A generalization of Henderson's theorem

Haina Wang*
Department of Chemistry Torquato Lab, Princeton University, Princeton, NJ 08544, USA
E-mail: hainaw@princeton.edu

Theorem 1. Suppose the Hamiltonian H of a system in the canonical ensemble at ρ, T is given by a linear sum or integral

$$
\begin{equation*}
H=\sum_{i} K_{i} f_{i}(\{\vec{r}\}) \tag{1}
\end{equation*}
$$

where K_{i} are real numbers, f_{i} are non-constant functions of particle coordinates $\{\vec{r}\}$.
If for two equilibrium systems at $\rho, T,\left\langle f_{i}\right\rangle=\left\langle f_{i}^{\prime}\right\rangle$ for all i, where \rangle is ensemble average over the equilibrium distribution of configurations (or volume average if ergodic), then we have $K_{i}=K_{i}^{\prime}$ for all i.

For example, for the LJ 6-12 potential, $i=1,2,\left\langle f_{1}\right\rangle=\left\langle\frac{1}{r^{12}}\right\rangle,\left\langle f_{2}\right\rangle=\left\langle\frac{1}{r^{6}}\right\rangle$. The generalized Henderson's theorem states that if two LJ 6-12 potentials give the same $\left\langle\frac{1}{r^{12}}\right\rangle$ and $\left\langle\frac{1}{r^{6}}\right\rangle$ under equilibrium, then their parameters must be the same.

For general pairwise additive potentials, the sum in eqn. 1 is an integral over $r .\langle f(r)\rangle$ is surface area of a n-dimensional sphere with radius r multiplied by $g_{2}(r)$, and $K(r)$ is simply the pair potential $U(r)$. Then we recover the original Henderson's theorem.

The generality of the theorem is that the potential doesn't have to be pairwise additive, because f_{i} can be any function of particle coordinates. Also, $\left\langle f_{i}\right\rangle$ can be any ensemble average of a "feature" of the configuration. It doesn't have to be n-point distribution function.

Proof. The proof is exactly analogous to Henderson's proof about radial distribution functions.

Let H_{1}, H_{2} be two potentials that can be written as eqn. 1 with the same forms of f_{i}, but possibly different K_{i}.

Let $\left\rangle_{1}\right.$ and $\left\rangle_{2}\right.$ be averages over equilibrium distributions of configurations under potentials H_{1}, H_{2}, respectively. Then for free energies,

$$
\begin{equation*}
\left\langle G_{2}\right\rangle_{2} \leq\left\langle G_{2}\right\rangle_{1} \tag{2}
\end{equation*}
$$

Here, equality holds if and only if equilibrium distributions 1 and 2 are the same, therefore the potentials H_{1}, H_{2} differ by no more than a constant.

From the equation above,

$$
\begin{equation*}
\left\langle H_{2}\right\rangle_{2}-T S_{2} \leq\left\langle H_{2}\right\rangle_{1}-T S_{1} \tag{3}
\end{equation*}
$$

where S is the entropy.
If $\left\langle f_{i}\right\rangle_{1}=\left\langle f_{i}\right\rangle_{2}$ for all $i,\left\langle H_{2}\right\rangle_{1}=\left\langle H_{2}\right\rangle_{2}$. Then at positive $T, S_{2} \geq S_{1}$.
By symmetry, $S_{2} \leq S_{1}$. Therefore $S_{1}=S_{2}$.
So the equality in eqn. 2 holds, and the potentials differ by no more than a constant. Since both potentials can be written has eqn. 11 where f_{i} are non-constant, we have same K_{i} for both H_{1}, H_{2}.

