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoret.
Comput. Sci., 38(1):35–53, 1985.

[45] Yiannis N. Moschovakis. Hyperarithmetical sets. In Martin Davis on com-
putability, computational logic, and mathematical foundations, volume 10 of
Outst. Contrib. Log., pages 107–149. Springer, Cham, 2016.

[46] Ludovic Patey. The weakness of being cohesive, thin or free in reverse mathe-
matics. Israel Journal of Mathematics, 216:905–955, 2016.

[47] Arno Pauly. How incomputable is finding Nash equilibria? Journal of Universal
Computer Science, 16(18):2686–2710, 2010.

[48] Arno Pauly. On the (semi)lattices induced by continuous reducibilities. Math-
ematical Logic Quarterly, 56(5):488–502, 2010.

[49] Arno Pauly. On the topological aspects of the theory of represented spaces.
Computability, 5(2):159–180, 2016.

[50] Klaus-Peter Podewski and Karsten Steffens. Injective choice functions for
countable families. J. Combinatorial Theory Ser. B, 21(1):40–46, 1976.

[51] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

[52] Richard A. Shore. On the strength of Fräıssé’s conjecture. In Logical methods
(Ithaca, NY, 1992), volume 12 of Progr. Comput. Sci. Appl. Logic, pages 782–
813. Birkhäuser Boston, Boston, MA, 1993.

[53] Stephen G. Simpson. On the strength of König’s duality theorem for countable
bipartite graphs. J. Symbolic Logic, 59(1):113–123, 1994.

[54] Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives
in Logic. Cambridge University Press, Cambridge; Association for Symbolic
Logic, Poughkeepsie, NY, second edition, 2009.

[55] Theodore A. Slaman and Marcia Groszek. Moduli of computation. Talk at
Logic, Computability and Randomness, 2007.

[56] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

	1. Introduction
	1.1. Computability on NN
	1.2. Represented spaces and computability on them
	1.3. Problems
	1.4. Reductions between problems
	1.5. Reverse mathematics

	2. Operations on problems and their algebraic properties
	2.1. Parallel product
	2.2. Finite and infinite parallelization
	2.3. Composition and compositional product
	2.4. Implication
	2.5. Jumps
	2.6. Other algebraic properties

	3. Some hyperarithmetic theory
	4. Higher levels of the Weihrauch lattice
	5. ATRW WCWO
	6. The König duality theorem
	7. Interlude: Two-sided problems
	8. Reducing ATR2 to KDT
	9. A proof of KDT
	9.1. Proof of KDT in 11-CA0
	9.2. Countable coded -models, proof of KDT in ATR0

	10. Reducing KDT to ATR2
	References

